Using the GNU Compiler Collection

For ccc version 4.9.0

(GCC)

Richard M. Stallman and the GCC Developer Community

Published by:

GNU Press Website: http://www.gnupress.org
a division of the General: press@gnu.org

Free Software Foundation Orders: sales@gnu.org

51 Franklin Street, Fifth Floor Tel 617-542-5942

Boston, MA 02110-1301 USA Fax 617-542-2652

Last printed October 2003 for GCC 3.3.1.
Printed copies are available for $45 each.

Copyright (©) 1988-2014 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

http://www.gnupress.org
mailto:press@gnu.org
mailto:sales@gnu.org

Short Contents

Introduction 1
1 Programming Languages Supported by GCC............... 3
2 Language Standards Supported by GCC D
3 GCC Command Optionsovtteni i, 9
4 C Implementation-defined behavior..................... 339
5 C++ Implementation-defined behavior.................. 347
6 Extensions to the C Language Family................... 349
7 Extensions to the C++ Language 701
8 GNU Objective-C features, 715
9 Binary Compatibility 731
10 gcov—a Test Coverage Program 735
11 Known Causes of Trouble with GCC.................... 745
12 Reporting Bugs......... .o, 761
13 How To Get Help with GCC 763
14 Contributing to GCC Development 765
Funding Free Software i 767
The GNU Project and GNU/Linux.o oa.. 769
GNU General Public License. 771
GNU Free Documentation License 783
Contributors to GCC 791
Option Index 807

Keyword Index 827

Table of Contents

Introduction 1

1 Programming Languages Supported by GCC

... 3

2 Language Standards Supported by GCC 5
2.1 O AN gUAZE .« o ettt e e 5
2.2 CH4 languageot 6
2.3 Objective-C and Objective-C++ languages 7
24 GO languagettt 8
2.5 References for other languages.............. 8
3 GCC Command Options....................... 9
3.1 Option SUMMATYttt e 9
3.2 Options Controlling the Kind of Output....................... 25
3.3 Compiling C+4 Programsccoiuiiiiiiiieeniennn.. 31
3.4 Options Controlling C Dialect..................coiiiii... 31
3.5 Options Controlling C++ Dialect, 37
3.6 Options Controlling Objective-C and Objective-C++ Dialects.. 48
3.7 Options to Control Diagnostic Messages Formatting 52
3.8 Options to Request or Suppress Warnings 53
3.9 Options for Debugging Your Program or GCC................. 78
3.10 Options That Control Optimization......................... 101
3.11 Options Controlling the Preprocessor........................ 155
3.12 Passing Options to the Assembler........................... 166
3.13 Options for Linking......... ... i 166
3.14 Options for Directory Search................, 170
3.15 Specifying subprocesses and the switches to pass to them.... 172
3.16 Specifying Target Machine and Compiler Version............ 180
3.17 Hardware Models and Configurations 180
3.17.1 AArch64 Optionsc.vviiirie i eeiee s 180
3.17.1.1 ‘-march’ and ‘-mcpu’ feature modifiers............. 182
3.17.2 Adapteva Epiphany Options 182
3.17.3 ARC Optionsot 184
3174 ARM Options.o.oiiriii e 190
3.17.5 AVR Optionsovviie e 196
3.17.5.1 EIND and Devices with more than 128 Ki Bytes of Flash
.. 199

3.17.5.2 Handling of the RAMPD, RAMPX, RAMPY and RAMPZ Special
Function Registers..............oo i i i 201

3.17.5.3 AVR Built-in Macros............cooviiiiiennionn.. 201

3.17.6 Blackfin Options............co i, 203

iii

v

Using the GNU Compiler Collection (GCC)

3177 COX OptionS. c vttt e 206
3.17.8 CRIS Options.veeri i 207
3.17.9 CRI16 Options .. ovveeei e 209
3.17.10 Darwin Options.o, 209
3.17.11 DEC Alpha Optionsooeviiiiiiiiiiinn.. 213
3.17.12 FR30 Optionsovvvriii i i cei e 217
3.17.13 FRV Optionsooiiii e 217
3.17.14 GNU/Linux Options.........coovviiiiiiiiiiiiiiinan.. 221
3.17.15 H8/300 Options.oueniiriniiiiiii e, 222
3.17.16 HPPA Options.......couuiiiiii i, 222
3.17.17 Intel 386 and AMD x86-64 Options 225
3.17.18 1386 and x86-64 Windows Options 242
31719 TA-64 Options . ..ooviti e 243
3.17.20 LM32 Options ..o uvveite it i 247
3.17.21 M32C Options . . .vouveeit et 247
3.17.22 M32R/D Options.......c.vuiuiuiriiiiiiiiineannn. 248
3.17.23 M680X0 Optionsot eaeen 249
3.17.24 MCore Optionsuueeiini e 254
3.17.25 MeP Options ... 255
3.17.26 MicroBlaze Options. ..., 257
3.17.27 MIPS Optionsottt 258
3.17.28 MMIX Optionso.ueiiii i 271
3.17.29 MN10300 Optionsovvveinieiiii e 272
3.17.30 Moxie Options........oviiuiiii e 273
3.17.31 MSP430 Options.o.oiiriiniii i 273
3.17.32 NDS32 Options . ..ouvtvetiit i e 274
3.17.33 Nios IT Optionsoooueiiiii e 275
3.17.34 PDP-11 Optionsoovutieiii e 279
3.17.35 picoChip Options ..o ... 280
3.17.36 PowerPC Options..........ccooiiiiiiiiiiiian... 281
3.17.37 RL78 Options. ...ttt 281
3.17.38 IBM RS/6000 and PowerPC Options.................. 281
3.17.39 RX Optionsovvi 296
3.17.40 S/390 and zSeries Optionscoooiiiina.. 208
3.17.41 Score OpPtionS.oouiiiiii it 302
3.17.42 SH Optionsoovnnit et i 302
3.17.43 Solaris 2 Optionsccoviiiiiiiii i 309
3.17.44 SPARC Optionscouuiinii i 310
3.17.45 SPU Optionsottt 315
3.17.46 Options for System V... 316
3.17.47 TILE-Gx Options.oouiiiiiii i 317
3.17.48 TILEPro Options.......oouiiiiiiiiii i, 317
3.17.49 V850 Options. .. vvieet it e 317
31750 VAX OptionsS . ..o 320
3.17.51 VMS Options. . ..ot 320
3.17.52 VxWorks Options. 321
3.17.53 x86-64 Optionsovirriiiii 321
3.17.54 Xstormyl6 Optionsccovviiiiiiiiiiie... 321

3.17.55 Xtensa Options..........coiiiiiiiainn 321

3.17.56 zSeries Optionsot 323
3.18 Options for Code Generation Conventions................... 323
3.19 Environment Variables Affecting GCC 333
3.20 Using Precompiled Headers, 336

C Implementation-defined behavior 339
4.1 Translationo i 339
4.2 Environment............. .. 339
4.3 Identifiers. 339
4.4 CharaCterS. ..o e e 340
4.5 Integers. ... 341
4.6 Floating pointo 341
4.7 Arrays and poOINters.o 342
4.8 Hints ... 343
4.9 Structures, unions, enumerations, and bit-fields............... 343
410 Qualifiers. ..o 344
4.11 Declarators . ..ot 345
412 Statementso 345
4.13 Preprocessing directives........ ..o 345
4.14 Library functionso 346
4.15 Architecture........ ... 346
4.16 Locale-specific behavior............. o L. 346

C++ Implementation-defined behavior 347

5.1 Conditionally-supported behavior 347
5.2 Exception handling oo i i 347
Extensions to the C Language Family...... 349
6.1 Statements and Declarations in Expressions 349
6.2 Locally Declared Labels............. ..o i, 350
6.3 Labelsas Values.........cooiiiiiiiiiiiiii i 351
6.4 Nested Functions 352
6.5 Constructing Function Calls..............ot 354
6.6 Referring to a Type with typeof, 356
6.7 Conditionals with Omitted Operands......................... 358
6.8 128-bit integerscoviiiii 358
6.9 Double-Word Integers. ..., 358
6.10 Complex Numbers.........oouiiiiiiiiiii .. 358
6.11 Additional Floating Typesccoiiiiiiiiiiiiina... 359
6.12 Half-Precision Floating Point 359
6.13 Decimal Floating Types........ccooiiiiiiiiiiiiiiii .. 360
6.14 Hex Floats.o e 361
6.15 Fixed-Point Types.......cooiuiiiiiiiiii i 361
6.16 Named Address Spacesccoviriiiiiiiin ... 362
6.16.1 AVR Named Address Spacesccoviuueeeninen... 362

6.16.2 M32C Named Address Spaces..........c.ovveiuienne ... 364

vi

Using the GNU Compiler Collection (GCC)

6.16.3 RL78 Named Address Spaces............ccoviiiieannn.. 364
6.16.4 SPU Named Address Spacescooviiiveiinn... 364
6.17 Arrays of Length Zeroo i 364
6.18 Structures With No Members........... L. 366
6.19 Arrays of Variable Length........... 366
6.20 Macros with a Variable Number of Arguments............... 367
6.21 Slightly Looser Rules for Escaped Newlines.................. 368
6.22 Non-Lvalue Arrays May Have Subscripts.................... 368
6.23 Arithmetic on void- and Function-Pointers.................. 368
6.24 Non-Constant Initializers oot 368
6.25 Compound Literalscoiiiiiii 369
6.26 Designated Initializers oL, 370
6.27 Case Ranges. 371
6.28 Cast toa Union Type... ..o 371
6.29 Mixed Declarations and Code............., 372
6.30 Declaring Attributes of Functions........................... 372
6.31 Attribute Syntax ... i 405
6.32 Prototypes and Old-Style Function Definitions 408
6.33 CH+ Style Commentscoviiiiiiiiiiiii .. 409
6.34 Dollar Signs in Identifier Names............... 409
6.35 The Character ESC in Constantsoovuveann... 409
6.36 Specifying Attributes of Variables........................... 409
6.36.1 AVR Variable Attributes........... 414
6.36.2 Blackfin Variable Attributes................... 414
6.36.3 M32R/D Variable Attributes........................... 415
6.36.4 MeP Variable Attributes............................... 415
6.36.5 1386 Variable Attributes............ L. 416
6.36.6 PowerPC Variable Attributes........................... 417
6.36.7 SPU Variable Attributes................. 418
6.36.8 Xstormyl6 Variable Attributes......................... 418
6.37 Specifying Attributes of Types...........cooiiiiiii ... 418
6.37.1 ARM Type Attributeso, 422
6.37.2 MeP Type Attributes ...t ... 423
6.37.3 1386 Type Attributes........ ...t ... 423
6.37.4 PowerPC Type Attributes.............. 423
6.37.5 SPU Type Attributeso 423
6.38 Inquiring on Alignment of Types or Variables 424
6.39 An Inline Function is As Fast Asa Macro................... 424
6.40 When is a Volatile Object Accessed? 426
6.41 Assembler Instructions with C Expression Operands. 427
6.41.1 Sizeof an asm.............oiiiiiiiiiiii 433
6.41.2 1386 floating-point asm operands 433
6.42 Constraints for asm Operands............. ..., 434
6.42.1 Simple Constraints. ..., 434
6.42.2 Multiple Alternative Constraints 437
6.42.3 Constraint Modifier Characters......................... 437
6.42.4 Constraints for Particular Machines 438

6.43 Controlling Names Used in Assembler Code 465

6.44 Variables in Specified Registers............., 466
6.44.1 Defining Global Register Variables 466
6.44.2 Specifying Registers for Local Variables 468

6.45 Alternate Keywords. ... 468

6.46 Incomplete enum Typesooviiiiiiiii .. 469

6.47 Function Names as Strings............cooviiiiiiiiinnann.. 469

6.48 Getting the Return or Frame Address of a Function......... 470

6.49 Using Vector Instructions through Built-in Functions........ 471

6.50 Offsetof.o 473

6.51 Legacy -_sync Built-in Functions for Atomic Memory Access

.. 474

6.52 Built-in functions for memory model aware atomic operations

.. 475
6.53 x86 specific memory model extensions for transactional memory
.. 480

6.54 Object Size Checking Built-in Functions..................... 480

6.55 Cilk Plus C/C++ language extension Built-in Functions. 482

6.56 Other Built-in Functions Provided by GCC 482

6.57 Built-in Functions Specific to Particular Target Machines. ... 492
6.57.1 Alpha Built-in Functions............................... 492
6.57.2 Altera Nios II Built-in Functions....................... 493
6.57.3 ARC Built-in Functions................ oo, 495
6.57.4 ARC SIMD Built-in Functions 497
6.57.5 ARM iWMMX¢t Built-in Functions..................... 500
6.57.6 ARM NEON Intrinsics.........ccooeiiiiiiiiiiane.... 503

6.57.6.1 Addition............ ... 503
6.57.6.2 Multiplication............... i 507
6.57.6.3 Multiply-accumulate 509
6.57.6.4 Multiply-subtract i 510
6.57.6.5 Fused-multiply-accumulate 511
6.57.6.6 Fused-multiply-subtract L. 511
6.57.6.7 Round to integral (to nearest, ties to even) 511
6.57.6.8 Round to integral (to nearest, ties away from zero)
.. o511
6.57.6.9 Round to integral (towards +Inf).................. 511
6.57.6.10 Round to integral (towards -Inf) 512
6.57.6.11 Round to integral (towards 0).................... 512
6.57.6.12 Subtraction........... i i 512
6.57.6.13 Comparison (equal-to)c.ooa.. 515
6.57.6.14 Comparison (greater-than-or-equal-to)............ 516
6.57.6.15 Comparison (less-than-or-equal-to) 517
6.57.6.16 Comparison (greater-than)....................... 517
6.57.6.17 Comparison (less-than)........................... 518
6.57.6.18 Comparison (absolute greater-than-or-equal-to)... 519
6.57.6.19 Comparison (absolute less-than-or-equal-to) 519
6.57.6.20 Comparison (absolute greater-than) 519
6.57.6.21 Comparison (absolute less-than).................. 519

6.57.6.22 Test bits. ..ot 519

vii

viii Using the GNU Compiler Collection (GCC)

6.57.6.23 Absolute difference............ol 520
6.57.6.24 Absolute difference and accumulate............... 521
6.57.6.25 Maximum.ttt 522
6.57.6.26 Minimumcooviiiiiiiiiiiiiiiinnna... 523
6.57.6.27 Pairwise add...... 523
6.57.6.28 Pairwise add, single_opcode widen and accumulate
.. 524
6.57.6.29 Folding maximum............ ..., 525
6.57.6.30 Folding minimum ... 525
6.57.6.31 Reciprocal step ... 526
6.57.6.32 Vector shift left 526
6.57.6.33 Vector shift left by constant...................... 529
6.57.6.34 Vector shift right by constant 531
6.57.6.35 Vector shift right by constant and accumulate 534
6.57.6.36 Vector shift right and insert...................... 536
6.57.6.37 Vector shift left and insert 537
6.57.6.38 Absolute value........ i 538
6.57.6.39 Negation............cooiiiiiiiiiiiiiiiiii ., 539
6.57.6.40 Bitwisenot i i 539
6.57.6.41 Count leading sign bits.................. 540
6.57.6.42 Count leading zeros ..., 540
6.57.6.43 Count number of set bits......................... 541
6.57.6.44 Reciprocal estimate 541
6.57.6.45 Reciprocal square-root estimate 542
6.57.6.46 Get lanes from a vector 542
6.57.6.47 Set lanesin a vector, 543
6.57.6.48 Create vector from literal bit pattern............. 544
6.57.6.49 Set all lanes to the same value.................... 544
6.57.6.50 Combining vectors.............coiiiiiiiiii.. 547
6.57.6.51 Splitting vectorscooiiiiiiiiiiiiia.. 548
6.57.6.52 CONVErSIONS.ottt 549
6.57.6.53 Move, single_opcode narrowing................... 549
6.57.6.54 Move, single_opcode long......................... 550
6.57.6.55 Table lookup........ ...l 550
6.57.6.56 Extended table lookup 551
6.57.6.57 Multiply, lane......... 552
6.57.6.58 Long multiply, lane 552
6.57.6.59 Saturating doubling long multiply, lane........... 552
6.57.6.60 Saturating doubling multiply high, lane 553
6.57.6.61 Multiply-accumulate, lane........................ 553
6.57.6.62 Multiply-subtract, lane................, 554
6.57.6.63 Vector multiply by scalar......................... 555
6.57.6.64 Vector long multiply by scalar.................... 555
6.57.6.65 Vector saturating doubling long multiply by scalar
.. 555
6.57.6.66 Vector saturating doubling multiply high by scalar
.. 555

6.57.6.67 Vector multiply-accumulate by scalar............. 556

6.57.6.68 Vector multiply-subtract by scalar................
6.57.6.69 Vector extractco i
6.57.6.70 Reverse elements...................o i i
6.57.6.71 Bit selection ...
6.57.6.72 Transpose elements
6.57.6.73 Zipelements.............. i
6.57.6.74 Unzip elements oo,
6.57.6.75 Element/structure loads, VLD1 variants..........
6.57.6.76 Element/structure stores, VST1 variants
6.57.6.77 Element/structure loads, VLD2 variants..........
6.57.6.78 Element /structure stores, VST2 variants
6.57.6.79 Element/structure loads, VLD3 variants..........
6.57.6.80 Element/structure stores, VST3 variants
6.57.6.81 Element/structure loads, VLD4 variants..........
6.57.6.82 Element/structure stores, VST4 variants
6.57.6.83 Logical operations (AND)........................
6.57.6.84 Logical operations (OR)..........................
6.57.6.85 Logical operations (exclusive OR)................
6.57.6.86 Logical operations (AND-NOT)
6.57.6.87 Logical operations (OR-NOT)....................
6.57.6.88 Reinterpret casts. ...,
6.57.7 ARM ACLE Intrinsicsooieiiiiiiiiiaan.
6.57.7.1 CRC32 intrinsics....... ..o,
6.57.8 AVR Built-in Functions................................
6.57.9 Blackfin Built-in Functions.............................
6.57.10 FR-V Built-in Functions
6.57.10.1 Argument Types...... ..o ..
6.57.10.2 Directly-mapped Integer Functions...............
6.57.10.3 Directly-mapped Media Functions................
6.57.10.4 Raw read/write Functions........................
6.57.10.5 Other Built-in Functions.........................
6.57.11 X86 Built-in Functions................ ... L.
6.57.12 X86 transaction memory intrinsics
6.57.13 MIPS DSP Built-in Functions.........................
6.57.14 MIPS Paired-Single Support
6.57.15 MIPS Loongson Built-in Functions....................
6.57.15.1 Paired-Single Arithmetic................
6.57.15.2 Paired-Single Built-in Functions..................
6.57.15.3 MIPS-3D Built-in Functions......................
6.57.16 Other MIPS Built-in Functions........................
6.57.17 MSP430 Built-in Functions
6.57.18 NDS32 Built-in Functions....................,
6.57.19 picoChip Built-in Functions....................
6.57.20 PowerPC Built-in Functions...........................
6.57.21 PowerPC AltiVec Built-in Functions...................
6.57.22 PowerPC Hardware Transactional Memory Built-in
Functions ...
6.57.22.1 PowerPC HTM Low Level Built-in Functions.....

ix

Using the GNU Compiler Collection (GCC)

6.57.22.2 PowerPC HTM High Level Inline Functions 680
6.57.23 RX Built-in Functions L 681
6.57.24 S/390 System z Built-in Functions 683
6.57.25 SH Built-in Functions............ o oL 684
6.57.26 SPARC VIS Built-in Functions........................ 685
6.57.27 SPU Built-in Functions 687
6.57.28 TI C6X Built-in Functions............................ 688
6.57.29 TILE-Gx Built-in Functions........................... 688
6.57.30 TILEPro Built-in Functions........................... 689

6.58 Format Checks Specific to Particular Target Machines. 689
6.58.1 Solaris Format Checks 689
6.58.2 Darwin Format Checks.............. 689

6.59 Pragmas Accepted by GCC....... 690
6.59.1 ARM Pragmas..........cooiiiiiiiiiiii i 690
6.59.2 M32C Pragmasvuuutit i 690
6.59.3 MeP Pragmas. ... 690
6.59.4 RS/6000 and PowerPC Pragmas 691
6.59.5 Darwin Pragmas.............ooiiiiiiiiiiiiiiiiii 691
6.59.6 Solaris Pragmas............coooii i 692
6.59.7 Symbol-Renaming Pragmas............................ 692
6.59.8 Structure-Packing Pragmas 693
6.59.9 Weak Pragmas............cooiiiiiiiiiiiiiiiiii... 693
6.59.10 Diagnostic Pragmas................cooiiiiiiiL. 694
6.59.11 Visibility Pragmas............. ... ot 695
6.59.12 Push/Pop Macro Pragmas 695
6.59.13 Function Specific Option Pragmas..................... 695
6.59.14 Loop-Specific Pragmas...............l 696

6.60 Unnamed struct/union fields within structs/unions.......... 697

6.61 Thread-Local Storage...........cooiiiiiiiiiiiiiiii .. 697
6.61.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage..... 698
6.61.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage. ... 699

6.62 Binary constants using the ‘0b’ prefix 700

Extensions to the C++ Language 701

7.1 When is a Volatile C++ Object Accessed? 701

7.2 Restricting Pointer Aliasing...........o .. 701

7.3 Vague Linkageo 702

7.4 #pragma interface and implementation....................... 703

7.5 Where’s the Template?......... .. i i, 704

7.6 Extracting the function pointer from a bound pointer to member

functiono 706

7.7 C++-Specific Variable, Function, and Type Attributes 707

7.8 Function Multiversioning............. i 708

7.9 Namespace Associationccoiiiiiiiiiiiinnin .. 709

710 Type Traits. ... e e 710

7.11 Java Exceptions ... 712

7.12 Deprecated Features............coooiiii i, 712

7.13 Backwards Compatibility 713

8 GNU Objective-C features.................. 715

8.1 GNU Objective-C runtime API 715
8.1.1 Modern GNU Objective-C runtime API................. 715
8.1.2 Traditional GNU Objective-C runtime APT.............. 716

8.2 +load: Executing code before main 716
8.2.1 What you can and what you cannot do in +load......... 717

8.3 Typeencoding.........o.uoiiiiiiiii i 718
8.3.1 Legacy type encodingcooiuiiiiiiiiiiiiiiea.n. 720
8.3.2 @eNCOAeottt 720
8.3.3 Method signaturesoo i i 721

8.4 Garbage Collection......... ..., 721

8.5 Constant string objects ... 722

8.6 compatibility_alias.........o i 723

8.7 EXCEptions.ot 723

8.8 Synchronization........... i 725

8.9 Fast enumeration 725
8.9.1 Using fast enumeration....................oiiiiiii... 725
8.9.2 ¢99-like fast enumeration syntax................, 725
8.9.3 Fast enumeration details oo 726
8.9.4 Fast enumeration protocol............... 727

8.10 Messaging with the GNU Objective-C runtime 728
8.10.1 Dynamically registering methods....................... 728
8.10.2 Forwarding hook.......... i i 728

9 Binary Compatibility 731
10 gcov—a Test Coverage Program........... 735

10.1 Introduction to GCovV......c..viiiiiiii i 735

10.2 Invoking GCov ..ottt e 735

10.3 Using gcov with GCC Optimization......................... 741

10.4 Brief description of gcov data files................. 742

10.5 Data file relocation to support cross-profiling................ 743

11 Known Causes of Trouble with GCC. 745

11.1 Actual Bugs We Haven’t Fixed Yet 745

11.2 Interoperationc.ooeeiiniiiiiii e 745

11.3 Incompatibilities of GCC....... i i, 47

11.4 Fixed Header Files........ ... i, 750

11.5 Standard Libraries.............co i 750

11.6 Disappointments and Misunderstandings 751

11.7 Common Misunderstandings with GNU C++ 752
11.7.1 Declare and Define Static Members 752
11.7.2 Name lookup, templates, and accessing members of base

ClASSES . ¢ ot 753

11.7.3 Temporaries May Vanish Before You Expect............ 754
11.7.4 Implicit Copy-Assignment for Virtual Bases............ 755
11.8 Certain Changes We Don’t Want to Make................... 756

11.9 Warning Messages and Error Messages...................... 759

xii Using the GNU Compiler Collection (GCC)

12 Reporting Bugs............................. 761
12.1 Have You Found a Bug? i i 761
12.2 How and where to Report Bugs............ 761

13 How To Get Help with GCC 763

14 Contributing to GCC Development 765

Funding Free Software........................... 767

The GNU Project and GNU/Linux 769

GNU General Public License 771

GNU Free Documentation License 783
ADDENDUM: How to use this License for your documents........ 790

Contributors to GCC............................ 791

Option Index, 807

Keyword Index............. 827

Introduction 1

Introduction

This manual documents how to use the GNU compilers, as well as their features and incom-
patibilities, and how to report bugs. It corresponds to the compilers (GCC) version 4.9.0.
The internals of the GNU compilers, including how to port them to new targets and some
information about how to write front ends for new languages, are documented in a separate
manual. See Section “Introduction” in GNU Compiler Collection (GCC) Internals.

Chapter 1: Programming Languages Supported by GCC 3

1 Programming Languages Supported by GCC

GCC stands for “GNU Compiler Collection”. GCC is an integrated distribution of compil-
ers for several major programming languages. These languages currently include C, C++,
Objective-C, Objective-C++, Java, Fortran, Ada, and Go.

The abbreviation GCC has multiple meanings in common use. The current official mean-
ing is “GNU Compiler Collection”, which refers generically to the complete suite of tools.
The name historically stood for “GNU C Compiler”, and this usage is still common when
the emphasis is on compiling C programs. Finally, the name is also used when speaking
of the language-independent component of GCC: code shared among the compilers for all
supported languages.

The language-independent component of GCC includes the majority of the optimizers,
as well as the “back ends” that generate machine code for various processors.

The part of a compiler that is specific to a particular language is called the “front end”.
In addition to the front ends that are integrated components of GCC, there are several
other front ends that are maintained separately. These support languages such as Pascal,
Mercury, and COBOL. To use these, they must be built together with GCC proper.

Most of the compilers for languages other than C have their own names. The C++ compiler
is G++, the Ada compiler is GNAT, and so on. When we talk about compiling one of those
languages, we might refer to that compiler by its own name, or as GCC. Either is correct.

Historically, compilers for many languages, including C++ and Fortran, have been im-
plemented as “preprocessors” which emit another high level language such as C. None of
the compilers included in GCC are implemented this way; they all generate machine code
directly. This sort of preprocessor should not be confused with the C preprocessor, which
is an integral feature of the C, C++, Objective-C and Objective-C++ languages.

Chapter 2: Language Standards Supported by GCC 5

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with
some extensions.

2.1 C language

GCC supports three versions of the C standard, although support for the most recent version
is not yet complete.

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/IEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. This standard, in
both its forms, is commonly known as C89, or occasionally as C90, from the dates of
ratification. The ANSI standard, but not the ISO standard, also came with a Rationale
document. To select this standard in GCC, use one of the options ‘-ansi’, ‘-std=c90’ or
‘-std=1509899:1990’; to obtain all the diagnostics required by the standard, you should
also specify ‘-pedantic’ (or ‘-pedantic-errors’ if you want them to be errors rather than
warnings). See Section 3.4 [Options Controlling C Dialect], page 31.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added
digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This
amendment is commonly known as AMDI; the amended standard is sometimes known as
C94 or C95. To select this standard in GCC, use the option ‘-std=1509899:199409’ (with,
as for other standard versions, ‘-pedantic’ to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and
is commonly known as C99. GCC has substantially complete support for this standard
version; see http://gcc.gnu.org/c99status.html for details. To select this standard,
use ‘-std=c99’ or ‘-std=1509899:1999’. (While in development, drafts of this standard
version were referred to as C9X.)

Errors in the 1999 ISO C standard were corrected in three Technical Corrigenda published
in 2001, 2004 and 2007. GCC does not support the uncorrected version.

A fourth version of the C standard, known as C11, was published in 2011 as ISO/IEC
9899:2011. GCC has substantially complete support for this standard, enabled with
‘~std=cl1l’ or ‘-std=is09899:2011’. (While in development, drafts of this standard
version were referred to as C1X.)

By default, GCC provides some extensions to the C language that on rare occasions con-
flict with the C standard. See Chapter 6 [Extensions to the C Language Family], page 349.
Use of the ‘-std’ options listed above will disable these extensions where they conflict with
the C standard version selected. You may also select an extended version of the C language
explicitly with ‘-=std=gnu90’ (for C90 with GNU extensions), ‘-std=gnu99’ (for C99 with
GNU extensions) or ‘-std=gnuil’ (for C11 with GNU extensions). The default, if no C lan-
guage dialect options are given, is ‘-std=gnu90’; this is intended to change to ‘-std=gnull’
in some future release. Some features that are part of the C99 standard are accepted as

http://gcc.gnu.org/c99status.html

6 Using the GNU Compiler Collection (GCC)

extensions in C90 mode, and some features that are part of the C11 standard are accepted
as extensions in C90 and C99 modes.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library fa-
cilities; a conforming freestanding implementation is only required to provide certain library
facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMDI,
also those in <iso0646.h>; since C99, also those in <stdbool.h> and <stdint.h>; and since
C11, also those in <stdalign.h> and <stdnoreturn.h>. In addition, complex types, added
in C99, are not required for freestanding implementations. The standard also defines two
environments for programs, a freestanding environment, required of all implementations and
which may not have library facilities beyond those required of freestanding implementations,
where the handling of program startup and termination are implementation-defined, and a
hosted environment, which is not required, in which all the library facilities are provided
and startup is through a function int main (void) or int main (int, char *[]). An OS
kernel would be a freestanding environment; a program using the facilities of an operating
system would normally be in a hosted implementation.

GCC aims towards being usable as a conforming freestanding implementation, or as the
compiler for a conforming hosted implementation. By default, it will act as the compiler for a
hosted implementation, defining __STDC_HOSTED__ as 1 and presuming that when the names
of ISO C functions are used, they have the semantics defined in the standard. To make it act
as a conforming freestanding implementation for a freestanding environment, use the option
‘~ffreestanding’; it will then define __STDC_HOSTED__ to 0 and not make assumptions
about the meanings of function names from the standard library, with exceptions noted
below. To build an OS kernel, you may well still need to make your own arrangements for
linking and startup. See Section 3.4 [Options Controlling C Dialect], page 31.

GCC does not provide the library facilities required only of hosted implementations, nor
yet all the facilities required by C99 of freestanding implementations on all platforms; to use
the facilities of a hosted environment, you will need to find them elsewhere (for example,
in the GNU C library). See Section 11.5 [Standard Libraries|, page 750.

Most of the compiler support routines used by GCC are present in ‘libgcc’, but there
are a few exceptions. GCC requires the freestanding environment provide memcpy, memmove,
memset and memcmp. Finally, if __builtin_trap is used, and the target does not implement
the trap pattern, then GCC will emit a call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning
the history of C that is available online, see http://gcc.gnu.org/readings.html

2.2 C++ language

GCC supports the original ISO C++ standard (1998) and contains experimental support for
the second ISO C++ standard (2011).

The original ISO C++ standard was published as the ISO standard (ISO/IEC 14882:1998)
and amended by a Technical Corrigenda published in 2003 (ISO/IEC 14882:2003). These
standards are referred to as C++98 and C++03, respectively. GCC implements the majority
of C++98 (export is a notable exception) and most of the changes in C++03. To select
this standard in GCC, use one of the options ‘-ansi’, ‘-std=c++98’, or ‘-std=c++03’; to

http://gcc.gnu.org/readings.html

Chapter 2: Language Standards Supported by GCC 7

obtain all the diagnostics required by the standard, you should also specify ‘-pedantic’ (or
‘-pedantic-errors’ if you want them to be errors rather than warnings).

A revised ISO C++ standard was published in 2011 as ISO/IEC 14882:2011, and is re-
ferred to as C++11; before its publication it was commonly referred to as C++0x. C++11
contains several changes to the C++ language, most of which have been implemented in an
experimental C++11 mode in GCC. For information regarding the C++11 features available
in the experimental C++11 mode, see http://gcc.gnu.org/projects/cxx0x.html. To
select this standard in GCC, use the option ‘-std=c++11’; to obtain all the diagnostics
required by the standard, you should also specify ‘-pedantic’ (or ‘-pedantic-errors’ if
you want them to be errors rather than warnings).

More information about the C++ standards is available on the ISO C++ committee’s web
site at http://www.open-std.org/jtcl/sc22/wg21/.

By default, GCC provides some extensions to the C++ language; See Section 3.5 [C++
Dialect Options]|, page 37. Use of the ‘-std’ option listed above will disable these extensions.
You may also select an extended version of the C++ language explicitly with ‘-std=gnu++98’
(for C++98 with GNU extensions) or ‘-std=gnu++11’ (for C++11 with GNU extensions). The
default, if no C++ language dialect options are given, is ‘-std=gnu++98’.

2.3 Objective-C and Objective-C++ languages

GCC supports “traditional” Objective-C (also known as “Objective-C 1.0”) and contains
support for the Objective-C exception and synchronization syntax. It has also support for
a number of “Objective-C 2.0” language extensions, including properties, fast enumeration
(only for Objective-C), method attributes and the @Qoptional and Qrequired keywords in
protocols. GCC supports Objective-C++ and features available in Objective-C are also
available in Objective-C++.

GCC by default uses the GNU Objective-C runtime library, which is part of GCC and
is not the same as the Apple/NeXT Objective-C runtime library used on Apple systems.
There are a number of differences documented in this manual. The options ‘-fgnu-runtime’
and ‘-fnext-runtime’ allow you to switch between producing output that works with the
GNU Objective-C runtime library and output that works with the Apple/NeXT Objective-
C runtime library.

There is no formal written standard for Objective-C or Objective-C++. The authori-
tative manual on traditional Objective-C (1.0) is “Object-Oriented Programming and the
Objective-C Language”, available at a number of web sites:

e http://www.gnustep.org/resources/documentation/0bjectivCBook . pdf is the
original NeXTstep document;

e http://objc.toodarkpark.net is the same document in another format;

e http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/
ObjectiveC/ has an updated version but make sure you search for “Object Oriented
Programming and the Objective-C Programming Language 1.0”, not documentation
on the newer “Objective-C 2.0” language

The Objective-C exception and synchronization syntax (that is, the keywords Qtry,
@throw, @catch, @finally and @synchronized) is supported by GCC and is enabled with

http://gcc.gnu.org/projects/cxx0x.html
http://www.open-std.org/jtc1/sc22/wg21/
http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf
http://objc.toodarkpark.net
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/

8 Using the GNU Compiler Collection (GCC)

the option ‘~fobjc-exceptions’. The syntax is briefly documented in this manual and in
the Objective-C 2.0 manuals from Apple.

The Objective-C 2.0 language extensions and features are automatically enabled; they
include properties (via the @property, @synthesize and @dynamic keywords), fast enumera-
tion (not available in Objective-C++), attributes for methods (such as deprecated, noreturn,
sentinel, format), the unused attribute for method arguments, the @package keyword for
instance variables and the Qoptional and @required keywords in protocols. You can disable
all these Objective-C 2.0 language extensions with the option ‘-fobjc-std=objcl’, which
causes the compiler to recognize the same Objective-C language syntax recognized by GCC
4.0, and to produce an error if one of the new features is used.

GCC has currently no support for non-fragile instance variables.

The authoritative manual on Objective-C 2.0 is available from Apple:

e http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/
ObjectiveC/

For more information concerning the history of Objective-C that is available online, see
http://gcc.gnu.org/readings.html

2.4 Go language

As of the GCC 4.7.1 release, GCC supports the Go 1 language standard, described at
http://golang.org/doc/gol.html.

2.5 References for other languages
See Section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See Section “Standards” in The GNU Fortran Compiler, for details of standards sup-
ported by GNU Fortran.

See Section “Compatibility with the Java Platform” in GNU gc¢j, for details of compati-
bility between gcj and the Java Platform.

http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://gcc.gnu.org/readings.html
http://golang.org/doc/go1.html

Chapter 3: GCC Command Options 9

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking.
The “overall options” allow you to stop this process at an intermediate stage. For example,
the ‘=c’ option says not to run the linker. Then the output consists of object files output
by the assembler.

Other options are passed on to one stage of processing. Some options control the prepro-
cessor and others the compiler itself. Yet other options control the assembler and linker;
most of these are not documented here, since you rarely need to use any of them.

Most of the command-line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

See Section 3.3 [Compiling C++ Programs|, page 31, for a summary of special options for
compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-
letter names; therefore multiple single-letter options may not be grouped: ‘-dv’ is very
different from ‘-4 -v’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify ‘-L’ more than once, the directories are searched in the order specified. Also,
the placement of the ‘-1’ option is significant.

Many options have long names starting with ‘-f’ or with ‘-W—for example,
‘-fmove-loop-invariants’, ‘-Wformat’ and so on. Most of these have both positive and
negative forms; the negative form of ‘~ffoo’ is ‘-fno-foo’. This manual documents only
one of these two forms, whichever one is not the default.

See [Option Index]|, page 807, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

Overall Options
See Section 3.2 [Options Controlling the Kind of Output], page 25.
-c -S -E -o file -no-canonical-prefixes
-pipe -pass-exit-codes
-x language -v -### --help[=class[,...]] --target-help
--version -wrapper Q@file -fplugin=file -fplugin-arg-name=arg
-fdump-ada-spec[-slim| -fada-spec-parent=unit -fdump-go-spec=file

C Language Options
See Section 3.4 [Options Controlling C Dialect], page 31.

-ansi -std=standard -fgnu89-inline

-aux-info filename -fallow-parameterless-variadic-functions
-fno-asm -fno-builtin -fno-builtin-function

-fhosted -ffreestanding -fopenmp -fopenmp-simd -fms-extensions
-fplan9-extensions -trigraphs -traditional -traditional-cpp

10 Using the GNU Compiler Collection (GCC)

-fallow-single-precision -fcond-mismatch -flax-vector-conversions
-fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char

C++ Language Options
See Section 3.5 [Options Controlling C++ Dialect|, page 37.

-fabi-version=n -fno-access-control -fcheck-new
-fconstexpr-depth=n -ffriend-injection
-fno-elide-constructors

-fno-enforce-eh-specs

-ffor-scope -fno-for-scope -fno-gnu-keywords
-fno-implicit-templates

-fno-implicit-inline-templates

-fno-implement-inlines -fms-extensions
-fno-nonansi-builtins -fnothrow-opt -fno-operator-names
-fno-optional-diags -fpermissive

-fno-pretty-templates

-frepo -fno-rtti -fstats -ftemplate-backtrace-limit=n
-ftemplate-depth=n

-fno-threadsafe-statics -fuse-cxa-atexit -fno-weak -nostdinc++
-fvisibility-inlines-hidden
-fvtable-verify=std|preinit|none

-fvtv-counts -fvtv-debug

-fvisibility-ms-compat

-fext-numeric-literals

-Wabi -Wconversion-null -Wctor-dtor-privacy
-Wdelete-non-virtual-dtor -Wliteral-suffix -Wnarrowing
-Wnoexcept -Wnon-virtual-dtor -Wreorder

-Weffc++ -Wstrict-null-sentinel
-Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions

-Wsign-promo

Objective-C and Objective-C++ Language Options
See Section 3.6 [Options Controlling Objective-C and Objective-C++ Dialects|
page 48.

-fconstant-string-class=class-name
-fgnu-runtime -fnext-runtime
-fno-nil-receivers
-fobjc-abi-version=n
-fobjc-call-cxx-cdtors
-fobjc-direct-dispatch
-fobjc-exceptions

-fobjc-gc

-fobjc-nilcheck
-fobjc-std=objcl
-freplace-objc-classes
-fzero-link

-gen-decls
-Wassign-intercept
-Wno-protocol -Wselector
-Wstrict-selector-match
-Wundeclared-selector

9

Language Independent Options
See Section 3.7 [Options to Control Diagnostic Messages Formatting|, page 52.
-fmessage-length=n
-fdiagnostics-show-location=[once|every-line]

Chapter 3: GCC Command Options 11

-fdiagnostics-color=[auto|never|always
-fno-diagnostics-show-option -fno-diagnostics-show-caret

Warning Options
See Section 3.8 [Options to Request or Suppress Warnings|, page 53.

-fsyntax-only -fmax-errors=n -Wpedantic

-pedantic-errors

-w -Wextra -Wall -Waddress -Waggregate-return
-Waggressive-loop-optimizations -Warray-bounds

-Wno-attributes -Wno-builtin-macro-redefined

-Wc++-compat -Wc++1ll-compat -Wcast-align -Wcast-qual
-Wchar-subscripts -Wclobbered -Wcomment -Wconditionally-supported
-Wconversion -Wcoverage-mismatch -Wdate-time -Wdelete-incomplete -Wno-cpp
-Wno-deprecated -Wno-deprecated-declarations -Wdisabled-optimization
-Wno-div-by-zero -Wdouble-promotion -Wempty-body -Wenum-compare
-Wno-endif-labels -Werror -Werror=*

-Wfatal-errors -Wfloat-equal -Wformat -Wformat=2
-Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral
-Wformat-security -Wformat-y2k

-Wframe-larger-than=len -Wno-free-nonheap-object -Wjump-misses-init
-Wignored-qualifiers

-Wimplicit -Wimplicit-function-declaration -Wimplicit-int
-Winit-self -Winline -Wmaybe-uninitialized

-Wno-int-to-pointer-cast -Wno-invalid-offsetof

-Winvalid-pch -Wlarger-than=len -Wunsafe-loop-optimizations
-Wlogical-op -Wlong-long

-Wmain -Wmaybe-uninitialized -Wmissing-braces -Wmissing-field-initializers [}
-Wmissing-include-dirs

-Wno-multichar -Wnonnull -Wno-overflow -Wopenmp-simd
-Woverlength-strings -Wpacked -Wpacked-bitfield-compat -Wpadded
-Wparentheses -Wpedantic-ms-format -Wno-pedantic-ms-format
-Wpointer-arith -Wno-pointer-to-int-cast

-Wredundant-decls -Wno-return-local-addr

-Wreturn-type -Wsequence-point -Wshadow

-Wsign-compare -Wsign-conversion -Wfloat-conversion
-Wsizeof-pointer-memaccess

-Wstack-protector -Wstack-usage=len -Wstrict-aliasing
-Wstrict-aliasing=n

-Wstrict-overflow -Wstrict-overflow=n
-Wsuggest-attribute=|pure|const|noreturn|format|
-Wmissing-format-attribute

-Wswitch -Wswitch-default -Wswitch-enum -Wsync-nand
-Wsystem-headers -Wtrampolines -Wtrigraphs -Wtype-limits -Wundef
-Wuninitialized -Wunknown-pragmas -Wno-pragmas
-Wunsuffixed-float-constants -Wunused -Wunused-function
-Wunused-label -Wunused-local-typedefs -Wunused-parameter
-Wno-unused-result -Wunused-value

-Wunused-variable

-Wunused-but-set-parameter -Wunused-but-set-variable

-Wuseless-cast -Wvariadic-macros -Wvector-operation-performance
-Wvla -Wvolatile-register-var -Wwrite-strings -Wzero-as-null-pointer-constantfi

C and Objective-C-only Warning Options
-Wbad-function-cast -Wmissing-declarations
-Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs
-Wold-style-declaration -Wold-style-definition
-Wstrict-prototypes -Wtraditional -Wtraditional-conversion
-Wdeclaration-after-statement -Wpointer-sign

12 Using the GNU Compiler Collection (GCC)

Debugging Options
See Section 3.9 [Options for Debugging Your Program or GCC], page 78.

-dletters -dumpspecs -dumpmachine -dumpversion
-fsanitize=style

-fdbg-cnt-list -fdbg-cnt=counter-value-list
-fdisable-ipa-pass_name

-fdisable-rtl-pass_name
-fdisable-rtl-pass-name=range-list
-fdisable-tree-pass_name
-fdisable-tree-pass-name=range-list

-fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links
-fdump-translation-unit[-n]

-fdump-class-hierarchy[-n]

-fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline
-fdump-passes

-fdump-statistics

-fdump-tree-all

-fdump-tree-original[-n]

-fdump-tree-optimized|-n]

-fdump-tree-cfg -fdump-tree-alias

-fdump-tree-ch

-fdump-tree-ssa[-n] -fdump-tree-pre[-n

-fdump-tree-ccp|[-n] -fdump-tree-dce[-n]
-fdump-tree-gimple[-raw]

-fdump-tree-dom[-n]

-fdump-tree-dse[-n]

-fdump-tree-phiprop|-n]

-fdump-tree-phiopt[-n]

-fdump-tree-forwprop|-n]

-fdump-tree-copyrename|-n]

-fdump-tree-nrv -fdump-tree-vect

-fdump-tree-sink

-fdump-tree-sral-n]

-fdump-tree-forwprop|-n]

-fdump-tree-fre[-n]

-fdump-tree-vtable-verify

-fdump-tree-vrp|-n]

-fdump-tree-storeccp|-n]

-fdump-final-insns=file

-fcompare-debug[=opts| -fcompare-debug-second
-feliminate-dwarf2-dups -fno-eliminate-unused-debug-types
-feliminate-unused-debug-symbols -femit-class-debug-always
-fenable-kind-pass

-fenable-kind-pass=range-list

-fdebug-types-section -fmem-report-wpa

-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs
-fopt-info

-fopt-info-options[=file]

-frandom-seed=string -fsched-verbose=n
-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose
-fstack-usage -ftest-coverage -ftime-report -fvar-tracking
-fvar-tracking-assignments -fvar-tracking-assignments-toggle
-g —glevel -gtoggle -gcoff -gdwarf-version

-ggdb -grecord-gcc-switches -gno-record-gcc-switches
-gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf

-gvms -gxcoff -gxcoff+

-fno-merge-debug-strings -fno-dwarf2-cfi-asm
-fdebug-prefix-map=old=new

Chapter 3: GCC Command Options 13

-femit-struct-debug-baseonly -femit-struct-debug-reduced
-femit-struct-debug-detailed|=spec-1ist]

-p -pg -print-file-name=library -print-libgcc-file-name
-print-multi-directory -print-multi-lib -print-multi-os-directory
-print-prog-name=program -print-search-dirs -Q

-print-sysroot -print-sysroot-headers-suffix

-save-temps -save-temps=cwd -save-temps=obj -time[=file]

Optimization Options
See Section 3.10 [Options that Control Optimization], page 101.

-faggressive-loop-optimizations -falign-functions[=n]

-falign-jumps [=n]

-falign-labels[=n] -falign-loops[=n]

-fassociative-math -fauto-inc-dec -fbranch-probabilities
-fbranch-target-load-optimize -fbranch-target-load-optimize2
-fbtr-bb-exclusive -fcaller-saves

-fcheck-data-deps -fcombine-stack-adjustments -fconserve-stack
-fcompare-elim -fcprop-registers -fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules
-fcx-limited-range

-fdata-sections -fdce -fdelayed-branch

-fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively -
fdse

-fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects
-ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=style
-fforward-propagate -ffp-contract=style -ffunction-sections

-fgcse -fgcse-after-reload -fgcse-las -fgcse-1lm -fgraphite-identity
-fgcse-sm -fhoist-adjacent-loads -fif-conversion

-fif-conversion2 -findirect-inlining

-finline-functions -finline-functions-called-once -finline-limit=n
-finline-small-functions -fipa-cp -fipa-cp-clone

-fipa-pta -fipa-profile -fipa-pure-const -fipa-reference
-fira-algorithm=algorithm

-fira-region=region -fira-hoist-pressure

-fira-loop-pressure -fno-ira-share-save-slots
-fno-ira-share-spill-slots -fira-verbose=n
-fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute -
fivopts -fkeep-inline-functions -fkeep-static-consts -flive-range-shrinkage i
-floop-block -floop-interchange -floop-strip-mine -floop-nest-optimize
-floop-parallelize-all -flto -flto-compression-level
-flto-partition=alg -flto-report -flto-report-wpa -fmerge-all-constants
-fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves
-fmove-loop-invariants -fno-branch-count-reg

-fno-defer-pop —-fno-function-cse -fno-guess-branch-probability
-fno-inline -fno-math-errno -fno-peephole -fno-peephole2
-fno-sched-interblock -fno-sched-spec -fno-signed-zeros
-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss
-fomit-frame-pointer -foptimize-sibling-calls

-fpartial-inlining -fpeel-loops -fpredictive-commoning
-fprefetch-loop-arrays -fprofile-report

-fprofile-correction -fprofile-dir=path -fprofile-generate
-fprofile-generate=path

-fprofile-use -fprofile-use=path -fprofile-values -fprofile-reorder-functions [
-freciprocal-math -free -frename-registers -freorder-blocks
-freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop -freschedule-modulo-scheduled-loops
-frounding-math -fsched2-use-superblocks -fsched-pressure
-fsched-spec-load -fsched-spec-load-dangerous

14 Using the GNU Compiler Collection (GCC)

-fsched-stalled-insns-dep[=n] -fsched-stalled-insns[=n]
-fsched-group-heuristic -fsched-critical-path-heuristic
-fsched-spec-insn-heuristic -fsched-rank-heuristic
-fsched-last-insn-heuristic -fsched-dep-count-heuristic
-fschedule-insns -fschedule-insns2 -fsection-anchors
-fselective-scheduling -fselective-scheduling2
-fsel-sched-pipelining -fsel-sched-pipelining-outer-loops
-fshrink-wrap -fsignaling-nans -fsingle-precision-constant
-fsplit-ivs-in-unroller -fsplit-wide-types -fstack-protector
-fstack-protector-all -fstack-protector-strong -fstrict-aliasing
-fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp
-ftree-builtin-call-dce -ftree-ccp -ftree-ch
-ftree-coalesce-inline-vars -ftree-coalesce-vars -ftree-copy-prop
-ftree-copyrename -ftree-dce -ftree-dominator-opts -ftree-dse
-ftree-forwprop -ftree-fre -ftree-loop-if-convert
-ftree-loop-if-convert-stores -ftree-loop-im

-ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns
-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize
-ftree-loop-vectorize

-ftree-parallelize-loops=n -ftree-pre -ftree-partial-pre -ftree-pta
-ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra
-ftree-switch-conversion -ftree-tail-merge -ftree-ter
-ftree-vectorize -ftree-vrp

-funit-at-a-time -funroll-all-loops -funroll-loops
-funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops
-fvariable-expansion-in-unroller -fvect-cost-model -fvpt -fweb
-fwhole-program -fwpa -fuse-ld=linker -fuse-linker-plugin

--param name=value -0 -00 -01 -02 -03 -0s -Ofast -Og

Preprocessor Options
See Section 3.11 [Options Controlling the Preprocessor], page 155.

-Aquestion=answer

-A-question[=answer]

-C -dD -dI -dM -dN

-Dmacro[=defn| -E -H

-idirafter dir

-include file -imacros file

-iprefix file -iwithprefix dir

-iwithprefixbefore dir -isystem dir

-imultilib dir -isysroot dir

-M -MM -MF -MG -MP -MQ -MT -nostdinc

-P -fdebug-cpp -ftrack-macro-expansion -fworking-directory
-remap -trigraphs -undef -Umacro

-Wp,option —Xpreprocessor option -no-integrated-cpp

Assembler Option
See Section 3.12 [Passing Options to the Assembler], page 166.

-Wa,option -Xassembler option

Linker Options

See Section 3.13 [Options for Linking], page 166.
object-file-name -llibrary
-nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic
-s -static -static-libgcc -static-libstdc++
-static-libasan -static-libtsan -static-liblsan -static-libubsan
-shared -shared-libgcc -symbolic
-T script -Wl,option -Xlinker option
-u symbol

Chapter 3: GCC Command Options

Directory Options
See Section 3.14 [Options for Directory Search], page 170.
-Bprefix -Idir -iplugindir=dir
-iquotedir -Ldir -specs=file -I-
--sysroot=dir --no-sysroot-suffix

Machine Dependent Options
See Section 3.17 [Hardware Models and Configurations|, page 180.

AArch64 Options
-mabi=name -mbig-endian -mlittle-endian
-mgeneral-regs-only
-mcmodel=tiny -mcmodel=small -mcmodel=large
-mstrict-align
-momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
-mtls-dialect=desc -mtls-dialect=traditional
-march=name -mcpu=name -mtune=name

Adapteva Epiphany Options
-mhalf-reg-file -mprefer-short-insn-regs
-mbranch-cost=num -mcmove -mnops=num -msoft-cmpsf
-msplit-lohi -mpost-inc -mpost-modify -mstack-offset=num
-mround-nearest -mlong-calls -mshort-calls -msmallil6
-mfp-mode=mode -mvect-double -max-vect-align=num
-msplit-vecmove-early -mlreg-reg

ARC Options

-mbarrel-shifter

-mcpu=cpu -mA6 -mARC600 -mA7 -mARC700

-mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr

-mea -mno-mpy -mmul32x16 -mmul64

-mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap
-mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape
-mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof
-mepilogue-cfi -mlong-calls -mmedium-calls -msdata

-mucb-mcount -mvolatile-cache

-malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc
-mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi
-mexpand-adddi -mindexed-loads -mlra -mlra-priority-none
-mlra-priority-compact mlra-priority-noncompact -mno-millicode
-mmixed-code -mq-class -mRcq -mRcw -msize-level=level

-mtune=cpu -mmultcost=num -munalign-prob-threshold=probability

ARM Options
-mapcs-frame -mno-apcs-frame
-mabi=name
-mapcs-stack-check -mno-apcs-stack-check
-mapcs-float -mno-apcs-float
-mapcs-reentrant -mno-apcs-reentrant
-msched-prolog -mno-sched-prolog
-mlittle-endian -mbig-endian -mwords-little-endian
-mfloat-abi=name
-mfpl6-format=name -mthumb-interwork -mno-thumb-interwork
-mcpu=name -march=name -mfpu=name
-mstructure-size-boundary=n
-mabort-on-noreturn
-mlong-calls -mno-long-calls
-msingle-pic-base -mno-single-pic-base
-mpic-register=reg

16

Using the GNU Compiler Collection (GCC)

-mnop-fun-dllimport
-mpoke-function-name

-mthumb -marm

-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking
-mtp=name -mtls-dialect=dialect
-mword-relocations
-mfix-cortex-m3-1ldrd
-munaligned-access
-mneon-for-64bits
-mslow-flash-data

-mrestrict-it

AVR Options

-mmcu=mcu -maccumulate-args -mbranch-cost=cost
-mcall-prologues -mint8 -mno-interrupts -mrelax
-mstrict-X -mtiny-stack -Waddr-space-convert

Blackfin Options
-mcpu=cpu[-sirevision]
-msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly
-mlow-64k -mno-low64k -mstack-check-11 -mid-shared-library
-mno-id-shared-library -mshared-library-id=n
-mleaf-id-shared-library -mno-leaf-id-shared-library
-msep-data -mno-sep-data -mlong-calls -mno-long-calls
-mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram
-micplb

C6X Options

-mbig-endian -mlittle-endian -march=cpu
-msim -msdata=sdata-type

CRIS Options
-mcpu=cpu -march=cpu -mtune=cpu
-mmax-stack-frame=n -melinux-stacksize=n
-metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects
-mstack-align -mdata-align -mconst-align
-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt
-melf -maout -melinux -mlinux -sim -sim2
-mmul-bug-workaround -mno-mul-bug-workaround

CR16 Options

-mmac
-mcri6cplus -mcri6e
-msim -mint32 -mbit-ops -mdata-model=model

Darwin Options

-all_load -allowable_client -arch -arch_errors_fatal
-arch_only -bind_at_load -bundle -bundle_loader
-client_name -compatibility_version -current_version
-dead_strip

-dependency-file -dylib_file -dylinker_install_name
-dynamic -dynamiclib -exported_symbols_list

-filelist -flat_namespace -force_cpusubtype_ALL
-force_flat_namespace -headerpad_max_install_names
-iframework

-image_base -init -install_name -keep_private_externs
-multi_module -multiply_defined -multiply_defined_unused
-noall_load -no_dead_strip_inits_and_terms

Chapter 3: GCC Command Options

-nofixprebinding -nomultidefs -noprebind -noseglinkedit
-pagezero_size -prebind -prebind_all_twolevel_modules
-private_bundle -read_only_relocs -sectalign
-sectobjectsymbols -whyload -segladdr

-sectcreate -sectobjectsymbols -sectorder

-segaddr -segs_read_only_addr -segs_read_write_addr
-seg_addr_table -seg_addr_table_filename -seglinkedit
-segprot -segs_read_only_addr -segs_read_write_addr
-single_module -static -sub_library -sub_umbrella
-twolevel_namespace -umbrella -undefined
-unexported_symbols_list -weak_reference_mismatches
-whatsloaded -F -gused -gfull -mmacosx-version-min=version
-mkernel -mone-byte-bool

DEC Alpha Options
-mno-fp-regs -msoft-float
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=mode -mfp-rounding-mode=mode
-mtrap-precision=mode -mbuild-constants
-mcpu=cpu-type -mtune=cpu-type
-mbwx -mmax -mfix -mcix
-mfloat-vax -mfloat-ieee
-mexplicit-relocs -msmall-data -mlarge-data
-msmall-text -mlarge-text
-mmemory-latency=time

FR30 Options

-msmall-model -mno-lsim

FRV Options
-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64
-mhard-float -msoft-float
-malloc-cc -mfixed-cc -mdword -mno-dword
-mdouble -mno-double
-mmedia -mno-media -mmuladd -mno-muladd
-mfdpic -minline-plt -mgprel-ro -multilib-library-pic
-mlinked-fp -mlong-calls -malign-labels
-mlibrary-pic -macc-4 -macc-8
-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move
-moptimize-membar -mno-optimize-membar
-mscc -mno-scc -mcond-exec -mno-cond-exec
-mvliw-branch -mno-vliw-branch
-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
-mno-nested-cond-exec -mtomcat-stats
-mTLS -mtls
-mcpu=cpu

GNU/Linux Options

-mglibc -muclibc -mbionic -mandroid
-tno-android-cc -tno-android-1d

H8/300 Options

-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300

HPPA Options

-march=architecture-type

-mdisable-fpregs -mdisable-indexing
-mfast-indirect-calls -mgas -mgnu-1ld -mhp-1d
-mfixed-range=register-range

-mjump-in-delay -mlinker-opt -mlong-calls

18

Using the GNU Compiler Collection (GCC)

-mlong-load-store -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float

-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=cpu-type -mspace-regs -msio -mwsio
-munix=unix-std -nolibdld -static -threads

1386 and x86-64 Options

-mtune=cpu-type -march=cpu-type

-mtune-ctrl=feature-list -mdump-tune-features -mno-default
-mfpmath=unit

-masm=dialect -mno-fancy-math-387

-mno-fp-ret-in-387 -msoft-float

-mno-wide-multiply -mrtd -malign-double
-mpreferred-stack-boundary=num

-mincoming-stack-boundary=num

-mcld -mcx16 -msahf -mmovbe -mcrc32

-mrecip -mrecip=opt

-mvzeroupper -mprefer-avx128

-mmmx -msse -msse2 -msse3 -mssse3 -msse4.l -msse4.2 -msse4 -mavx
-mavx2 -mavx512f -mavx512pf -mavxbl2er -mavx512cd -msha

-maes -mpclmul -mfsgsbase -mrdrnd -mfi6c -mfma -mprefetchwtl
-msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt
-mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mthreads
-mno-align-stringops -minline-all-stringops
-minline-stringops-dynamically -mstringop-strategy=alg
-mmemcpy-strategy=strategy -mmemset-strategy=strategy -mpush-args -maccumulate-|ij
outgoing-args -m128bit-long-double

-m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128
-mregparm=num -msseregparm

-mveclibabi=type -mvect8-ret-in-mem

-mpc32 -mpc64 -mpc80 -mstackrealign

-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs
-mcmodel=code-model -mabi=name -maddress-mode=mode

-m32 -m64 -mx32 -m16 -mlarge-data-threshold=num

-msse2avx -mfentry -m8bit-idiv

-mavx256-split-unaligned-load -mavx256-split-unaligned-store
-mstack-protector-guard=guard

1886 and x86-64 Windows Options

IA-64

-mconsole -mcygwin -mno-cygwin -mdll
-mnop-fun-dllimport -mthread
-municode -mwin32 -mwindows -fno-set-stack-executable

Options

-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
-mvolatile-asm-stop -mregister-names -msdata -mno-sdata
-mconstant-gp -mauto-pic -mfused-madd
-minline-float-divide-min-latency
-minline-float-divide-max-throughput
-mno-inline-float-divide
-minline-int-divide-min-latency
-minline-int-divide-max-throughput
-mno-inline-int-divide

-minline-sqrt-min-latency -minline-sqrt-max-throughput
-mno-inline-sqrt

-mdwarf2-asm -mearly-stop-bits

Chapter 3: GCC Command Options 19

-mfixed-range=register-range -mtls-size=tls-size

-mtune=cpu-type -milp32 -mlp64

-msched-br-data-spec -msched-ar-data-spec -msched-control-spec
-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec
-msched-spec-1ldc -msched-spec-control-ldc
-msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns
-msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path
-msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost
-msched-max-memory-insns-hard-limit -msched-max-memory-insns=max-insns

LM32 Options

-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled
-msign-extend-enabled -muser-enabled

MS32R/D Options

-m32r2 -m32rx -m32r

-mdebug

-malign-loops -mno-align-loops
-missue-rate=number
-mbranch-cost=number
-mmodel=code-size-model-type
-msdata=sdata-type

-mno-flush-func -mflush-func=name
-mno-flush-trap -mflush-trap=number
-G num

M32C Options
-mcpu=cpu -msim -memregs=number
M680x0 Options

-march=arch -mcpu=cpu -mtune=tune -m68000 -m68020 -m68020-40 -m68020-60 -
m68030 -m68040

-m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -mb5407

-mcfvde -mbitfield -mno-bitfield -mc68000 -mc68020

-mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort

-mno-short -mhard-float -m68881 -msoft-float -mpcrel

-malign-int -mstrict-align -msep-data -mno-sep-data

-mshared-library-id=n -mid-shared-library -mno-id-shared-library

-mxgot -mno-xgot

MCore Options

-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields
-m4byte-functions -mno-4byte-functions -mcallgraph-data
-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment

MeP Options

-mabsdiff -mall-opts -maverage -mbased=n -mbitops

-mc=n -mclip -mconfig=name -mcop -mcop32 -mcop64 -mivc2

-mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax

-mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf
-mtiny=n

MicroBlaze Options

-msoft-float -mhard-float -msmall-divides -mcpu=cpu

-mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift
-mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss
-mxl-multiply-high -mxl-float-convert -mxl-float-sqrt
-mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-app-model

Using the GNU Compiler Collection (GCC)

MIPS Options

-EL -EB -march=arch -mtune=arch

-mipsl -mips2 -mips3 -mips4 -mips32 -mips32r2

-mips64 -mips64r2

-mips16 -mno-mips16 -mflip-mipsi6
-minterlink-compressed -mno-interlink-compressed
-minterlink-mips16 -mno-interlink-mipsi16

-mabi=abi -mabicalls -mno-abicalls

-mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot
-mgp32 -mgp64 -mfp32 -mfp64 -mhard-float -msoft-float
-mno-float -msingle-float -mdouble-float

-mabs=mode -mnan=encoding

-mdsp -mno-dsp -mdspr2 -mno-dspr2

-mmcu -mmno-mcu

-meva -mno-eva

-mvirt -mno-virt

-mmicromips -mno-micromips

-mfpu=fpu-type

-msmartmips -mno-smartmips

-mpaired-single -mno-paired-single -mdmx -mno-mdmx
-mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc
-mlong64 -mlong32 -msym32 -mno-sym32

-Gnum -mlocal-sdata -mno-local-sdata

-mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt
-membedded-data -mno-embedded-data
-muninit-const-in-rodata -mno-uninit-const-in-rodata
-mcode-readable=setting

-msplit-addresses -mno-split-addresses
-mexplicit-relocs -mno-explicit-relocs
-mcheck-zero-division -mno-check-zero-division
-mdivide-traps -mdivide-breaks

-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls
-mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp
-mfix-24k -mno-fix-24k

-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400
-mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000
-mfix-vr4120 -mno-fix-vr4120

-mfix-vr4130 -mno-fix-vr4130 -mfix-sbl -mno-fix-sbil
-mflush-func=func -mno-flush-func

-mbranch-cost=num -mbranch-likely -mno-branch-likely
-mfp-exceptions -mno-fp-exceptions

-mvr4130-align -mno-vr4130-align -msynci -mno-synci
-mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address

MMIX Options
-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols
-melf -mbranch-predict -mno-branch-predict -mbase-addresses
-mno-base-addresses -msingle-exit -mno-single-exit
MN10300 Options
-mmult-bug -mno-mult-bug
-mno-am33 -mam33 -mam33-2 -mam34
-mtune=cpu-type
-mreturn-pointer-on-do
-mno-crt0 -mrelax -mliw -msetlb
Moxie Options

-meb -mel -mno-crtO

Chapter 3: GCC Command Options

MSP/30 Options

-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax

NDS32 Options
-mbig-endian -mlittle-endian
-mreduced-regs -mfull-regs
-mCmMovV -mno-cmov
-mperf-ext -mno-perf-ext
-mv3push -mno-v3push
-m16bit -mno-16bit
-mgp-direct -mno-gp-direct
-misr-vector-size=num
-mcache-block-size=num
-march=arch
-mforce-fp-as-gp -mforbid-fp-as-gp
-mex9 -mctor-dtor -mrelax

Nios II Options
-G num -mgpopt -mno-gpopt -mel -meb
-mno-bypass—-cache -mbypass-cache
-mno-cache-volatile -mcache-volatile
-mno-fast-sw-div -mfast-sw-div
-mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div
-mcustom-insn=N -mno-custom-insn
-mcustom-fpu-cfg=name
-mhal -msmallc -msys-crtO=name -msys-lib=name

PDP-11 Options

-mfpu -msoft-float -macO -mno-acO -m40 -m45 -m10
-mbcopy -mbcopy-builtin -mint32 -mno-inti16
-mint16 -mno-int32 -mfloat32 -mno-float64
-mfloat64 -mno-float32 -mabshi -mno-abshi
-mbranch-expensive -mbranch-cheap

-munix-asm -mdec-asm

picoChip Options

-mae=ae_type -mvliw-lookahead=N
-msymbol-as-address -mno-inefficient-warnings

PowerPC Options See RS/6000 and PowerPC Options.
RL78 Options

-msim -mmul=none -mmul=gl3 -mmul=rl78

RS/6000 and PowerPC Options
-mcpu=cpu-type
-mtune=cpu-type
-mcmodel=code-model
-mpowerpc64
-maltivec -mno-altivec
-mpowerpc-gpopt -mno-powerpc-gpopt
-mpowerpc-gfxopt -mno-powerpc-gfxopt
-mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd
-mfprnd -mno-fprnd
-mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp
-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
-m64 -m32 -mxl-compat -mno-xl-compat -mpe
-malign-power -malign-natural
-msoft-float -mhard-float -mmultiple -mno-multiple
-msingle-float -mdouble-float -msimple-fpu

21

Using the GNU Compiler Collection (GCC)

-mstring -mno-string -mupdate -mno-update
-mavoid-indexed-addresses -mno-avoid-indexed-addresses
-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-lib -mno-relocatable-1lib
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base
-mprioritize-restricted-insns=priority
-msched-costly-dep=dependence_type
-minsert-sched-nops=scheme

-mcall-sysv -mcall-netbsd

-maix-struct-return -msvr4-struct-return

-mabi=abi-type -msecure-plt -mbss-plt
-mblock-move-inline-limit=num

-misel -mno-isel

-misel=yes -misel=no

-mspe -mno-spe

-mspe=yes -mspe=no

-mpaired

-mgen-cell-microcode -mwarn-cell-microcode

-mvrsave -—mno-vrsave

-mmulhw -mno-mulhw

-mdlmzb -mno-dlmzb

-mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double
-mprototype -mno-prototype

-msim -mmvme -mads -myellowknife -memb -msdata

-msdata=opt -mvxworks -G num -pthread

-mrecip -mrecip=opt -mno-recip -mrecip-precision
-mno-recip-precision

-mveclibabi=type -mfriz -mno-friz
-mpointers-to-nested-functions -mno-pointers-to-nested-functions
-msave-toc-indirect -mno-save-toc-indirect

-mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector
-mcrypto -mno-crypto -mdirect-move -mno-direct-move
-mquad-memory -mno-quad-memory

-mquad-memory-atomic -mno-quad-memory-atomic
-mcompat-align-parm -mno-compat-align-parm

RX Options

-m64bit-doubles -m32bit-doubles -fpu -nofpu
-mcpu=

-mbig-endian-data -mlittle-endian-data
-msmall-data

-msim -mno-sim

-mas100-syntax -mno-as100-syntax
-mrelax

-mmax-constant-size=

-mint-register=

-mpid
-mno-warn-multiple-fast-interrupts
-msave-acc-in-interrupts

S5/890 and zSeries Options

-mtune=cpu-type -march=cpu-type

-mhard-float -msoft-float -mhard-dfp -mno-hard-dfp
-mlong-double-64 -mlong-double-128

-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack
-msmall-exec -mno-small-exec -mmvcle -mno-mvcle

-m64 -m31 -mdebug -mno-debug -mesa -mzarch

Chapter 3: GCC Command Options 23

-mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd
-mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard
-mhotpatch[=halfwords] -mno-hotpatch

Score Options

-meb -mel

-mnhwloop

-muls

-mmac

-mscoreb -mscorebu -mscore7 -mscore7d

SH Options
-ml -m2 -m2e
-m2a-nofpu -m2a-single-only -m2a-single -m2a
-m3 -m3e
-m4-nofpu -m4-single-only -mé4-single -m4
-m4a-nofpu -m4a-single-only -m4a-single -m4a -mdal
-m5-64media -m5-64media-nofpu
-m5-32media -m5-32media-nofpu
-m5-compact -m5-compact-nofpu
-mb -ml -mdalign -mrelax
-mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave
-mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct
-mspace -mprefergot -musermode -multcost=number -mdiv=strategy
-mdivsi3_libfunc=name -mfixed-range=register-range
-mindexed-addressing -mgettrcost=number -mpt-fixed
-maccumulate-outgoing-args -minvalid-symbols
-matomic-model=atomic-model
-mbranch-cost=num -mzdcbranch -mno-zdcbranch
-mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra
-mpretend-cmove -mtas

Solaris 2 Options
-mimpure-text -mno-impure-text
-pthreads -pthread

SPARC Options
-mcpu=cpu-type
-mtune=cpu-type
-mcmodel=code-model
-mmemory-model=mem-model
-m32 -m64 -mapp-regs -—mno-app-regs
-mfaster-structs -mno-faster-structs -mflat -mno-flat
-mfpu -mno-fpu -mhard-float -msoft-float
-mhard-quad-float -msoft-quad-float
-mstack-bias -mno-stack-bias
-munaligned-doubles -mno-unaligned-doubles
-mv8plus -mno-v8plus -mvis -mno-vis
-mvis2 -mno-vis2 -mvis3 -mno-vis3
-mcbcond -mno-cbcond
-mfmaf -mno-fmaf -mpopc -mno-popc
-mfix-at697f -mfix-ut699

SPU Options

-mwarn-reloc -merror-reloc
-msafe-dma -munsafe-dma
-mbranch-hints

-msmall-mem -mlarge-mem -mstdmain
-mfixed-range=register-range
-mea32 -mea6d

24

Using the GNU Compiler Collection (GCC)

-maddress-space-conversion -mno-address-space-conversion
-mcache-size=cache-size
-matomic-updates -mno-atomic-updates

System V Options
-Qy -Qn -YP,paths -Ym,dir

TILE-Gx Options

-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian
-mcmodel=code-model

TILEPro Options
-mcpu=cpu -m32
V850 Options

-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=n -msda=n -mzda=n

-mapp-regs -mno-app-regs

-mdisable-callt -mno-disable-callt
-mv850e2v3 -mv850e2 -mv850el -mv850es
-mv850e -mv850 -mv850e3vb

-mloop

-mrelax

-mlong-jumps

-msoft-float

-mhard-float

-mgcc-abi

-mrh850-abi

-mbig-switch

VAX Options
-mg -mgnu -munix
VMS Options
-mvms-return-codes -mdebug-main=prefix -mmalloc64
-mpointer-size=size
VxWorks Options
-mrtp -non-static -Bstatic -Bdynamic
-Xbind-lazy -Xbind-now
£86-64 Options See 1386 and x86-64 Options.
Xstormyl16 Options
-msim
Xtensa Options

-mconst16 -mno-constl16

-mfused-madd -mno-fused-madd

-mforce-no-pic

-mserialize-volatile -mno-serialize-volatile
-mtext-section-literals -mno-text-section-literals
-mtarget-align -mno-target-align

-mlongcalls -mno-longcalls

zSeries Options See S/390 and zSeries Options.

Code Generation Options

See Section 3.18 [Options for Code Generation Conventions|, page 323.

Chapter 3: GCC Command Options 25

-fcall-saved-reg -fcall-used-reg

-ffixed-reg -fexceptions

-fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables
-fasynchronous-unwind-tables

-fno-gnu-unique

-finhibit-size-directive -finstrument-functions
-finstrument-functions-exclude-function-list=sym,sym,...
-finstrument-functions-exclude-file-list=file,file,...
-fno-common -fno-ident

-fpcc-struct-return -fpic -fPIC -fpie -fPIE
-fno-jump-tables

-frecord-gcc-switches

-freg-struct-return -fshort-enums

-fshort-double -fshort-wchar

-fverbose-asm -fpack-struct[=n] -fstack-check
-fstack-limit-register=reg -fstack-limit-symbol=sym
-fno-stack-limit -fsplit-stack

-fleading-underscore -ftls-model=model
-fstack-reuse=reuse_level

-ftrapv -fwrapv -fbounds-check

-fvisibility -fstrict-volatile-bitfields -fsync-libcalls

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. GCC is capable of preprocessing and compiling several
files either into several assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all the object files (those
newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:

file.c

file.i

file.ii

file.m

file.mi

file.mm
file.M

file.mii

file.h

C source code that must be preprocessed.
C source code that should not be preprocessed.
C++ source code that should not be preprocessed.

Objective-C source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C program work.

Objective-C source code that should not be preprocessed.

Objective-C++ source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C++ program work. Note that ‘.M refers to a literal
capital M.

Objective-C++ source code that should not be preprocessed.

C, C++, Objective-C or Objective-C++ header file to be turned into a precom-
piled header (default), or C, C++ header file to be turned into an Ada spec (via
the ‘-~fdump-ada-spec’ switch).

26

file.
file.
file.
file.
file.
file.
file.

file.
file.

file.

file.
file.
file.
file.
file.
file.
file.
file.

file.
file.
file.

file.
file.
-fpp
file.
file.

file

file.
file.
file.
file.

file.
file.
file.
file.

file.

file.

cc
cp

CXX
cpp
CPP
cH++

mii
hh

hp

hxx
hpp
HPP
h++
tcc

for
ftn

FOR

FPP
FTN

£90
£95
£03
£08

F90
Fo95
FO3
FO8

go

ads

Using the GNU Compiler Collection (GCC)

C++ source code that must be preprocessed. Note that in ‘.cxx’, the last two
letters must both be literally ‘x’. Likewise, .C’ refers to a literal capital C.

Objective-C++ source code that must be preprocessed.

Objective-C++ source code that should not be preprocessed.

C++ header file to be turned into a precompiled header or Ada spec.

Fixed form Fortran source code that should not be preprocessed.

Fixed form Fortran source code that must be preprocessed (with the traditional
preprocessor).

Free form Fortran source code that should not be preprocessed.

Free form Fortran source code that must be preprocessed (with the traditional
preprocessor).

Go source code.

Ada source code file that contains a library unit declaration (a declaration of a
package, subprogram, or generic, or a generic instantiation), or a library unit
renaming declaration (a package, generic, or subprogram renaming declaration).
Such files are also called specs.

Chapter 3: GCC Command Options 27

file.adb Ada source code file containing a library unit body (a subprogram or package
body). Such files are also called bodies.

file.s Assembler code.

file.S
file.sx Assembler code that must be preprocessed.

other An object file to be fed straight into linking. Any file name with no recognized
suffix is treated this way.

You can specify the input language explicitly with the ‘-x’ option:

-x language
Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next ‘~x’ option. Possible values for language
are:

¢ c-header cpp-output
c++ c++-header c++-cpp-output
objective-c objective-c-header objective-c-cpp-output
objective-c++ objective-c++-header objective-c++-cpp-output
assembler assembler-with-cpp
ada
£77 £77-cpp-input f95 £95-cpp-input
go
java
-X none Turn off any specification of a language, so that subsequent files are handled
according to their file name suffixes (as they are if ‘-x’ has not been used at

all).

-pass-exit-codes
Normally the gce program exits with the code of 1 if any phase of the compiler
returns a non-success return code. If you specify ‘-pass-exit-codes’, the gcc
program instead returns with the numerically highest error produced by any
phase returning an error indication. The C, C++, and Fortran front ends return
4 if an internal compiler error is encountered.

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes)
to tell gcc where to start, and one of the options ‘-¢’; ‘-S’, or ‘-E’ to say where gcc is to
stop. Note that some combinations (for example, ‘-x cpp-output -E’) instruct gcc to do
nothing at all.

-c Compile or assemble the source files, but do not link. The linking stage simply
is not done. The ultimate output is in the form of an object file for each source
file.

By default, the object file name for a source file is made by replacing the suffix

[A

.c’, .1’ ‘.8, ete., with ‘.o’.

Unrecognized input files, not requiring compilation or assembly, are ignored.

-S Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file specified.

28

-o file

—###

~pipe

—--help

Using the GNU Compiler Collection (GCC)

By default, the assembler file name for a source file is made by replacing the

suffix <.¢’, ‘.17, etc., with ‘.s’.

Input files that don’t require compilation are ignored.

Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.

Input files that don’t require preprocessing are ignored.

Place output in file file. This applies to whatever sort of output is being pro-
duced, whether it be an executable file, an object file, an assembler file or
preprocessed C code.

If ‘-0’ is not specified, the default is to put an executable file in ‘a.out’, the
object file for ‘source.suffix’ in ‘source.o’, its assembler file in ‘source.s’, a
precompiled header file in ‘source.suffix.gch’, and all preprocessed C source
on standard output.

Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

Like ‘-v’ except the commands are not executed and arguments are quoted
unless they contain only alphanumeric characters or ./-_. This is useful for
shell scripts to capture the driver-generated command lines.

Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

Print (on the standard output) a description of the command-line options under-
stood by gcc. If the ‘~v’ option is also specified then ‘--help’ is also passed on
to the various processes invoked by gcc, so that they can display the command-
line options they accept. If the ‘~-Wextra’ option has also been specified (prior to
the ‘--help’ option), then command-line options that have no documentation
associated with them are also displayed.

--target-help

Print (on the standard output) a description of target-specific command-line
options for each tool. For some targets extra target-specific information may
also be printed.

--help={class|["]qualifier}|,...]

Print (on the standard output) a description of the command-line options un-
derstood by the compiler that fit into all specified classes and qualifiers. These
are the supported classes:

‘optimizers’
Display all of the optimization options supported by the compiler.
‘warnings’
Display all of the options controlling warning messages produced
by the compiler.

Chapter 3: GCC Command Options 29

‘target’ Display target-specific options. Unlike the ‘~—target-help’ option
however, target-specific options of the linker and assembler are not
displayed. This is because those tools do not currently support the
extended ‘--help=’ syntax.

‘params’ Display the values recognized by the ‘~-param’ option.

language Display the options supported for language, where language is the
name of one of the languages supported in this version of GCC.

‘common’ Display the options that are common to all languages.
These are the supported qualifiers:

‘undocumented’
Display only those options that are undocumented.

‘joined’ Display options taking an argument that appears after an equal sign
in the same continuous piece of text, such as: ‘--help=target’.

‘separate’
Display options taking an argument that appears as a separate word
following the original option, such as: ‘-o output-file’.

Thus for example to display all the undocumented target-specific switches sup-
ported by the compiler, use:

--help=target,undocumented

)

The sense of a qualifier can be inverted by prefixing it with the ‘*’ character,
so for example to display all binary warning options (i.e., ones that are either
on or off and that do not take an argument) that have a description, use:

--help=warnings,~joined, “undocumented
The argument to ‘--help="should not consist solely of inverted qualifiers.

Combining several classes is possible, although this usually restricts the output
so much that there is nothing to display. One case where it does work, however,
is when one of the classes is target. For example, to display all the target-specific
optimization options, use:

--help=target,optimizers
The ‘--help=’ option can be repeated on the command line. Each successive
use displays its requested class of options, skipping those that have already been
displayed.
If the ‘-Q’ option appears on the command line before the ‘--help="option, then
the descriptive text displayed by ‘--help=’is changed. Instead of describing
the displayed options, an indication is given as to whether the option is enabled,
disabled or set to a specific value (assuming that the compiler knows this at the
point where the ‘~-help=’ option is used).

Here is a truncated example from the ARM port of gcc:
% gcc -Q -mabi=2 --help=target -c
The following options are target specific:
-mabi= 2
-mabort-on-noreturn [disabled]
-mapcs [disabled]

30 Using the GNU Compiler Collection (GCC)

The output is sensitive to the effects of previous command-line options, so for
example it is possible to find out which optimizations are enabled at ‘-02’ by
using:

-Q -02 --help=optimizers
Alternatively you can discover which binary optimizations are enabled by ‘-03’
by using;:

gcc -c -Q -03 --help=optimizers > /tmp/03-opts

gcc —¢ -Q -02 --help=optimizers > /tmp/02-opts

diff /tmp/02-opts /tmp/03-opts | grep enabled

-no-canonical-prefixes
Do not expand any symbolic links, resolve references to ‘/../” or ‘/./’, or make
the path absolute when generating a relative prefix.

--version
Display the version number and copyrights of the invoked GCC.

-wrapper Invoke all subcommands under a wrapper program. The name of the wrapper
program and its parameters are passed as a comma separated list.
gcc —-c¢ t.c -wrapper gdb,--args
This invokes all subprograms of gcc under ‘gdb —-args’, thus the invocation of
cclis ‘gdb —-args ccl ...".

-fplugin=name.so
Load the plugin code in file name.so, assumed to be a shared object to
be dlopen’d by the compiler. The base name of the shared object file
is used to identify the plugin for the purposes of argument parsing (See
‘~fplugin-arg-name-key=value’ below). Each plugin should define the
callback functions specified in the Plugins API.

-fplugin-arg-name-key=value
Define an argument called key with a value of value for the plugin called name.

-fdump-ada-spec[-slim]
For C and C++ source and include files, generate corresponding Ada specs. See
Section “Generating Ada Bindings for C and C++ headers” in GNAT User’s
Guide, which provides detailed documentation on this feature.

-fada-spec-parent=unit
In conjunction with ‘-~fdump-ada-spec[-slim|’ above, generate Ada specs as
child units of parent unit.

-fdump-go-spec=file
For input files in any language, generate corresponding Go declarations in file.
This generates Go const, type, var, and func declarations which may be
a useful way to start writing a Go interface to code written in some other
language.

@file Read command-line options from file. The options read are inserted in place
of the original @file option. If file does not exist, or cannot be read, then the
option will be treated literally, and not removed.

Chapter 3: GCC Command Options 31

Options in file are separated by whitespace. A whitespace character may be
included in an option by surrounding the entire option in either single or double
quotes. Any character (including a backslash) may be included by prefixing the
character to be included with a backslash. The file may itself contain additional
@file options; any such options will be processed recursively.

3.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes <.C’, ‘.cc’, ‘.cpp’, ‘.CPP’, ‘.c++’,
‘.cp’, or ‘.cxx’; C++ header files often use ‘.hh’, ‘.hpp’, ‘.H’, or (for shared template code)
‘.tcc’; and preprocessed C++ files use the suffix ‘.ii’. GCC recognizes files with these
names and compiles them as C++ programs even if you call the compiler the same way as
for compiling C programs (usually with the name gcc).

However, the use of gcc does not add the C++ library. g++ is a program that calls GCC
and automatically specifies linking against the C++ library. It treats ‘.c’, *.h’ and ‘.1’ files
as C++ source files instead of C source files unless ‘~x’ is used. This program is also useful
when precompiling a C header file with a ‘.h’ extension for use in C++ compilations. On
many systems, g++ is also installed with the name c++.

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options
meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect]|, page 31, for explanations of options
for languages related to C. See Section 3.5 [Options Controlling C++ Dialect], page 37, for
explanations of options that are meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++,
Objective-C and Objective-C++) that the compiler accepts:

-ansi In C mode, this is equivalent to ‘-std=c90’. In C++ mode, it is equivalent to
‘~std=c++98’.

This turns off certain features of GCC that are incompatible with ISO C90
(when compiling C code), or of standard C++ (when compiling C++ code), such
as the asm and typeof keywords, and predefined macros such as unix and vax
that identify the type of system you are using. It also enables the undesirable
and rarely used ISO trigraph feature. For the C compiler, it disables recognition
of C++ style ¢//’ comments as well as the inline keyword.

The alternate keywords __asm__, __extension__, __inline__ and __typeof_
_ continue to work despite ‘-ansi’. You would not want to use them in an ISO
C program, of course, but it is useful to put them in header files that might be
included in compilations done with ‘-~ansi’. Alternate predefined macros such
as __unix__ and __vax__ are also available, with or without ‘-ansi’.

The ‘-ansi’ option does not cause non-ISO programs to be rejected
gratuitously. For that, ‘-Wpedantic’ is required in addition to ‘-ansi’. See
Section 3.8 [Warning Options|, page 53.

32

-std=

Using the GNU Compiler Collection (GCC)

4

The macro __STRICT_ANSI__ is predefined when the ‘-ansi’ option is used.
Some header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ISO standard doesn’t call for; this
is to avoid interfering with any programs that might use these names for other

things.

Functions that are normally built in but do not have semantics defined by ISO
C (such as alloca and ££fs) are not built-in functions when ‘-ansi’ is used. See
Section 6.56 [Other built-in functions provided by GCC|, page 482, for details
of the functions affected.

Determine the language standard. See Chapter 2 [Language Standards Sup-
ported by GCC], page 5, for details of these standard versions. This option is
currently only supported when compiling C or C++.

The compiler can accept several base standards, such as ‘c90’ or ‘c++98’, and
GNU dialects of those standards, such as ‘gnu90’ or ‘gnu++98’. When a base
standard is specified, the compiler accepts all programs following that stan-
dard plus those using GNU extensions that do not contradict it. For example,
‘-std=c90’ turns off certain features of GCC that are incompatible with ISO
C90, such as the asm and typeof keywords, but not other GNU extensions that
do not have a meaning in ISO C90, such as omitting the middle term of a ?7:
expression. On the other hand, when a GNU dialect of a standard is specified,
all features supported by the compiler are enabled, even when those features
change the meaning of the base standard. As a result, some strict-conforming
programs may be rejected. The particular standard is used by ‘~Wpedantic’ to
identify which features are GNU extensions given that version of the standard.
For example ‘~std=gnu90 -Wpedantic’ warns about C++ style ‘//’ comments,
while ‘-std=gnu99 -Wpedantic’ does not.

A value for this option must be provided; possible values are

‘c90’

‘c89’

‘1809899:1990’
Support all ISO C90 programs (certain GNU extensions that con-
flict with ISO C90 are disabled). Same as ‘-ansi’ for C code.

‘1509899:199409’
ISO C90 as modified in amendment 1.

‘c99’

‘c9x’

‘1509899:1999’

‘1509899:199x’
ISO (C99. This standard is substantially completely sup-
ported, modulo bugs, extended identifiers (supported except
for corner cases when ‘-fextended-identifiers’ is wused)
and floating-point issues (mainly but not entirely relating
to optional C99 features from Annexes F and G). See
http://gcc.gnu.org/c99status.html for more information.
The names ‘c9x’ and ‘1s09899:199x’ are deprecated.

http://gcc.gnu.org/c99status.html

Chapter 3: GCC Command Options 33

‘cl1?’
‘cix’

‘1509899:2011°

‘gnu90’
‘gnu89’

‘gnu99’
‘gnu9x’

‘gnull’
‘gnulx’

‘c++98’
‘c++03’

‘gnu++98’
‘gnu++03’

‘c++11’
‘c++0x’
‘gnut++11’
‘gnu++0x’
4c++1y’

‘gnu++1y’

-fgnu89-inline

ISO C11, the 2011 revision of the ISO C standard. This
standard is substantially completely supported, modulo bugs,
extended identifiers (supported except for corner cases when
‘~fextended-identifiers’ is used), floating-point issues (mainly
but not entirely relating to optional C11 features from Annexes F
and G) and the optional Annexes K (Bounds-checking interfaces)
and L (Analyzability). The name ‘c1x’ is deprecated.

GNU dialect of ISO C90 (including some C99 features). This is the
default for C code.

GNU dialect of ISO C99. The name ‘gnu9x’ is deprecated.

GNU dialect of ISO C11. This is intended to become the default
in a future release of GCC. The name ‘gnulx’ is deprecated.

The 1998 ISO C++ standard plus the 2003 technical corrigendum
and some additional defect reports. Same as ‘-ansi’ for C++ code.

GNU dialect of ‘-std=c++98’. This is the default for C++ code.

The 2011 ISO C++ standard plus amendments. The name ‘c++0x’
is deprecated.

GNU dialect of ‘-std=c++11’. The name ‘gnu++0x’ is deprecated.

The next revision of the ISO C++ standard, tentatively planned
for 2014. Support is highly experimental, and will almost certainly
change in incompatible ways in future releases.

GNU dialect of ‘-std=c++1y’. Support is highly experimental, and
will almost certainly change in incompatible ways in future releases.

The option ‘-fgnu89-inline’ tells GCC to use the traditional GNU semantics
for inline functions when in C99 mode. See Section 6.39 [An Inline Function
is As Fast As a Macro|, page 424. This option is accepted and ignored by
GCC versions 4.1.3 up to but not including 4.3. In GCC versions 4.3 and later
it changes the behavior of GCC in C99 mode. Using this option is roughly
equivalent to adding the gnu_inline function attribute to all inline functions
(see Section 6.30 [Function Attributes], page 372).

The option ‘~fno-gnu89-inline’ explicitly tells GCC to use the C99 semantics
for inline when in C99 or gnu99 mode (i.e., it specifies the default behavior).

34

Using the GNU Compiler Collection (GCC)

This option was first supported in GCC 4.3. This option is not supported in
‘=std=c90’ or ‘-std=gnu90’ mode.

The preprocessor macros __GNUC_GNU_INLINE__ and __GNUC_STDC_INLINE__
may be used to check which semantics are in effect for inline functions. See
Section “Common Predefined Macros” in The C Preprocessor.

—aux-info filename

Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.

Besides declarations, the file indicates, in comments, the origin of each declara-
tion (source file and line), whether the declaration was implicit, prototyped or
unprototyped (‘I’, ‘N’ for new or ‘0’ for old, respectively, in the first character
after the line number and the colon), and whether it came from a declaration
or a definition (‘C’ or ‘F’, respectively, in the following character). In the case
of function definitions, a K&R-style list of arguments followed by their decla-
rations is also provided, inside comments, after the declaration.

-fallow-parameterless-variadic-functions

-fno-asm

Accept variadic functions without named parameters.

Although it is possible to define such a function, this is not very useful as it
is not possible to read the arguments. This is only supported for C as this
construct is allowed by C++.

Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__ and
typeof__ instead. ‘~ansi’ implies ‘~fno-asm’.

In C++, this switch only affects the typeof keyword, since asm and inline
are standard keywords. You may want to use the ‘~fno-gnu-keywords’ flag
instead, which has the same effect. In C99 mode (‘-std=c99’ or ‘~std=gnu99’),
this switch only affects the asm and typeof keywords, since inline is a standard
keyword in ISO C99.

—-fno-builtin
—-fno-builtin-function

Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 6.56 [Other built-in functions provided by GCC], page 482, for
details of the functions affected, including those which are not built-in functions
when ‘-ansi’ or ‘-std’ options for strict ISO C conformance are used because
they do not have an ISO standard meaning.

GCC normally generates special code to handle certain built-in functions more
efficiently; for instance, calls to alloca may become single instructions which
adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function
calls no longer appear as such, you cannot set a breakpoint on those calls,
nor can you change the behavior of the functions by linking with a different
library. In addition, when a function is recognized as a built-in function, GCC
may use information about that function to warn about problems with calls to

Chapter 3: GCC Command Options 35

—-fhosted

that function, or to generate more efficient code, even if the resulting code still
contains calls to that function. For example, warnings are given with ‘-Wformat’
for bad calls to printf when printf is built in and strlen is known not to
modify global memory.

With the ‘~fno-builtin-function’ option only the built-in function function
is disabled. function must not begin with ‘__builtin_’. If a function is named
that is not built-in in this version of GCC, this option is ignored. There is
no corresponding ‘-fbuiltin-function’ option; if you wish to enable built-in
functions selectively when using ‘~fno-builtin’ or ‘~-ffreestanding’, you may
define macros such as:

#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))

Assert that compilation targets a hosted environment. This implies
‘~fbuiltin’. A hosted environment is one in which the entire standard library
is available, and in which main has a return type of int. Examples are nearly
everything except a kernel. This is equivalent to ‘-fno-freestanding’.

-ffreestanding

—-fopenmp

Assert that compilation targets a freestanding environment. This implies
‘~fno-builtin’. A freestanding environment is one in which the standard
library may not exist, and program startup may not necessarily be at
main. The most obvious example is an OS kernel. This is equivalent to
‘~fno-hosted’.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
freestanding and hosted environments.

Enable handling of OpenMP directives #pragma omp in C/C++ and !$omp
in Fortran. When ‘-fopenmp’ is specified, the compiler generates parallel
code according to the OpenMP Application Program Interface v4.0
http://www.openmp.org/. This option implies ‘-pthread’, and thus is only
supported on targets that have support for ‘-pthread’. ‘-fopenmp’ implies
‘~fopenmp-simd’.

-fopenmp-simd

-fcilkplus

-fgnu-tm

Enable handling of OpenMP’s SIMD directives with #pragma omp in C/C++
and !$omp in Fortran. Other OpenMP directives are ignored.

Enable the usage of Cilk Plus language extension features for C/C++. When the
option ‘-fcilkplus’ is specified, enable the usage of the Cilk Plus Language
extension features for C/C++. The present implementation follows ABI version
1.2. This is an experimental feature that is only partially complete, and whose
interface may change in future versions of GCC as the official specification
changes. Currently, all features but _Cilk_for have been implemented.

When the option ‘~fgnu-tm’ is specified, the compiler generates code for the
Linux variant of Intel’s current Transactional Memory ABI specification doc-
ument (Revision 1.1, May 6 2009). This is an experimental feature whose

http://www.openmp.org/

36

Using the GNU Compiler Collection (GCC)

interface may change in future versions of GCC, as the official specification
changes. Please note that not all architectures are supported for this feature.
For more information on GCC’s support for transactional memory, See Section
“The GNU Transactional Memory Library” in GNU Transactional Memory
Library.

Note that the transactional memory feature is not supported with non-call
exceptions (‘-fnon-call-exceptions’).

-fms-extensions

Accept some non-standard constructs used in Microsoft header files.

In C++ code, this allows member names in structures to be similar to previous
types declarations.

typedef int UOW;

struct ABC {

Uow UOW;

};
Some cases of unnamed fields in structures and unions are only accepted
with this option. See Section 6.60 [Unnamed struct/union fields within
structs/unions|, page 697, for details.

Note that this option is off for all targets but i?786 and x86_64 targets using
ms-abi.

-fplan9-extensions

-trigraphs

Accept some non-standard constructs used in Plan 9 code.

This enables ‘~fms-extensions’, permits passing pointers to structures with
anonymous fields to functions that expect pointers to elements of the type of
the field, and permits referring to anonymous fields declared using a typedef.
See Section 6.60 [Unnamed struct/union fields within structs/unions|, page 697,
for details. This is only supported for C, not C++.

Support ISO C trigraphs. The ‘-ansi’ option (and ‘-std’ options for strict ISO
C conformance) implies ‘~trigraphs’.

-traditional
-traditional-cpp

Formerly, these options caused GCC to attempt to emulate a pre-standard C
compiler. They are now only supported with the ‘~E’ switch. The preprocessor
continues to support a pre-standard mode. See the GNU CPP manual for
details.

-fcond-mismatch

Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void. This option is not supported
for C++.

—-flax-vector-conversions

Allow implicit conversions between vectors with differing numbers of elements
and/or incompatible element types. This option should not be used for new
code.

Chapter 3: GCC Command Options 37

-funsigned-char
Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fsigned-char
Let the type char be signed, like signed char.

Note that this is equivalent to ‘~fno-unsigned-char’, which is the negative
form of ‘~funsigned-char’. Likewise, the option ‘~fno-signed-char’ is equiv-
alent to ‘~funsigned-char’.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the dec-
laration does not use either signed or unsigned. By default, such a bit-field is
signed, because this is consistent: the basic integer types such as int are signed

types.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs.
You can also use most of the GNU compiler options regardless of what language your
program is in. For example, you might compile a file firstClass.C like this:

g++ -g —frepo -0 -c firstClass.C
In this example, only ‘~frepo’ is an option meant only for C++ programs; you can use the
other options with any language supported by GCC.

Here is a list of options that are only for compiling C++ programs:
—-fabi-version=n
Use version n of the C++ ABI. The default is version 2.

Version 0 refers to the version conforming most closely to the C++ ABI spec-
ification. Therefore, the ABI obtained using version 0 will change in different
versions of G++ as ABI bugs are fixed.

Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
Version 2 is the version of the C++ ABI that first appeared in G++ 3.4.

Version 3 corrects an error in mangling a constant address as a template argu-
ment.

38

Using the GNU Compiler Collection (GCC)

Version 4, which first appeared in G++ 4.5, implements a standard mangling
for vector types.

Version 5, which first appeared in G++ 4.6, corrects the mangling of attribute
const/volatile on function pointer types, decltype of a plain decl, and use of a
function parameter in the declaration of another parameter.

Version 6, which first appeared in G++ 4.7, corrects the promotion behav-
ior of C++11 scoped enums and the mangling of template argument packs,
const /static_cast, prefix ++ and —, and a class scope function used as a tem-
plate argument.

See also ‘-Wabi’.

-fno-access-control

Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

—fcheck-new

Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. This check is normally unnecessary because
the C++ standard specifies that operator new only returns 0 if it is declared
‘throw()’, in which case the compiler always checks the return value even with-
out this option. In all other cases, when operator new has a non-empty ex-
ception specification, memory exhaustion is signalled by throwing std: :bad_
alloc. See also ‘new (nothrow)’.

-fconstexpr-depth=n

Set the maximum nested evaluation depth for C++11 constexpr functions to
n. A limit is needed to detect endless recursion during constant expression
evaluation. The minimum specified by the standard is 512.

—-fdeduce-init-1list

Enable deduction of a template type parameter as std::initializer_list
from a brace-enclosed initializer list, i.e.
template <class T> auto forward(T t) -> decltype (realfn (t))

{
return realfn (t);
}
void f()
{
forward({1,2}); // call forward<std::initializer_list<int>>
}

This deduction was implemented as a possible extension to the originally pro-
posed semantics for the C++11 standard, but was not part of the final standard,
so it is disabled by default. This option is deprecated, and may be removed in
a future version of G++.

-ffriend-injection

Inject friend functions into the enclosing namespace, so that they are visible
outside the scope of the class in which they are declared. Friend functions were
documented to work this way in the old Annotated C++ Reference Manual, and

Chapter 3: GCC Command Options 39

versions of G++ before 4.1 always worked that way. However, in ISO C++ a
friend function that is not declared in an enclosing scope can only be found
using argument dependent lookup. This option causes friends to be injected as
they were in earlier releases.

This option is for compatibility, and may be removed in a future release of G++.

-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary that
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces G++ to call the copy constructor in all
cases.

-fno-enforce-eh-specs
Don’t generate code to check for violation of exception specifications at run
time. This option violates the C++ standard, but may be useful for reducing
code size in production builds, much like defining ‘NDEBUG’. This does not give
user code permission to throw exceptions in violation of the exception specifi-
cations; the compiler still optimizes based on the specifications, so throwing an
unexpected exception results in undefined behavior at run time.

-fextern-tls-init

-fno-extern-tls-init
The C++11 and OpenMP standards allow ‘thread_local’ and ‘threadprivate’
variables to have dynamic (runtime) initialization. To support this, any use of
such a variable goes through a wrapper function that performs any necessary
initialization. When the use and definition of the variable are in the same
translation unit, this overhead can be optimized away, but when the use is in a
different translation unit there is significant overhead even if the variable doesn’t
actually need dynamic initialization. If the programmer can be sure that no
use of the variable in a non-defining TU needs to trigger dynamic initialization
(either because the variable is statically initialized, or a use of the variable in
the defining TU will be executed before any uses in another TU), they can avoid
this overhead with the ‘~fno-extern-tls-init’ option.

On targets that support symbol aliases, the default is ‘-fextern-tls-init’.
On targets that do mnot support symbol aliases, the default is
‘~fno-extern-tls-init’.

-ffor-scope

-fno-for-scope
If ‘~ffor-scope’ is specified, the scope of variables declared in a for-init-
statement is limited to the ‘for’ loop itself, as specified by the C++ standard.
If ‘“~fno-for-scope’ is specified, the scope of variables declared in a for-init-
statement extends to the end of the enclosing scope, as was the case in old
versions of G++, and other (traditional) implementations of C++.

If neither flag is given, the default is to follow the standard, but to allow and give
a warning for old-style code that would otherwise be invalid, or have different
behavior.

40 Using the GNU Compiler Collection (GCC)

-fno-gnu-keywords
Do not recognize typeof as a keyword, so that code can use this word as
an identifier. You can use the keyword __typeof__ instead. ‘-ansi’ implies
‘~fno-gnu-keywords’.

-fno-implicit-templates
Never emit code for non-inline templates that are instantiated implicitly (i.e.
by use); only emit code for explicit instantiations. See Section 7.5 [Template
Instantiation], page 704, for more information.

-fno-implicit-inline-templates
Don’t emit code for implicit instantiations of inline templates, either. The
default is to handle inlines differently so that compiles with and without opti-
mization need the same set of explicit instantiations.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
‘#pragma implementation’. This causes linker errors if these functions are not
inlined everywhere they are called.

-fms-extensions
Disable Wpedantic warnings about constructs used in MFC, such as implicit
int and getting a pointer to member function via non-standard syntax.

-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO
C. These include ffs, alloca, _exit, index, bzero, conjf, and other related
functions.

-fnothrow-opt

Treat a throw() exception specification as if it were a noexcept specification to
reduce or eliminate the text size overhead relative to a function with no excep-
tion specification. If the function has local variables of types with non-trivial
destructors, the exception specification actually makes the function smaller be-
cause the EH cleanups for those variables can be optimized away. The semantic
effect is that an exception thrown out of a function with such an exception spec-
ification results in a call to terminate rather than unexpected.

-fno-operator-names
Do not treat the operator name keywords and, bitand, bitor, compl, not, or
and xor as synonyms as keywords.

-fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to issue.
Currently, the only such diagnostic issued by G++ is the one for a name having
multiple meanings within a class.

—fpermissive
Downgrade some diagnostics about nonconformant code from errors to warn-
ings. Thus, using ‘-fpermissive’ allows some nonconforming code to compile.

Chapter 3: GCC Command Options 41

-fno-pretty-templates

-frepo

—-fno-rtti

-fstats

When an error message refers to a specialization of a function template, the com-
piler normally prints the signature of the template followed by the template ar-
guments and any typedefs or typenames in the signature (e.g. void £(T) [with
T = int] rather than void f (int)) so that it’s clear which template is involved.
When an error message refers to a specialization of a class template, the com-
piler omits any template arguments that match the default template arguments
for that template. If either of these behaviors make it harder to understand
the error message rather than easier, you can use ‘~fno-pretty-templates’ to
disable them.

Enable automatic template instantiation at link time. This option also im-
plies ‘~fno-implicit-templates’. See Section 7.5 [Template Instantiation],
page 704, for more information.

Disable generation of information about every class with virtual functions
for use by the C++ run-time type identification features (‘dynamic_cast’
and ‘typeid’). If you don’t use those parts of the language, you can save
some space by using this flag. Note that exception handling uses the same
information, but G++ generates it as needed. The ‘dynamic_cast’ operator
can still be used for casts that do not require run-time type information, i.e.
casts to void * or to unambiguous base classes.

Emit statistics about front-end processing at the end of the compilation. This
information is generally only useful to the G++ development team.

—-fstrict-enums

Allow the compiler to optimize using the assumption that a value of enumerated
type can only be one of the values of the enumeration (as defined in the C++
standard; basically, a value that can be represented in the minimum number
of bits needed to represent all the enumerators). This assumption may not be
valid if the program uses a cast to convert an arbitrary integer value to the
enumerated type.

-ftemplate-backtrace-limit=n

Set the maximum number of template instantiation notes for a single warning
or error to n. The default value is 10.

-ftemplate-depth=n

Set the maximum instantiation depth for template classes to n. A limit on
the template instantiation depth is needed to detect endless recursions during
template class instantiation. ANSI/ISO C++ conforming programs must not
rely on a maximum depth greater than 17 (changed to 1024 in C++11). The
default value is 900, as the compiler can run out of stack space before hitting
1024 in some situations.

—-fno-threadsafe-statics

Do not emit the extra code to use the routines specified in the C++ ABI for
thread-safe initialization of local statics. You can use this option to reduce code
size slightly in code that doesn’t need to be thread-safe.

42 Using the GNU Compiler Collection (GCC)

-fuse-cxa-atexit
Register destructors for objects with static storage duration with the __cxa_
atexit function rather than the atexit function. This option is required for
fully standards-compliant handling of static destructors, but only works if your
C library supports __cxa_atexit.

-fno-use-cxa-get-exception-ptr
Don’t use the __cxa_get_exception_ptr runtime routine. This causes
std: :uncaught_exception to be incorrect, but is necessary if the runtime
routine is not available.

—-fvisibility-inlines-hidden
This switch declares that the user does not attempt to compare pointers to
inline functions or methods where the addresses of the two functions are taken

in different shared objects.

The effect of this is that GCC may, effectively, mark inline methods with __
attribute__ ((visibility ("hidden"))) so that they do not appear in the
export table of a DSO and do not require a PLT indirection when used within
the DSO. Enabling this option can have a dramatic effect on load and link
times of a DSO as it massively reduces the size of the dynamic export table
when the library makes heavy use of templates.

The behavior of this switch is not quite the same as marking the methods as
hidden directly, because it does not affect static variables local to the function
or cause the compiler to deduce that the function is defined in only one shared
object.

You may mark a method as having a visibility explicitly to negate the effect of
the switch for that method. For example, if you do want to compare pointers
to a particular inline method, you might mark it as having default visibility.
Marking the enclosing class with explicit visibility has no effect.
Explicitly instantiated inline methods are unaffected by this option as their link-
age might otherwise cross a shared library boundary. See Section 7.5 [Template
Instantiation], page 704.
-fvisibility-ms-compat
This flag attempts to use visibility settings to make GCC’s C++ linkage model
compatible with that of Microsoft Visual Studio.
The flag makes these changes to GCC’s linkage model:
1. Tt sets the default visibility to hidden, like ‘~fvisibility=hidden’.
2. Types, but not their members, are not hidden by default.
3. The One Definition Rule is relaxed for types without explicit visibility
specifications that are defined in more than one shared object: those dec-
larations are permitted if they are permitted when this option is not used.

In new code it is better to use ‘~fvisibility=hidden’ and export those classes
that are intended to be externally visible. Unfortunately it is possible for code
to rely, perhaps accidentally, on the Visual Studio behavior.

Among the consequences of these changes are that static data members of
the same type with the same name but defined in different shared objects are

Chapter 3: GCC Command Options 43

different, so changing one does not change the other; and that pointers to
function members defined in different shared objects may not compare equal.
When this flag is given, it is a violation of the ODR to define types with the
same name differently.

-fvtable-verify=std|preinit|none

Turn on (or off, if using ‘~fvtable-verify=none’) the security feature that
verifies at runtime, for every virtual call that is made, that the vtable pointer
through which the call is made is valid for the type of the object, and has
not been corrupted or overwritten. If an invalid vtable pointer is detected (at
runtime), an error is reported and execution of the program is immediately

halted.

This option causes runtime data structures to be built, at program start up, for
verifying the vtable pointers. The options std and preinit control the timing
of when these data structures are built. In both cases the data structures
are built before execution reaches 'main’. The ‘~fvtable-verify=std’ causes
these data structure to be built after the shared libraries have been loaded and
initialized. ‘-fvtable-verify=preinit’ causes them to be built before the
shared libraries have been loaded and initialized.

If this option appears multiple times in the compiler line, with different values
specified, 'none’ will take highest priority over both ’std’ and ’preinit’; 'preinit’
will take priority over ’std’.

-fvtv-debug

Causes debug versions of the runtime functions for the vtable verification
feature to be called. This assumes the ‘-fvtable-verify=std’ or
‘~fvtable-verify=preinit’ has been used. This flag will also cause the
compiler to keep track of which vtable pointers it found for each class, and
record that information in the file “vtv_set_ptr_data.log”, in the dump file
directory on the user’s machine.

Note: This feature APPENDS data to the log file. If you want a fresh log file,
be sure to delete any existing one.

-fvtv-counts

-fno-weak

This is a debugging flag. When wused in conjunction with
‘~-fvtable-verify=std’ or ‘-fvtable-verify=preinit’, this causes
the compiler to keep track of the total number of virtual calls it encountered
and the number of verifications it inserted. It also counts the number of
calls to certain runtime library functions that it inserts. This information,
for each compilation unit, is written to a file named “vtv_count_data.log”,
in the dump_file directory on the user’s machine. It also counts the size
of the vtable pointer sets for each class, and writes this information to
“vtv_class_set_sizes.log” in the same directory.

Note: This feature APPENDS data to the log files. To get a fresh log files, be
sure to delete any existing ones.

Do not use weak symbol support, even if it is provided by the linker. By
default, G++ uses weak symbols if they are available. This option exists only

44 Using the GNU Compiler Collection (GCC)

for testing, and should not be used by end-users; it results in inferior code and
has no benefits. This option may be removed in a future release of G++.

-nostdinc++
Do not search for header files in the standard directories specific to C++, but do
still search the other standard directories. (This option is used when building
the C++ library.)

In addition, these optimization, warning, and code generation options have meanings only
for C++ programs:

-Wabi (C, Objective-C, C++ and Objective-C++ only)
Warn when G++ generates code that is probably not compatible with the
vendor-neutral C++ ABI. Although an effort has been made to warn about
all such cases, there are probably some cases that are not warned about, even
though G++ is generating incompatible code. There may also be cases where
warnings are emitted even though the code that is generated is compatible.

You should rewrite your code to avoid these warnings if you are concerned about
the fact that code generated by G++ may not be binary compatible with code
generated by other compilers.

The known incompatibilities in ‘~fabi-version=2’ (the default) include:

e A template with a non-type template parameter of reference type is man-
gled incorrectly:
extern int N;
template <int &> struct S {};
void n (S<N>) {2}
This is fixed in ‘-fabi-version=3’.
e SIMD vector types declared using __attribute ((vector_size)) are
mangled in a non-standard way that does not allow for overloading of
functions taking vectors of different sizes.

The mangling is changed in ‘~fabi-version=4’.
The known incompatibilities in ‘-fabi-version=1’ include:

e Incorrect handling of tail-padding for bit-fields. G++ may attempt to pack

data into the same byte as a base class. For example:

struct A { virtual void f(); int f1 : 1; };

struct B : public A { int £2 : 1; };
In this case, G++ places B: : £2 into the same byte as A: : £1; other compilers
do not. You can avoid this problem by explicitly padding A so that its size
is a multiple of the byte size on your platform; that causes G++ and other
compilers to lay out B identically.

e Incorrect handling of tail-padding for virtual bases. G++ does not use tail
padding when laying out virtual bases. For example:
struct A { virtual void f(); char ci; };
struct B { B(); char c2; };
struct C : public A, public virtual B {};
In this case, G++ does not place B into the tail-padding for A; other compil-
ers do. You can avoid this problem by explicitly padding A so that its size

Chapter 3: GCC Command Options 45

is a multiple of its alignment (ignoring virtual base classes); that causes
G++ and other compilers to lay out C identically.

e Incorrect handling of bit-fields with declared widths greater than that of
their underlying types, when the bit-fields appear in a union. For example:
union U { int i : 4096; };

Assuming that an int does not have 4096 bits, G++ makes the union too
small by the number of bits in an int.

e Empty classes can be placed at incorrect offsets. For example:
struct A {};

struct B {
A a;
virtual void £ ();

};

struct C : public B, public A {};

G++ places the A base class of C at a nonzero offset; it should be placed at
offset zero. G++ mistakenly believes that the A data member of B is already
at offset zero.

e Names of template functions whose types involve typename or template
template parameters can be mangled incorrectly.

template <typename Q>
void f(typename Q::X) {}

template <template <typename> class Q>
void f(typename Q<int>::X) {}

Instantiations of these templates may be mangled incorrectly.

It also warns about psABIl-related changes. The known psABI changes at this
point include:

e For SysV/x86-64, unions with long double members are passed in memory
as specified in psABI. For example:

union U {
long double 1d;
int i;

};

union U is always passed in memory.

-Wctor-dtor-privacy (C++ and Objective-C++ only)
Warn when a class seems unusable because all the constructors or destructors
in that class are private, and it has neither friends nor public static member
functions. Also warn if there are no non-private methods, and there’s at least
one private member function that isn’t a constructor or destructor.

-Wdelete-non-virtual-dtor (C++ and Objective-C++ only)
Warn when ‘delete’ is used to destroy an instance of a class that has virtual
functions and non-virtual destructor. It is unsafe to delete an instance of a
derived class through a pointer to a base class if the base class does not have a
virtual destructor. This warning is enabled by ‘-Wall’.

46 Using the GNU Compiler Collection (GCC)

-Wliteral-suffix (C++ and Objective-C++ only)
Warn when a string or character literal is followed by a ud-suffix which does not
begin with an underscore. As a conforming extension, GCC treats such suffixes
as separate preprocessing tokens in order to maintain backwards compatibility
with code that uses formatting macros from <inttypes.h>. For example:
#define __STDC_FORMAT_MACROS

#include <inttypes.h>
#include <stdio.h>

int main() {

int64_t i64 = 123;

printf("My int64: %"PRId64"\n", i64);
}

In this case, PRId64 is treated as a separate preprocessing token.

This warning is enabled by default.

-Wnarrowing (C++ and Objective-C++ only)
Warn when a narrowing conversion prohibited by C++11 occurs within ‘{ },
e.g.

int i = { 2.2 }; // error: narrowing from double to int
This flag is included in ‘-Wall’ and ‘-Wc++11-compat’.
With ‘-std=c++11’, ‘-Wno-narrowing’ suppresses the diagnostic required by

the standard. Note that this does not affect the meaning of well-formed code;
narrowing conversions are still considered ill-formed in SFINAE context.

-Wnoexcept (C++ and Objective-C++ only)
Warn when a noexcept-expression evaluates to false because of a call to a func-
tion that does not have a non-throwing exception specification (i.e. ‘throw()’
or ‘noexcept’) but is known by the compiler to never throw an exception.

-Wnon-virtual-dtor (C++ and Objective-C++ only)
Warn when a class has virtual functions and an accessible non-virtual destructor
itself or in an accessible polymorphic base class, in which case it is possible but
unsafe to delete an instance of a derived class through a pointer to the class itself
or base class. This warning is automatically enabled if ‘-Weffc++’ is specified.

-Wreorder (C++ and Objective-C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:

struct A {

int i;

int j;

AO: § (@, i (1) {3}
};
The compiler rearranges the member initializers for ‘i’ and ‘j’ to match the
declaration order of the members, emitting a warning to that effect. This

warning is enabled by ‘-Wall’.

-fext-numeric-literals (C++ and Objective-C++ only)
Accept imaginary, fixed-point, or machine-defined literal number suffixes as
GNU extensions. When this option is turned off these suffixes are treated

Chapter 3: GCC Command Options 47

as C++11 user-defined literal numeric suffixes. This is on by default for all
pre-C++11 dialects and all GNU dialects: ‘-std=c++98’, ‘-std=gnu++98’,
‘-std=gnu++11’, ‘-std=gnu++1y’. This option is off by default for ISO C++11
onwards (‘-std=c++11’, ...).

The following ‘-W. ..’ options are not affected by ‘-Wall’.

-Weffc++ (C++ and Objective-C++ only)
Warn about violations of the following style guidelines from Scott Meyers’ Ef-
fective C++ series of books:

e Define a copy constructor and an assignment operator for classes with
dynamically-allocated memory.

e Prefer initialization to assignment in constructors.
e Have operator= return a reference to *this.
e Don’t try to return a reference when you must return an object.

e Distinguish between prefix and postfix forms of increment and decrement
operators.

e Never overload &&, ||, or ,.

This option also enables ‘~Wnon-virtual-dtor’, which is also one of the effec-
tive C++ recommendations. However, the check is extended to warn about the
lack of virtual destructor in accessible non-polymorphic bases classes too.

When selecting this option, be aware that the standard library headers do not
obey all of these guidelines; use ‘grep -v’ to filter out those warnings.

-Wstrict-null-sentinel (C++ and Objective-C++ only)
Warn about the use of an uncasted NULL as sentinel. When compiling only with
GCC this is a valid sentinel, as NULL is defined to __null. Although it is a null
pointer constant rather than a null pointer, it is guaranteed to be of the same
size as a pointer. But this use is not portable across different compilers.

-Wno-non-template-friend (C++ and Objective-C++ only)

Disable warnings when non-templatized friend functions are declared within a
template. Since the advent of explicit template specification support in G++,
if the name of the friend is an unqualified-id (i.e., ‘friend foo(int)’), the
C++ language specification demands that the friend declare or define an ordi-
nary, nontemplate function. (Section 14.5.3). Before G++ implemented explicit
specification, unqualified-ids could be interpreted as a particular specialization
of a templatized function. Because this non-conforming behavior is no longer
the default behavior for G++, ‘~Wnon-template-friend’ allows the compiler to
check existing code for potential trouble spots and is on by default. This new
compiler behavior can be turned off with ‘~-Wno-non-template-friend’, which
keeps the conformant compiler code but disables the helpful warning.

-Wold-style-cast (C++ and Objective-C++ only)
Warn if an old-style (C-style) cast to a non-void type is used within
a C++ program. The new-style casts (‘dynamic_cast’, ‘static_cast’,
‘reinterpret_cast’, and ‘const_cast’) are less vulnerable to unintended
effects and much easier to search for.

48 Using the GNU Compiler Collection (GCC)

-Woverloaded-virtual (C++ and Objective-C++ only)
Warn when a function declaration hides virtual functions from a base class. For
example, in:
struct A {

virtual void f£(Q);

};

struct B: public A {
void f(int);
};
the A class version of f is hidden in B, and code like:
B*x b;
b->f(0);

fails to compile.

-Wno-pmf-conversions (C++ and Objective-C++ only)
Disable the diagnostic for converting a bound pointer to member function to a
plain pointer.

-Wsign-promo (C++ and Objective-C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumer-
ated type to a signed type, over a conversion to an unsigned type of the same
size. Previous versions of G++ tried to preserve unsignedness, but the standard
mandates the current behavior.

3.6 Options Controlling Objective-C and Objective-C++
Dialects

(NOTE: This manual does not describe the Objective-C and Objective-C++ languages them-
selves. See Chapter 2 [Language Standards Supported by GCC], page 5, for references.)

This section describes the command-line options that are only meaningful for Objective-
C and Objective-C++ programs. You can also use most of the language-independent GNU
compiler options. For example, you might compile a file some_class.m like this:

gcc -g —fgnu-runtime -0 -c some_class.m

In this example, ‘~fgnu-runtime’ is an option meant only for Objective-C and Objective-
C++ programs; you can use the other options with any language supported by GCC.

Note that since Objective-C is an extension of the C language, Objective-C compila-
tions may also use options specific to the C front-end (e.g., ‘-Wtraditional’). Similarly,
Objective-C++ compilations may use C++-specific options (e.g., ‘~Wabi’).

Here is a list of options that are only for compiling Objective-C and Objective-C++
programs:

-fconstant-string-class=class-name
Use class-name as the name of the class to instantiate for each literal string
specified with the syntax @"...". The default class name is NXConstantString
if the GNU runtime is being used, and NSConstantString if the NeX'T runtime
is being used (see below). The ‘~fconstant-cfstrings’ option, if also present,
overrides the ‘-fconstant-string-class’ setting and cause @"..." literals to
be laid out as constant CoreFoundation strings.

Chapter 3: GCC Command Options 49

-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime.
This is the default for most types of systems.

—-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for
NeXT-based systems, including Darwin and Mac OS X. The macro __NEXT_
RUNTIME__ is predefined if (and only if) this option is used.

-fno-nil-receivers
Assume that all Objective-C message dispatches ([receiver message:arg]) in
this translation unit ensure that the receiver is not nil. This allows for more
efficient entry points in the runtime to be used. This option is only available in
conjunction with the NeXT runtime and ABI version 0 or 1.

-fobjc-abi-version=n

Use version n of the Objective-C ABI for the selected runtime. This option is
currently supported only for the NeXT runtime. In that case, Version 0 is the
traditional (32-bit) ABI without support for properties and other Objective-
C 2.0 additions. Version 1 is the traditional (32-bit) ABI with support for
properties and other Objective-C 2.0 additions. Version 2 is the modern (64-bit)
ABI. If nothing is specified, the default is Version 0 on 32-bit target machines,
and Version 2 on 64-bit target machines.

-fobjc-call-cxx-cdtors

For each Objective-C class, check if any of its instance variables is a C++ ob-
ject with a non-trivial default constructor. If so, synthesize a special - (id)
.cxx_construct instance method which runs non-trivial default constructors
on any such instance variables, in order, and then return self. Similarly, check
if any instance variable is a C++ object with a non-trivial destructor, and if
S0, synthesize a special - (void) .cxx_destruct method which runs all such
default destructors, in reverse order.

The - (id) .cxx_construct and - (void) .cxx_destruct methods thusly
generated only operate on instance variables declared in the current
Objective-C class, and not those inherited from superclasses. It is the
responsibility of the Objective-C runtime to invoke all such methods in an
object’s inheritance hierarchy. The - (id) .cxx_construct methods are
invoked by the runtime immediately after a new object instance is allocated;
the - (void) .cxx_destruct methods are invoked immediately before the
runtime deallocates an object instance.

As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has sup-
port for invoking the - (id) .cxx_construct and - (void) .cxx_destruct
methods.

-fobjc-direct-dispatch
Allow fast jumps to the message dispatcher. On Darwin this is accomplished
via the comm page.

50

Using the GNU Compiler Collection (GCC)

-fobjc-exceptions

-fobjc-gc

Enable syntactic support for structured exception handling in Objective-C, sim-
ilar to what is offered by C++ and Java. This option is required to use the
Objective-C keywords @try, @throw, @catch, @finally and @synchronized.
This option is available with both the GNU runtime and the NeXT runtime
(but not available in conjunction with the NeXT runtime on Mac OS X 10.2
and earlier).

Enable garbage collection (GC) in Objective-C and Objective-C++ programs.
This option is only available with the NeXT runtime; the GNU runtime has a
different garbage collection implementation that does not require special com-
piler flags.

-fobjc-nilcheck

For the NeXT runtime with version 2 of the ABI, check for a nil receiver in
method invocations before doing the actual method call. This is the default
and can be disabled using ‘~fno-objc-nilcheck’. Class methods and super
calls are never checked for nil in this way no matter what this flag is set to.
Currently this flag does nothing when the GNU runtime, or an older version of
the NeXT runtime ABI, is used.

-fobjc-std=objcl

-freplace-

Conform to the language syntax of Objective-C 1.0, the language recognized by
GCC 4.0. This only affects the Objective-C additions to the C/C++ language;
it does not affect conformance to C/C++ standards, which is controlled by
the separate C/C++ dialect option flags. When this option is used with the
Objective-C or Objective-C++ compiler, any Objective-C syntax that is not
recognized by GCC 4.0 is rejected. This is useful if you need to make sure that
your Objective-C code can be compiled with older versions of GCC.

objc-classes

Emit a special marker instructing 1d(1) not to statically link in the resulting
object file, and allow dyld(1) to load it in at run time instead. This is used
in conjunction with the Fix-and-Continue debugging mode, where the object
file in question may be recompiled and dynamically reloaded in the course of
program execution, without the need to restart the program itself. Currently,
Fix-and-Continue functionality is only available in conjunction with the NeXT
runtime on Mac OS X 10.3 and later.

—-fzero-link

When compiling for the NeXT runtime, the compiler ordinarily replaces calls to
objc_getClass("...") (when the name of the class is known at compile time)
with static class references that get initialized at load time, which improves run-
time performance. Specifying the ‘~fzero-1link’ flag suppresses this behavior
and causes calls to objc_getClass("...") to be retained. This is useful in
Zero-Link debugging mode, since it allows for individual class implementations
to be modified during program execution. The GNU runtime currently always
retains calls to objc_get_class("...") regardless of command-line options.

Chapter 3: GCC Command Options 51

-gen-decls
Dump interface declarations for all classes seen in the source file to a file named
‘sourcename.decl’.

-Wassign-intercept (Objective-C and Objective-C++ only)
Warn whenever an Objective-C assignment is being intercepted by the garbage
collector.

-Wno-protocol (Objective-C and Objective-C++ only)
If a class is declared to implement a protocol, a warning is issued for every
method in the protocol that is not implemented by the class. The default
behavior is to issue a warning for every method not explicitly implemented in the
class, even if a method implementation is inherited from the superclass. If you
use the ‘~Wno-protocol’ option, then methods inherited from the superclass
are considered to be implemented, and no warning is issued for them.

-Wselector (Objective-C and Objective-C++ only)

Warn if multiple methods of different types for the same selector are found
during compilation. The check is performed on the list of methods in the
final stage of compilation. Additionally, a check is performed for each selector
appearing in a @selector(...) expression, and a corresponding method for
that selector has been found during compilation. Because these checks scan the
method table only at the end of compilation, these warnings are not produced
if the final stage of compilation is not reached, for example because an error
is found during compilation, or because the ‘-fsyntax-only’ option is being
used.

-Wstrict-selector-match (Objective-C and Objective-C++ only)
Warn if multiple methods with differing argument and/or return types are found
for a given selector when attempting to send a message using this selector to
a receiver of type id or Class. When this flag is off (which is the default
behavior), the compiler omits such warnings if any differences found are confined
to types that share the same size and alignment.

-Wundeclared-selector (Objective-C and Objective-C++ only)

Warn if a @selector(...) expression referring to an undeclared selector is
found. A selector is considered undeclared if no method with that name has
been declared before the @selector(...) expression, either explicitly in an
@interface or @protocol declaration, or implicitly in an @implementation
section. This option always performs its checks as soon as a @selector(...)
expression is found, while ‘-Wselector’ only performs its checks in the final
stage of compilation. This also enforces the coding style convention that meth-
ods and selectors must be declared before being used.

-print-objc-runtime-info
Generate C header describing the largest structure that is passed by value, if
any.

52 Using the GNU Compiler Collection (GCC)

3.7 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output device’s
aspect (e.g. its width, ...). You can use the options described below to control the for-
matting algorithm for diagnostic messages, e.g. how many characters per line, how often
source location information should be reported. Note that some language front ends may
not honor these options.

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. The
default is 72 characters for g++ and 0 for the rest of the front ends supported by
GCC. If n is zero, then no line-wrapping is done; each error message appears
on a single line.

-fdiagnostics-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages re-
porter to emit source location information once; that is, in case the message
is too long to fit on a single physical line and has to be wrapped, the source
location won’t be emitted (as prefix) again, over and over, in subsequent con-
tinuation lines. This is the default behavior.

-fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit the same source location information (as prefix) for physical
lines that result from the process of breaking a message which is too long to fit
on a single line.

-fdiagnostics-color [=WHEN]

-fno-diagnostics-color
Use color in diagnostics. @~ WHEN is ‘never’, ‘always’, or ‘auto’. The
default is ‘never’ if GCC_COLORS environment variable isn’t present in the
environment, and ‘auto’ otherwise. ‘auto’ means to use color only when
the standard error is a terminal. The forms ‘-fdiagnostics-color’ and
‘~fno-diagnostics-color’ are aliases for ‘-fdiagnostics-color=always’
and ‘-fdiagnostics-color=never’, respectively.
The colors are defined by the environment variable GCC_COLORS. Its value is
a colon-separated list of capabilities and Select Graphic Rendition (SGR) sub-
strings. SGR commands are interpreted by the terminal or terminal emulator.
(See the section in the documentation of your text terminal for permitted values
and their meanings as character attributes.) These substring values are integers
in decimal representation and can be concatenated with semicolons. Common
values to concatenate include ‘1’ for bold, ‘4’ for underline, ‘5’ for blink, ‘7’ for
inverse, ‘39’ for default foreground color, ‘30’ to ‘37’ for foreground colors, ‘90’
to ‘97’ for 16-color mode foreground colors, ‘38;5;0’ to ‘38;5;255’ for 88-color
and 256-color modes foreground colors, ‘49’ for default background color, ‘40’
to ‘47’ for background colors, ‘100’ to ‘107’ for 16-color mode background col-
ors, and ‘48;5;0’ to ‘48;5;255" for 88-color and 256-color modes background
colors.
The default GCC_COLORS is ‘error=01;31:warning=01;35:note=01;36:caret=01;32:1ocus=01:¢
where ‘01;31’ is bold red, ‘01;35’ is bold magenta, ‘01;36’ is bold cyan,

Chapter 3: GCC Command Options 53

‘01;32’ is bold green and ‘01’ is bold. Setting GCC_COLORS to the empty string
disables colors. Supported capabilities are as follows.

error= SGR substring for error: markers.

warning= SGR substring for warning: markers.

note= SGR substring for note: markers.
caret= SGR substring for caret line.
locus= SGR substring for location information, ‘file:line’ or

‘file:line:column’ etc.
quote= SGR substring for information printed within quotes.

-fno-diagnostics-show-option
By default, each diagnostic emitted includes text indicating the command-line
option that directly controls the diagnostic (if such an option is known to the
diagnostic machinery). Specifying the ‘~fno-diagnostics-show-option’ flag
suppresses that behavior.

-fno-diagnostics—-show-caret
By default, each diagnostic emitted includes the original source line and a caret
’~? indicating the column. This option suppresses this information.

3.8 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions that are not inherently erro-
neous but that are risky or suggest there may have been an error.

The following language-independent options do not enable specific warnings but control
the kinds of diagnostics produced by GCC.

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-fmax-errors=n
Limits the maximum number of error messages to n, at which point GCC bails
out rather than attempting to continue processing the source code. If n is 0
(the default), there is no limit on the number of error messages produced. If
‘-Wfatal-errors’ is also specified, then ‘-Wfatal-errors’ takes precedence
over this option.

-w Inhibit all warning messages.
-Werror Make all warnings into errors.

-Werror= Make the specified warning into an error. The specifier for a warning is
appended; for example ‘-Werror=switch’ turns the warnings controlled by
‘-Wswitch’ into errors. This switch takes a negative form, to be used to negate
‘-Werror’ for specific warnings; for example ‘-Wno-error=switch’ makes
‘-Wswitch’ warnings not be errors, even when ‘~Werror’ is in effect.

The warning message for each controllable warning includes the option that
controls the warning. That option can then be used with ‘-Werror=" and

54 Using the GNU Compiler Collection (GCC)

‘~Wno-error=" as described above. (Printing of the option in the warning mes-
sage can be disabled using the ‘~fno-diagnostics-show-option’ flag.)

Note that specifying ‘-Werror="foo automatically implies ‘-Wfoo. However,
‘~Wno-error="foo does not imply anything.

-Wfatal-errors
This option causes the compiler to abort compilation on the first error occurred
rather than trying to keep going and printing further error messages.

You can request many specific warnings with options beginning with ‘-W’, for example
‘~Wimplicit’ to request warnings on implicit declarations. Each of these specific warn-
ing options also has a negative form beginning ‘~Wno-’ to turn off warnings; for example,
‘~Wno-implicit’. This manual lists only one of the two forms, whichever is not the default.
For further language-specific options also refer to Section 3.5 [C++ Dialect Options], page 37
and Section 3.6 [Objective-C and Objective-C++ Dialect Options], page 48.

When an unrecognized warning option is requested (e.g., ‘~Wunknown-warning’),
GCC emits a diagnostic stating that the option is not recognized. However, if the
‘-Wno-’ form is used, the behavior is slightly different: no diagnostic is produced for
‘~Wno-unknown-warning’ unless other diagnostics are being produced. This allows the
use of new ‘-Wno-’ options with old compilers, but if something goes wrong, the compiler
warns that an unrecognized option is present.

-Wpedantic

-pedantic
Issue all the warnings demanded by strict ISO C and ISO C++; reject all pro-
grams that use forbidden extensions, and some other programs that do not

follow ISO C and ISO C++. For ISO C, follows the version of the ISO C stan-
dard specified by any ‘-std’ option used.

Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few require ‘-ansi’ or a ‘-std’ option specifying
the required version of ISO C). However, without this option, certain GNU
extensions and traditional C and C++ features are supported as well. With this
option, they are rejected.

3

‘~Wpedantic’ does not cause warning messages for use of the alternate keywords
whose names begin and end with ‘__’". Pedantic warnings are also disabled in
the expression that follows __extension__. However, only system header files

should use these escape routes; application programs should avoid them. See
Section 6.45 [Alternate Keywords|, page 468.

Some users try to use ‘-Wpedantic’ to check programs for strict ISO C con-
formance. They soon find that it does not do quite what they want: it finds
some non-ISO practices, but not all—only those for which ISO C requires a
diagnostic, and some others for which diagnostics have been added.

A feature to report any failure to conform to ISO C might be useful in some
instances, but would require considerable additional work and would be quite
different from ‘-Wpedantic’. We don’t have plans to support such a feature in
the near future.

Where the standard specified with ‘-std’ represents a GNU extended dialect
of C, such as ‘gnu90’ or ‘gnu99’, there is a corresponding base standard, the

Chapter 3: GCC Command Options 55

version of ISO C on which the GNU extended dialect is based. Warnings from
‘~Wpedantic’ are given where they are required by the base standard. (It
does not make sense for such warnings to be given only for features not in the
specified GNU C dialect, since by definition the GNU dialects of C include
all features the compiler supports with the given option, and there would be
nothing to warn about.)

-pedantic-errors

-Wall

Like ‘-Wpedantic’, except that errors are produced rather than warnings.

This enables all the warnings about constructions that some users consider
questionable, and that are easy to avoid (or modify to prevent the warning),
even in conjunction with macros. This also enables some language-specific
warnings described in Section 3.5 [C++ Dialect Options], page 37 and Section 3.6
[Objective-C and Objective-C++ Dialect Options], page 48.

‘~Wall’ turns on the following warning flags:

-Waddress

-Warray-bounds (only with ‘-02’)
-Wc++11-compat

-Wchar-subscripts

-Wenum-compare (in C/ObjC; this is on by default in C++)
-Wimplicit-int (C and Objective-C only)
-Wimplicit-function-declaration (C and Objective-C only)
-Wcomment

-Wformat

-Wmain (only for C/ObjC and unless ‘-ffreestanding’)
-Wmaybe-uninitialized
-Wmissing-braces (only for C/ObjC)
-Wnonnull

-Wopenmp-simd

-Wparentheses

-Wpointer-sign

-Wreorder

-Wreturn-type

-Wsequence-point

-Wsign-compare (only in C++)
-Wstrict-aliasing

-Wstrict-overflow=1

-Wswitch

-Wtrigraphs

-Wuninitialized

-Wunknown-pragmas

-Wunused-function

-Wunused-label

-Wunused-value

-Wunused-variable
-Wvolatile-register-var

Note that some warning flags are not implied by ‘-Wall’. Some of them warn
about constructions that users generally do not consider questionable, but which
occasionally you might wish to check for; others warn about constructions that
are necessary or hard to avoid in some cases, and there is no simple way to mod-
ify the code to suppress the warning. Some of them are enabled by ‘-Wextra’
but many of them must be enabled individually.

56

-Wextra

Using the GNU Compiler Collection (GCC)

This enables some extra warning flags that are not enabled by ‘-Wall’. (This
option used to be called ‘-W’. The older name is still supported, but the newer
name is more descriptive.)

-Wclobbered

-Wempty-body

-Wignored-qualifiers

-Wmissing-field-initializers

-Wmissing-parameter-type (C only)

-Wold-style-declaration (C only)

-Woverride-init

-Wsign-compare

-Wtype-limits

-Wuninitialized

-Wunused-parameter (only with ‘-Wunused’ or ‘-Wall’)

-Wunused-but-set-parameter (only with ‘-Wunused’ or ‘-Wall’)

The option ‘~Wextra’ also prints warning messages for the following cases:
e A pointer is compared against integer zero with ‘<’, ‘<=’, ‘>’ or ‘>=’,

e (C++ only) An enumerator and a non-enumerator both appear in a condi-
tional expression.

e (C++ only) Ambiguous virtual bases.
(
(

4

C++ only) Subscripting an array that has been declared ‘register’.

C++ only) Taking the address of a variable that has been declared
register’.

e (C++only) A base class is not initialized in a derived class’s copy construc-
tor.

-Wchar-subscripts

-Wcomment

Warn if an array subscript has type char. This is a common cause of error,
as programmers often forget that this type is signed on some machines. This
warning is enabled by ‘-Wall’.

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a Backslash-Newline appears in a ‘//’ comment. This warning is
enabled by ‘-Wall’.

-Wno-coverage-mismatch

-Wno-cpp

Warn if feedback profiles do not match when using the ‘~-fprofile-use’ option.
If a source file is changed between compiling with ‘~fprofile-gen’ and with
‘~fprofile-use’, the files with the profile feedback can fail to match the source
file and GCC cannot use the profile feedback information. By default, this
warning is enabled and is treated as an error. ‘-Wno-coverage-mismatch’ can
be used to disable the warning or ‘-Wno-error=coverage-mismatch’ can be
used to disable the error. Disabling the error for this warning can result in
poorly optimized code and is useful only in the case of very minor changes such
as bug fixes to an existing code-base. Completely disabling the warning is not
recommended.

(C, Objective-C, C++, Objective-C++ and Fortran only)

Chapter 3: GCC Command Options 57

Suppress warning messages emitted by #warning directives.

-Wdouble-promotion (C, C++, Objective-C and Objective-C++ only)
Give a warning when a value of type float is implicitly promoted to double.
CPUs with a 32-bit “single-precision” floating-point unit implement float in
hardware, but emulate double in software. On such a machine, doing compu-
tations using double values is much more expensive because of the overhead
required for software emulation.

It is easy to accidentally do computations with double because floating-point
literals are implicitly of type double. For example, in:
float area(float radius)
{
return 3.14159 * radius * radius;
}
the compiler performs the entire computation with double because the floating-

point literal is a double.

-Wformat

-Wformat=n
Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified, and that the conversions
specified in the format string make sense. This includes standard functions, and
others specified by format attributes (see Section 6.30 [Function Attributes],
page 372), in the printf, scanf, strftime and strfmon (an X/Open exten-
sion, not in the C standard) families (or other target-specific families). Which
functions are checked without format attributes having been specified depends
on the standard version selected, and such checks of functions without the at-
tribute specified are disabled by ‘~ffreestanding’ or ‘-fno-builtin’.

The formats are checked against the format features supported by GNU libc
version 2.2. These include all ISO C90 and C99 features, as well as features
from the Single Unix Specification and some BSD and GNU extensions. Other
library implementations may not support all these features; GCC does not sup-
port warning about features that go beyond a particular library’s limitations.
However, if ‘-Wpedantic’ is used with ‘-Wformat’, warnings are given about
format features not in the selected standard version (but not for strfmon for-
mats, since those are not in any version of the C standard). See Section 3.4
[Options Controlling C Dialect], page 31.

-Wformat=1

-Wformat Option ‘-Wformat’ 1is equivalent to ‘-Wformat=1’, and
‘-Wno-format’ is equivalent to ‘-Wformat=0’. Since ‘-Wformat’
also checks for null format arguments for several functions,
‘~Wformat’ also implies ‘-Wnonnull’. Some aspects of this
level of format checking can be disabled by the options:
‘~Wno-format-contains-nul’, ‘-Wno-format-extra-args’, and
‘~Wno-format-zero-length’. ‘-Wformat’ is enabled by ‘-Wall’.

-Wno-format-contains—-nul
If ‘~Wformat’ is specified, do not warn about format strings that
contain NUL bytes.

58 Using the GNU Compiler Collection (GCC)

-Wno-format-extra-args
If ‘-Wformat’ is specified, do not warn about excess arguments to
a printf or scanf format function. The C standard specifies that
such arguments are ignored.

Where the unused arguments lie between used arguments that are
specified with ‘¢’ operand number specifications, normally warnings
are still given, since the implementation could not know what type
to pass to va_arg to skip the unused arguments. However, in the
case of scanf formats, this option suppresses the warning if the un-
used arguments are all pointers, since the Single Unix Specification
says that such unused arguments are allowed.

-Wno-format-zero-length
If ‘-Wformat’ is specified, do not warn about zero-length formats.
The C standard specifies that zero-length formats are allowed.

-Wformat=2
Enable ‘-Wformat’ plus additional format checks. Currently equiv-
alent to ‘-Wformat -Wformat-nonliteral -Wformat-security
-Wformat-y2k’.

-Wformat-nonliteral
If ‘~Wformat’ is specified, also warn if the format string is not a
string literal and so cannot be checked, unless the format function
takes its format arguments as a va_list.

-Wformat-security

If ‘~Wformat’ is specified, also warn about uses of format functions
that represent possible security problems. At present, this warns
about calls to printf and scanf functions where the format string
is not a string literal and there are no format arguments, as in
printf (foo);. This may be a security hole if the format string
came from untrusted input and contains ‘%n’. (This is currently
a subset of what ‘-Wformat-nonliteral’ warns about, but in fu-
ture warnings may be added to ‘-Wformat-security’ that are not
included in ‘-Wformat-nonliteral’.)

-Wformat-y2k
If ‘-Wformat’ is specified, also warn about strftime formats that
may yield only a two-digit year.

-Wnonnull
Warn about passing a null pointer for arguments marked as requiring a non-null
value by the nonnull function attribute.
‘~Wnonnull’ is included in ‘-Wall’ and ‘~Wformat’. It can be disabled with the
‘~Wno-nonnull’ option.

-Winit-self (C, C++, Objective-C and Objective-C++ only)
Warn about uninitialized variables that are initialized with themselves. Note
this option can only be used with the ‘-Wuninitialized’ option.

Chapter 3: GCC Command Options 59

For example, GCC warns about i being uninitialized in the following snippet
only when ‘~Winit-self’ has been specified:
int £Q)
{
int i = i;
return i;

}
This warning is enabled by ‘-Wall’ in C++.

-Wimplicit-int (C and Objective-C only)
Warn when a declaration does not specify a type. This warning is enabled by
‘~Wall’.

-Wimplicit-function-declaration (C and Objective-C only)
Give a warning whenever a function is used before being declared. In C99 mode
(‘-std=c99’ or ‘-std=gnu99’), this warning is enabled by default and it is made
into an error by ‘-pedantic-errors’. This warning is also enabled by ‘-Wall’.

-Wimplicit (C and Objective-C only)
Same as ‘-Wimplicit-int’ and ‘-Wimplicit-function-declaration’. This
warning is enabled by ‘-Wall’.

-Wignored-qualifiers (C and C++ only)
Warn if the return type of a function has a type qualifier such as const. For
ISO C such a type qualifier has no effect, since the value returned by a function
is not an lvalue. For C++, the warning is only emitted for scalar types or void.
ISO C prohibits qualified void return types on function definitions, so such
return types always receive a warning even without this option.

This warning is also enabled by ‘-Wextra’.

-Wmain Warn if the type of ‘main’ is suspicious. ‘main’ should be a function with
external linkage, returning int, taking either zero arguments, two, or three
arguments of appropriate types. This warning is enabled by default in C++ and
is enabled by either ‘-Wall’ or ‘-Wpedantic’.

-Wmissing-braces
Warn if an aggregate or union initializer is not fully bracketed. In the following
example, the initializer for ‘a’ is not fully bracketed, but that for ‘b’ is fully
bracketed. This warning is enabled by ‘-Wall’ in C.
int a[2][2] ={ 0, 1, 2, 3 };
int b[2][2] ={ {0, 13}, {2,311}

This warning is enabled by ‘-Wall’.

-Wmissing-include-dirs (C, C++, Objective-C and Objective-C++ only)
Warn if a user-supplied include directory does not exist.

-Wparentheses
Warn if parentheses are omitted in certain contexts, such as when there is an
assignment in a context where a truth value is expected, or when operators are
nested whose precedence people often get confused about.
Also warn if a comparison like ‘x<=y<=z’ appears; this is equivalent to ‘(x<=y
7 1 : 0) <= 2z’, which is a different interpretation from that of ordinary math-
ematical notation.

60

Using the GNU Compiler Collection (GCC)

Also warn about constructions where there may be confusion to which if state-
ment an else branch belongs. Here is an example of such a case:
{
if (a)
if (o)
foo O);
else
bar ();
}

In C/C++, every else branch belongs to the innermost possible if statement,
which in this example is if (b). This is often not what the programmer ex-
pected, as illustrated in the above example by indentation the programmer
chose. When there is the potential for this confusion, GCC issues a warn-
ing when this flag is specified. To eliminate the warning, add explicit braces
around the innermost if statement so there is no way the else can belong to
the enclosing if. The resulting code looks like this:

{
if (a)
{
if (b)
foo ();
else
bar O;
}
}

Also warn for dangerous uses of the GNU extension to 7: with omitted middle
operand. When the condition in the ?: operator is a boolean expression, the
omitted value is always 1. Often programmers expect it to be a value computed
inside the conditional expression instead.

This warning is enabled by ‘-Wall’.

-Wsequence-point

Warn about code that may have undefined semantics because of violations of
sequence point rules in the C and C++ standards.

The C and C++ standards define the order in which expressions in a C/C++
program are evaluated in terms of sequence points, which represent a partial
ordering between the execution of parts of the program: those executed before
the sequence point, and those executed after it. These occur after the evalua-
tion of a full expression (one which is not part of a larger expression), after the
evaluation of the first operand of a &&, ||, 7 : or , (comma) operator, before a
function is called (but after the evaluation of its arguments and the expression
denoting the called function), and in certain other places. Other than as ex-
pressed by the sequence point rules, the order of evaluation of subexpressions
of an expression is not specified. All these rules describe only a partial order
rather than a total order, since, for example, if two functions are called within
one expression with no sequence point between them, the order in which the
functions are called is not specified. However, the standards committee have
ruled that function calls do not overlap.

Chapter 3: GCC Command Options 61

It is not specified when between sequence points modifications to the values of
objects take effect. Programs whose behavior depends on this have undefined
behavior; the C and C++ standards specify that “Between the previous and
next sequence point an object shall have its stored value modified at most once
by the evaluation of an expression. Furthermore, the prior value shall be read
only to determine the value to be stored.”. If a program breaks these rules, the
results on any particular implementation are entirely unpredictable.

Examples of code with undefined behavior are a = a++;, a[n] = b[n++] and
ali++] =1i;. Some more complicated cases are not diagnosed by this option,
and it may give an occasional false positive result, but in general it has been
found fairly effective at detecting this sort of problem in programs.

The standard is worded confusingly, therefore there is some debate over the
precise meaning of the sequence point rules in subtle cases. Links to discussions
of the problem, including proposed formal definitions, may be found on the GCC
readings page, at http://gcc.gnu.org/readings.html.

This warning is enabled by ‘-Wall’ for C and C++.

-Wno-return-local-addr

Do not warn about returning a pointer (or in C++, a reference) to a variable
that goes out of scope after the function returns.

-Wreturn-type

-Wswitch

Warn whenever a function is defined with a return type that defaults to int.
Also warn about any return statement with no return value in a function whose
return type is not void (falling off the end of the function body is considered
returning without a value), and about a return statement with an expression
in a function whose return type is void.

For C++, a function without return type always produces a diagnostic message,
even when ‘-Wno-return-type’ is specified. The only exceptions are ‘main’ and
functions defined in system headers.

This warning is enabled by ‘-Wall’.

Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. (The presence
of a default label prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used (even if there is a default
label). This warning is enabled by ‘-Wall’.

-Wswitch-default

Warn whenever a switch statement does not have a default case.

-Wswitch-enum

Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. case labels
outside the enumeration range also provoke warnings when this option is used.
The only difference between ‘-Wswitch’ and this option is that this option gives
a warning about an omitted enumeration code even if there is a default label.

http://gcc.gnu.org/readings.html

62 Using the GNU Compiler Collection (GCC)

-Wsync-nand (C and C++ only)
Warn when __sync_fetch_and_nand and __sync_nand_and_fetch built-in

functions are used. These functions changed semantics in GCC 4.4.

-Wtrigraphs
Warn if any trigraphs are encountered that might change the meaning of the
program (trigraphs within comments are not warned about). This warning is
enabled by ‘-Wall’.

-Wunused-but-set-parameter
Warn whenever a function parameter is assigned to, but otherwise unused (aside
from its declaration).

To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes|, page 409).

This warning is also enabled by ‘~Wunused’ together with ‘-Wextra’.

-Wunused-but-set-variable
Warn whenever a local variable is assigned to, but otherwise unused (aside from
its declaration). This warning is enabled by ‘-Wall’.

To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes|, page 409).

This warning is also enabled by ‘-Wunused’, which is enabled by ‘-Wall’.

-Wunused-function
Warn whenever a static function is declared but not defined or a non-inline
static function is unused. This warning is enabled by ‘-Wall’.

-Wunused-label
Warn whenever a label is declared but not used. This warning is enabled by
‘~Wall’.
To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes|, page 409).

-Wunused-local-typedefs (C, Objective-C, C++ and Objective-C++ only)
Warn when a typedef locally defined in a function is not used. This warning is
enabled by ‘-Wall’.

-Wunused-parameter
Warn whenever a function parameter is unused aside from its declaration.

To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes|, page 409).

-Wno-unused-result
Do not warn if a caller of a function marked with attribute warn_unused_
result (see Section 6.30 [Function Attributes|, page 372) does not use its return
value. The default is ‘-Wunused-result’.

-Wunused-variable
Warn whenever a local variable or non-constant static variable is unused aside
from its declaration. This warning is enabled by ‘-Wall’.

Chapter 3: GCC Command Options 63

To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes|, page 409).

-Wunused-value

Warn whenever a statement computes a result that is explicitly not used. To
suppress this warning cast the unused expression to ‘void’. This includes an
expression-statement or the left-hand side of a comma expression that contains
no side effects. For example, an expression such as ‘x[i,j]’ causes a warning,
while ‘x[(void)i, j]’ does not.

This warning is enabled by ‘-Wall’.

-Wunused All the above ‘~Wunused’ options combined.
In order to get a warning about an unused function parameter, you must either
specify ‘-Wextra -Wunused’ (note that ‘-Wall’ implies ‘-Wunused’), or sepa-
rately specify ‘~-Wunused-parameter’.

-Wuninitialized

Warn if an automatic variable is used without first being initialized or if a
variable may be clobbered by a setjmp call. In C++, warn if a non-static
reference or non-static ‘const’ member appears in a class without constructors.

If you want to warn about code that uses the uninitialized value of the variable
in its own initializer, use the ‘~-Winit-self’ option.

These warnings occur for individual uninitialized or clobbered elements of struc-
ture, union or array variables as well as for variables that are uninitialized or
clobbered as a whole. They do not occur for variables or elements declared
volatile. Because these warnings depend on optimization, the exact variables
or elements for which there are warnings depends on the precise optimization
options and version of GCC used.

Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data flow analysis before the warnings are printed.

-Wmaybe-uninitialized

For an automatic variable, if there exists a path from the function entry to a
use of the variable that is initialized, but there exist some other paths for which
the variable is not initialized, the compiler emits a warning if it cannot prove
the uninitialized paths are not executed at run time. These warnings are made
optional because GCC is not smart enough to see all the reasons why the code
might be correct in spite of appearing to have an error. Here is one example of
how this can happen:

Using the GNU Compiler Collection (GCC)

{
int x;
switch (y)
{
case 1: x
break;
case 2: x = 4;
break;
case 3: X
}
foo (x);
¥

If the value of y is always 1, 2 or 3, then x is always initialized, but GCC doesn’t
know this. To suppress the warning, you need to provide a default case with
assert(0) or similar code.

]
e

1]
(9]

This option also warns when a non-volatile automatic variable might be changed
by a call to longjmp. These warnings as well are possible only in optimizing
compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp will
be called; in fact, a signal handler could call it at any point in the code. As a
result, you may get a warning even when there is in fact no problem because
longjmp cannot in fact be called at the place that would cause a problem.

Some spurious warnings can be avoided if you declare all the functions you
use that never return as noreturn. See Section 6.30 [Function Attributes],
page 372.

This warning is enabled by ‘-Wall’ or ‘-Wextra’.

-Wunknown-pragmas

Warn when a #pragma directive is encountered that is not understood by GCC.
If this command-line option is used, warnings are even issued for unknown
pragmas in system header files. This is not the case if the warnings are only
enabled by the ‘-Wall’ command-line option.

-Wno-pragmas

Do not warn about misuses of pragmas, such as incorrect parameters, invalid
syntax, or conflicts between pragmas. See also ‘~Wunknown-pragmas’.

-Wstrict-aliasing

This option is only active when ‘~fstrict-aliasing’ is active. It warns about
code that might break the strict aliasing rules that the compiler is using for
optimization. The warning does not catch all cases, but does attempt to
catch the more common pitfalls. It is included in ‘-Wall’. It is equivalent
to ‘~Wstrict-aliasing=3’

-Wstrict-aliasing=n

This option is only active when ‘~fstrict-aliasing’ is active. It warns about
code that might break the strict aliasing rules that the compiler is using for op-
timization. Higher levels correspond to higher accuracy (fewer false positives).
Higher levels also correspond to more effort, similar to the way ‘-0’ works.
‘~-Wstrict-aliasing’ is equivalent to ‘-Wstrict-aliasing=3’.

Chapter 3: GCC Command Options 65

Level 1: Most aggressive, quick, least accurate. Possibly useful when higher
levels do not warn but ‘-fstrict-aliasing’ still breaks the code, as it has very
few false negatives. However, it has many false positives. Warns for all pointer
conversions between possibly incompatible types, even if never dereferenced.
Runs in the front end only.

Level 2: Aggressive, quick, not too precise. May still have many false positives
(not as many as level 1 though), and few false negatives (but possibly more
than level 1). Unlike level 1, it only warns when an address is taken. Warns
about incomplete types. Runs in the front end only.

Level 3 (default for ‘-Wstrict-aliasing’): Should have very few false positives
and few false negatives. Slightly slower than levels 1 or 2 when optimization
is enabled. Takes care of the common pun+dereference pattern in the front
end: *(int*)&some_float. If optimization is enabled, it also runs in the back
end, where it deals with multiple statement cases using flow-sensitive points-to
information. Only warns when the converted pointer is dereferenced. Does not
warn about incomplete types.

-Wstrict-overflow

-Wstrict-overflow=n
This option is only active when ‘~fstrict-overflow’ is active. It warns about
cases where the compiler optimizes based on the assumption that signed over-
flow does not occur. Note that it does not warn about all cases where the code
might overflow: it only warns about cases where the compiler implements some
optimization. Thus this warning depends on the optimization level.

An optimization that assumes that signed overflow does not occur is perfectly
safe if the values of the variables involved are such that overflow never does, in
fact, occur. Therefore this warning can easily give a false positive: a warning
about code that is not actually a problem. To help focus on important issues,
several warning levels are defined. No warnings are issued for the use of unde-
fined signed overflow when estimating how many iterations a loop requires, in
particular when determining whether a loop will be executed at all.

-Wstrict-overflow=1
Warn about cases that are both questionable and easy to avoid. For
example, with ‘-fstrict-overflow’, the compiler simplifies x + 1
> x to 1. This level of ‘~Wstrict-overflow’ is enabled by ‘-Wall’;
higher levels are not, and must be explicitly requested.

-Wstrict-overflow=2
Also warn about other cases where a comparison is simplified to
a constant. For example: abs (x) >= 0. This can only be simpli-
fied when ‘-fstrict-overflow’ is in effect, because abs (INT_MIN)
overflows to INT_MIN, which is less than zero. ‘~-Wstrict-overflow’
(with no level) is the same as ‘-Wstrict-overflow=2".

-Wstrict-overflow=3
Also warn about other cases where a comparison is simplified. For
example: x + 1 > 1 is simplified to x > 0.

66

Using the GNU Compiler Collection (GCC)

-Wstrict-overflow=4

Also warn about other simplifications not covered by the above
cases. For example: (x * 10) / 5 is simplified to x * 2.

-Wstrict-overflow=5

Also warn about cases where the compiler reduces the magnitude
of a constant involved in a comparison. For example: x + 2 > y is
simplified to x + 1 >= y. This is reported only at the highest warn-
ing level because this simplification applies to many comparisons,
so this warning level gives a very large number of false positives.

-Wsuggest-attribute=[pure|const |noreturn|format]
Warn for cases where adding an attribute may be beneficial. The attributes
currently supported are listed below.

-Wsuggest-attribute=pure
-Wsuggest-attribute=const
-Wsuggest-attribute=noreturn

Warn about functions that might be candidates for attributes pure,
const or noreturn. The compiler only warns for functions visible
in other compilation units or (in the case of pure and const) if it
cannot prove that the function returns normally. A function returns
normally if it doesn’t contain an infinite loop or return abnormally
by throwing, calling abort() or trapping. This analysis requires
option ‘-fipa-pure-const’, which is enabled by default at ‘-0’
and higher. Higher optimization levels improve the accuracy of the
analysis.

-Wsuggest-attribute=format
-Wmissing-format-attribute

-Warray-bounds

Warn about function pointers that might be candidates for format
attributes. Note these are only possible candidates, not absolute
ones. GCC guesses that function pointers with format attributes
that are used in assignment, initialization, parameter passing or
return statements should have a corresponding format attribute
in the resulting type. l.e. the left-hand side of the assignment or
initialization, the type of the parameter variable, or the return type
of the containing function respectively should also have a format
attribute to avoid the warning.

GCC also warns about function definitions that might be candi-
dates for format attributes. Again, these are only possible candi-
dates. GCC guesses that format attributes might be appropriate
for any function that calls a function like vprintf or vscanf, but
this might not always be the case, and some functions for which
format attributes are appropriate may not be detected.

This option is only active when ‘~-ftree-vrp’ is active (default for ‘-02’ and
above). It warns about subscripts to arrays that are always out of bounds. This
warning is enabled by ‘-Wall’.

Chapter 3: GCC Command Options 67

-Wno-div-by-zero
Do not warn about compile-time integer division by zero. Floating-point divi-
sion by zero is not warned about, as it can be a legitimate way of obtaining
infinities and NaNs.

-Wsystem-headers

Print warning messages for constructs found in system header files. Warnings
from system headers are normally suppressed, on the assumption that they
usually do not indicate real problems and would only make the compiler output
harder to read. Using this command-line option tells GCC to emit warnings
from system headers as if they occurred in user code. However, note that using
‘-Wall’ in conjunction with this option does not warn about unknown pragmas
in system headers—for that, ‘~Wunknown-pragmas’ must also be used.

-Wtrampolines
Warn about trampolines generated for pointers to nested functions.

A trampoline is a small piece of data or code that is created at run time on
the stack when the address of a nested function is taken, and is used to call
the nested function indirectly. For some targets, it is made up of data only and
thus requires no special treatment. But, for most targets, it is made up of code
and thus requires the stack to be made executable in order for the program to
work properly.

-Wfloat-equal
Warn if floating-point values are used in equality comparisons.

The idea behind this is that sometimes it is convenient (for the programmer)
to consider floating-point values as approximations to infinitely precise real
numbers. If you are doing this, then you need to compute (by analyzing the
code, or in some other way) the maximum or likely maximum error that the
computation introduces, and allow for it when performing comparisons (and
when producing output, but that’s a different problem). In particular, instead
of testing for equality, you should check to see whether the two values have
ranges that overlap; and this is done with the relational operators, so equality
comparisons are probably mistaken.

-Wtraditional (C and Objective-C only)
Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and/or problematic constructs that should be avoided.

e Macro parameters that appear within string literals in the macro body. In
traditional C macro replacement takes place within string literals, but in
ISO C it does not.

e In traditional C, some preprocessor directives did not exist. Traditional
preprocessors only considered a line to be a directive if the ‘#” appeared in
column 1 on the line. Therefore ‘-Wtraditional’ warns about directives
that traditional C understands but ignores because the ‘#” does not appear
as the first character on the line. It also suggests you hide directives like
‘#pragma’ not understood by traditional C by indenting them. Some tra-

68

Using the GNU Compiler Collection (GCC)

ditional implementations do not recognize ‘#elif’, so this option suggests
avoiding it altogether.

A function-like macro that appears without arguments.
The unary plus operator.

The ‘U’ integer constant suffix, or the ‘F’ or ‘L’ floating-point constant
suffixes. (Traditional C does support the ‘L’ suffix on integer constants.)
Note, these suffixes appear in macros defined in the system headers of most
modern systems, e.g. the ‘_MIN’/‘_MAX’ macros in <limits.h>. Use of these
macros in user code might normally lead to spurious warnings, however
GCC’s integrated preprocessor has enough context to avoid warning in
these cases.

A function declared external in one block and then used after the end of
the block.

A switch statement has an operand of type long.

A non-static function declaration follows a static one. This construct
is not accepted by some traditional C compilers.

The ISO type of an integer constant has a different width or signedness
from its traditional type. This warning is only issued if the base of the
constant is ten. I.e. hexadecimal or octal values, which typically represent
bit patterns, are not warned about.

Usage of ISO string concatenation is detected.
Initialization of automatic aggregates.

Identifier conflicts with labels. Traditional C lacks a separate namespace
for labels.

Initialization of unions. If the initializer is zero, the warning is omitted.
This is done under the assumption that the zero initializer in user code
appears conditioned on e.g. __STDC__ to avoid missing initializer warnings
and relies on default initialization to zero in the traditional C case.

Conversions by prototypes between fixed/floating-point values and vice
versa. The absence of these prototypes when compiling with traditional
C causes serious problems. This is a subset of the possible conversion
warnings; for the full set use ‘-Wtraditional-conversion’.

Use of ISO C style function definitions. This warning intentionally is not
issued for prototype declarations or variadic functions because these ISO
C features appear in your code when using libiberty’s traditional C com-
patibility macros, PARAMS and VPARAMS. This warning is also bypassed for
nested functions because that feature is already a GCC extension and thus
not relevant to traditional C compatibility.

-Wtraditional-conversion (C and Objective-C only)

Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions changing
the width or signedness of a fixed-point argument except when the same as the
default promotion.

Chapter 3: GCC Command Options 69

-Wdeclaration-after-statement (C and Objective-C only)

-Wundef

Warn when a declaration is found after a statement in a block. This construct,
known from C++, was introduced with ISO C99 and is by default allowed in
GCC. It is not supported by ISO C90 and was not supported by GCC versions
before GCC 3.0. See Section 6.29 [Mixed Declarations|, page 372.

Warn if an undefined identifier is evaluated in an ‘#if’ directive.

-Wno-endif-labels

Do not warn whenever an ‘#else’ or an ‘#endif’ are followed by text.

-Wshadow Warn whenever a local variable or type declaration shadows another variable,

parameter, type, or class member (in C++), or whenever a built-in function is
shadowed. Note that in C++, the compiler warns if a local variable shadows an
explicit typedef, but not if it shadows a struct/class/enum.

-Wlarger-than=len

Warn whenever an object of larger than len bytes is defined.

-Wframe-larger-than=len

Warn if the size of a function frame is larger than len bytes. The computation
done to determine the stack frame size is approximate and not conservative.
The actual requirements may be somewhat greater than len even if you do not
get a warning. In addition, any space allocated via alloca, variable-length
arrays, or related constructs is not included by the compiler when determining
whether or not to issue a warning.

-Wno-free-nonheap-object

Do not warn when attempting to free an object that was not allocated on the
heap.

-Wstack-usage=1len

Warn if the stack usage of a function might be larger than len bytes. The
computation done to determine the stack usage is conservative. Any space
allocated via alloca, variable-length arrays, or related constructs is included
by the compiler when determining whether or not to issue a warning.
The message is in keeping with the output of ‘~-fstack-usage’.
e If the stack usage is fully static but exceeds the specified amount, it’s:
warning: stack usage is 1120 bytes
e If the stack usage is (partly) dynamic but bounded, it’s:
warning: stack usage might be 1648 bytes
e If the stack usage is (partly) dynamic and not bounded, it’s:

warning: stack usage might be unbounded

-Wunsafe-loop-optimizations

Warn if the loop cannot be optimized because the compiler cannot assume any-
thing on the bounds of the loop indices. With ‘~funsafe-loop-optimizations’
warn if the compiler makes such assumptions.

-Wno-pedantic-ms-format (MinGW targets only)

When used in combination with ‘-Wformat’ and ‘-pedantic’ without GNU
extensions, this option disables the warnings about non-ISO printf / scanf

70 Using the GNU Compiler Collection (GCC)

format width specifiers 132, 164, and I used on Windows targets, which depend
on the MS runtime.

-Wpointer-arith
Warn about anything that depends on the “size of” a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void
* pointers and pointers to functions. In C++, warn also when an arithmetic
operation involves NULL. This warning is also enabled by ‘~Wpedantic’.

-Wtype-limits
Warn if a comparison is always true or always false due to the limited range of
the data type, but do not warn for constant expressions. For example, warn if
an unsigned variable is compared against zero with ‘<’ or ‘>=". This warning is
also enabled by ‘-Wextra’.

-Wbad-function-cast (C and Objective-C only)
Warn whenever a function call is cast to a non-matching type. For example,
warn if int malloc() is cast to anything *.

-We++-compat (C and Objective-C only)
Warn about ISO C constructs that are outside of the common subset of ISO C
and ISO C++, e.g. request for implicit conversion from void * to a pointer to
non-void type.

-We++11-compat (C++ and Objective-C++ only)
Warn about C++ constructs whose meaning differs between ISO C++ 1998 and
ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords in ISO C++
2011. This warning turns on ‘-Wnarrowing’ and is enabled by ‘-Wall’.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

Also warn when making a cast that introduces a type qualifier in an unsafe way.
For example, casting char ** to const char ** is unsafe, as in this example:

/* p is char ** value. x/
const char **q = (const char *x) p;
/* Assignment of readonly string to const char * is 0K. */

*q = "string";
/* Now charx* pointer points to read-only memory. */
**p = ’b’;

-Wcast-align
Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * on machines
where integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings
When compiling C, give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer produces a warning.
These warnings help you find at compile time code that can try to write into
a string constant, but only if you have been very careful about using const in
declarations and prototypes. Otherwise, it is just a nuisance. This is why we
did not make ‘-Wall’ request these warnings.

Chapter 3: GCC Command Options 71

When compiling C++, warn about the deprecated conversion from string literals
to char *. This warning is enabled by default for C++ programs.

-Wclobbered
Warn for variables that might be changed by ‘longjmp’ or ‘vfork’. This warning
is also enabled by ‘-Wextra’.

-Wconditionally-supported (C++ and Objective-C++ only)
Warn for conditionally-supported (C++11 [intro.defs]) constructs.

-Wconversion

Warn for implicit conversions that may alter a value. This includes conversions
between real and integer, like abs (x) when x is double; conversions between
signed and unsigned, like unsigned ui = -1; and conversions to smaller types,
like sqrtf (M_PI). Do not warn for explicit casts like abs ((int) x) and ui
= (unsigned) -1, or if the value is not changed by the conversion like in abs
(2.0). Warnings about conversions between signed and unsigned integers can
be disabled by using ‘~Wno-sign-conversion’.

For C++, also warn for confusing overload resolution for user-defined conver-
sions; and conversions that never use a type conversion operator: conversions
to void, the same type, a base class or a reference to them. Warnings about
conversions between signed and unsigned integers are disabled by default in
C++ unless ‘-Wsign-conversion’ is explicitly enabled.

-Wno-conversion-null (C++ and Objective-C++ only)
Do not warn for conversions between NULL and non-pointer types.
‘~Wconversion-null’ is enabled by default.

-Wzero-as-null-pointer-constant (C++ and Objective-C++ only)
Warn when a literal ’0’ is used as null pointer constant. This can be useful to
facilitate the conversion to nullptr in C++11.

-Wdate-time
Warn when macros __TIME__, __DATE__ or __TIMESTAMP__ are encountered as
they might prevent bit-wise-identical reproducible compilations.

-Wdelete-incomplete (C++ and Objective-C++ only)
Warn when deleting a pointer to incomplete type, which may cause undefined
behavior at runtime. This warning is enabled by default.

-Wuseless-cast (C++ and Objective-C++ only)
Warn when an expression is casted to its own type.

-Wempty-body
Warn if an empty body occurs in an ‘if’, ‘else’ or ‘do while’ statement. This
warning is also enabled by ‘-Wextra’.

-Wenum-compare
Warn about a comparison between values of different enumerated types. In
C++ enumeral mismatches in conditional expressions are also diagnosed and
the warning is enabled by default. In C this warning is enabled by ‘-Wall’.

72 Using the GNU Compiler Collection (GCC)

-Wjump-misses-init (C, Objective-C only)

Warn if a goto statement or a switch statement jumps forward across the
initialization of a variable, or jumps backward to a label after the variable has
been initialized. This only warns about variables that are initialized when they
are declared. This warning is only supported for C and Objective-C; in C++
this sort of branch is an error in any case.

‘~Wjump-misses-init’ is included in ‘-Wc++-compat’. It can be disabled with
the ‘-Wno-jump-misses-init’ option.

-Wsign-compare
Warn when a comparison between signed and unsigned values could produce an
incorrect result when the signed value is converted to unsigned. This warning
is also enabled by ‘-Wextra’; to get the other warnings of ‘~Wextra’ without
this warning, use ‘-Wextra -Wno-sign-compare’.

-Wsign-conversion
Warn for implicit conversions that may change the sign of an integer value, like
assigning a signed integer expression to an unsigned integer variable. An explicit
cast silences the warning. In C, this option is enabled also by ‘-Wconversion’.

-Wfloat-conversion
Warn for implicit conversions that reduce the precision of a real value. This
includes conversions from real to integer, and from higher precision real to lower
precision real values. This option is also enabled by ‘-Wconversion’.

-Wsizeof-pointer—-memaccess
Warn for suspicious length parameters to certain string and memory built-in
functions if the argument uses sizeof. This warning warns e.g. about memset
(ptr, 0, sizeof (ptr)); if ptr is not an array, but a pointer, and suggests a
possible fix, or about memcpy (&foo, ptr, sizeof (&foo));. This warning is
enabled by ‘-Wall’.

-Waddress

Warn about suspicious uses of memory addresses. These include using the
address of a function in a conditional expression, such as void func(void) ;
if (func), and comparisons against the memory address of a string literal,
such as if (x == "abc"). Such uses typically indicate a programmer error: the
address of a function always evaluates to true, so their use in a conditional
usually indicate that the programmer forgot the parentheses in a function call;
and comparisons against string literals result in unspecified behavior and are
not portable in C, so they usually indicate that the programmer intended to
use strcmp. This warning is enabled by ‘-Wall’.

-Wlogical-op
Warn about suspicious uses of logical operators in expressions. This includes
using logical operators in contexts where a bit-wise operator is likely to be
expected.

-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In
languages where you can return an array, this also elicits a warning.)

Chapter 3: GCC Command Options 73

-Wno-aggressive-loop-optimizations
Warn if in a loop with constant number of iterations the compiler detects un-
defined behavior in some statement during one or more of the iterations.

-Wno-attributes
Do not warn if an unexpected __attribute__ is used, such as unrecognized
attributes, function attributes applied to variables, etc. This does not stop
errors for incorrect use of supported attributes.

-Wno-builtin-macro-redefined
Do not warn if certain built-in macros are redefined. This suppresses warn-
ings for redefinition of __TIMESTAMP TIME DATE FILE and
__BASE_FILE__.

——y —— - - —_) - -

-Wstrict-prototypes (C and Objective-C only)
Warn if a function is declared or defined without specifying the argument types.
(An old-style function definition is permitted without a warning if preceded by
a declaration that specifies the argument types.)

-Wold-style-declaration (C and Objective-C only)
Warn for obsolescent usages, according to the C Standard, in a declaration. For
example, warn if storage-class specifiers like static are not the first things in
a declaration. This warning is also enabled by ‘-Wextra’.

-Wold-style-definition (C and Objective-C only)
Warn if an old-style function definition is used. A warning is given even if there
is a previous prototype.

-Wmissing-parameter-type (C and Objective-C only)
A function parameter is declared without a type specifier in K&R-style func-
tions:

void foo(bar) { }

This warning is also enabled by ‘-Wextra’.

-Wmissing-prototypes (C and Objective-C only)

Warn if a global function is defined without a previous prototype declaration.
This warning is issued even if the definition itself provides a prototype. Use
this option to detect global functions that do not have a matching proto-
type declaration in a header file. This option is not valid for C++ because
all function declarations provide prototypes and a non-matching declaration
will declare an overload rather than conflict with an earlier declaration. Use
‘-Wmissing-declarations’ to detect missing declarations in C++.

-Wmissing-declarations
Warn if a global function is defined without a previous declaration. Do so even if
the definition itself provides a prototype. Use this option to detect global func-
tions that are not declared in header files. In C, no warnings are issued for func-
tions with previous non-prototype declarations; use ‘-Wmissing-prototype’ to
detect missing prototypes. In C++, no warnings are issued for function tem-
plates, or for inline functions, or for functions in anonymous namespaces.

74 Using the GNU Compiler Collection (GCC)

-Wmissing-field-initializers

Warn if a structure’s initializer has some fields missing. For example, the fol-
lowing code causes such a warning, because x.h is implicitly zero:

struct s { int £, g, h; };

struct s x = { 3, 4 };
This option does not warn about designated initializers, so the following mod-
ification does not trigger a warning:

struct s { int £, g, h; };

struct s x = { .£f =3, .g=41};
This warning is included in ‘~Wextra’. To get other ‘-Wextra’ warnings without
this one, use ‘-Wextra -Wno-missing-field-initializers’.

-Wno-multichar
Do not warn if a multicharacter constant (‘’FO0F’’) is used. Usually they
indicate a typo in the user’s code, as they have implementation-defined values,
and should not be used in portable code.

-Wnormalized=<none|id|nfc|nfkc>

In ISO C and ISO C++, two identifiers are different if they are different sequences
of characters. However, sometimes when characters outside the basic ASCII
character set are used, you can have two different character sequences that
look the same. To avoid confusion, the ISO 10646 standard sets out some
normalization rules which when applied ensure that two sequences that look the
same are turned into the same sequence. GCC can warn you if you are using
identifiers that have not been normalized; this option controls that warning.

There are four levels of warning supported by GCC. The default is
‘~Wnormalized=nfc’, which warns about any identifier that is not in the ISO

10646 “C” normalized form, NFC. NFC is the recommended form for most
uses.

Unfortunately, there are some characters allowed in identifiers by ISO C and
ISO C++ that, when turned into NFC, are not allowed in identifiers. That is,
there’s no way to use these symbols in portable ISO C or C++ and have all
your identifiers in NFC. ‘-Wnormalized=id’ suppresses the warning for these
characters. It is hoped that future versions of the standards involved will correct
this, which is why this option is not the default.

You can switch the warning off for all characters by writing
‘~Wnormalized=none’. You should only do this if you are using some
other normalization scheme (like “D”), because otherwise you can easily create
bugs that are literally impossible to see.

Some characters in ISO 10646 have distinct meanings but look identical in some
fonts or display methodologies, especially once formatting has been applied. For
instance \u207F, “SUPERSCRIPT LATIN SMALL LETTER N”, displays just
like a regular n that has been placed in a superscript. ISO 10646 defines the
NFKC normalization scheme to convert all these into a standard form as well,
and GCC warns if your code is not in NFKC if you use ‘-Wnormalized=nfkc’.
This warning is comparable to warning about every identifier that contains the
letter O because it might be confused with the digit 0, and so is not the default,

Chapter 3: GCC Command Options 75

but may be useful as a local coding convention if the programming environment
cannot be fixed to display these characters distinctly.

-Wno-deprecated
Do not warn about usage of deprecated features. See Section 7.12 [Deprecated
Features], page 712.

-Wno-deprecated-declarations
Do not warn about uses of functions (see Section 6.30 [Function Attributes],
page 372), variables (see Section 6.36 [Variable Attributes|, page 409), and types
(see Section 6.37 [Type Attributes|, page 418) marked as deprecated by using
the deprecated attribute.

-Wno-overflow
Do not warn about compile-time overflow in constant expressions.

-Wopenmp-simd
Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus simd
directive set by user. The ‘-fsimd-cost-model=unlimited’ can be used to
relax the cost model.

-Woverride-init (C and Objective-C only)
Warn if an initialized field without side effects is overridden when using desig-
nated initializers (see Section 6.26 [Designated Initializers|, page 370).

This warning is included in ‘-Wextra’. To get other ‘~Wextra’ warnings without
this one, use ‘-Wextra -Wno-override-init’.

-Wpacked Warn if a structure is given the packed attribute, but the packed attribute has no
effect on the layout or size of the structure. Such structures may be mis-aligned
for little benefit. For instance, in this code, the variable f.x in struct bar is
misaligned even though struct bar does not itself have the packed attribute:

struct foo {
int x;
char a, b, c, d;
} __attribute__((packed));
struct bar {
char z;
struct foo f;
};
-Wpacked-bitfield-compat
The 4.1, 4.2 and 4.3 series of GCC ignore the packed attribute on bit-fields
of type char. This has been fixed in GCC 4.4 but the change can lead to
differences in the structure layout. GCC informs you when the offset of such a
field has changed in GCC 4.4. For example there is no longer a 4-bit padding
between field a and b in this structure:

struct foo

{

char a:4;
char b:8;
} __attribute__ ((packed));
This warning is enabled by default. Use ‘-Wno-packed-bitfield-compat’ to
disable this warning.

76

-Wpadded

Using the GNU Compiler Collection (GCC)

Warn if padding is included in a structure, either to align an element of the
structure or to align the whole structure. Sometimes when this happens it is
possible to rearrange the fields of the structure to reduce the padding and so
make the structure smaller.

-Wredundant-decls

Warn if anything is declared more than once in the same scope, even in cases
where multiple declaration is valid and changes nothing.

-Wnested-externs (C and Objective-C only)

Warn if an extern declaration is encountered within a function.

-Wno-inherited-variadic-ctor

-Winline

Suppress warnings about use of C++11 inheriting constructors when the base
class inherited from has a C variadic constructor; the warning is on by default
because the ellipsis is not inherited.

Warn if a function that is declared as inline cannot be inlined. Even with this
option, the compiler does not warn about failures to inline functions declared
in system headers.

The compiler uses a variety of heuristics to determine whether or not to inline a
function. For example, the compiler takes into account the size of the function
being inlined and the amount of inlining that has already been done in the cur-
rent function. Therefore, seemingly insignificant changes in the source program
can cause the warnings produced by ‘~Winline’ to appear or disappear.

-Wno-invalid-offsetof (C++ and Objective-C++ only)

Suppress warnings from applying the ‘offsetof’ macro to a non-POD type.
According to the 1998 ISO C++ standard, applying ‘offsetof’ to a non-POD
type is undefined. In existing C++ implementations, however, ‘offsetof’ typi-
cally gives meaningful results even when applied to certain kinds of non-POD
types (such as a simple ‘struct’ that fails to be a POD type only by virtue of
having a constructor). This flag is for users who are aware that they are writ-
ing nonportable code and who have deliberately chosen to ignore the warning
about it.

The restrictions on ‘offsetof’ may be relaxed in a future version of the C++
standard.

-Wno-int-to-pointer-cast

Suppress warnings from casts to pointer type of an integer of a different
size. In C++, casting to a pointer type of smaller size is an error.
‘Wint-to-pointer-cast’ is enabled by default.

-Wno-pointer-to-int-cast (C and Objective-C only)

Suppress warnings from casts from a pointer to an integer type of a different
size.

-Winvalid-pch

Warn if a precompiled header (see Section 3.20 [Precompiled Headers],
page 336) is found in the search path but can’t be used.

Chapter 3: GCC Command Options 77

-Wlong-long
Warn if ‘long long’ type is used. This is enabled by either ‘-Wpedantic’ or
‘-Wtraditional’ in ISO C90 and C++98 modes. To inhibit the warning mes-
sages, use ‘~Wno-long-long’.

-Wvariadic-macros
Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU
alternate syntax when in pedantic ISO C99 mode. This is default. To inhibit
the warning messages, use ‘~Wno-variadic-macros’.

-Wvarargs
Warn upon questionable usage of the macros used to handle variable argu-
ments like ‘va_start’. This is default. To inhibit the warning messages, use
‘-Wno-varargs’.

-Wvector-operation-performance
Warn if vector operation is not implemented via SIMD capabilities of the ar-
chitecture. Mainly useful for the performance tuning. Vector operation can be
implemented piecewise, which means that the scalar operation is performed
on every vector element; in parallel, which means that the vector operation
is implemented using scalars of wider type, which normally is more performance
efficient; and as a single scalar, which means that vector fits into a scalar

type.

-Wno-virtual-move-assign
Suppress warnings about inheriting from a virtual base with a non-trivial C++11
move assignment operator. This is dangerous because if the virtual base is
reachable along more than one path, it will be moved multiple times, which can
mean both objects end up in the moved-from state. If the move assignment
operator is written to avoid moving from a moved-from object, this warning
can be disabled.

-Wvla Warn if variable length array is used in the code. ‘-Wno-vla’ prevents the
‘~Wpedantic’ warning of the variable length array.

-Wvolatile-register-var
Warn if a register variable is declared volatile. The volatile modifier does not
inhibit all optimizations that may eliminate reads and/or writes to register
variables. This warning is enabled by ‘-Wall’.

-Wdisabled-optimization
Warn if a requested optimization pass is disabled. This warning does not gen-
erally indicate that there is anything wrong with your code; it merely indicates
that GCC’s optimizers are unable to handle the code effectively. Often, the
problem is that your code is too big or too complex; GCC refuses to optimize
programs when the optimization itself is likely to take inordinate amounts of
time.

-Wpointer-sign (C and Objective-C only)
Warn for pointer argument passing or assignment with different signedness.
This option is only supported for C and Objective-C. It is implied by ‘-Wall’
and by ‘-Wpedantic’, which can be disabled with ‘~-Wno-pointer-sign’.

78

Using the GNU Compiler Collection (GCC)

-Wstack-protector

This option is only active when ‘~fstack-protector’ is active. It warns about
functions that are not protected against stack smashing.

-Woverlength-strings

Warn about string constants that are longer than the “minimum maximum”
length specified in the C standard. Modern compilers generally allow string
constants that are much longer than the standard’s minimum limit, but very
portable programs should avoid using longer strings.

The limit applies after string constant concatenation, and does not count the
trailing NUL. In C90, the limit was 509 characters; in C99, it was raised to
4095. C++98 does not specify a normative minimum maximum, so we do not
diagnose overlength strings in C++.

This option is implied by ‘-Wpedantic’, and can be disabled with
‘-Wno-overlength-strings’.

-Wunsuffixed-float-constants (C and Objective-C only)

Issue a warning for any floating constant that does not have a suffix. When
used together with ‘-Wsystem-headers’ it warns about such constants in system
header files. This can be useful when preparing code to use with the FLOAT_
CONST_DECIMAL64 pragma from the decimal floating-point extension to C99.

3.9 Options for Debugging Your Program or GCC

GCC has various special options that are used for debugging either your program or GCC:

)

Produce debugging information in the operating system’s native format (stabs,
COFF, XCOFF, or DWARF 2). GDB can work with this debugging informa-

tion.

On most systems that use stabs format, ‘~g’ enables use of extra debugging
information that only GDB can use; this extra information makes debugging
work better in GDB but probably makes other debuggers crash or refuse to read
the program. If you want to control for certain whether to generate the extra
information, use ‘-gstabs+’, ‘-gstabs’, ‘-gxcoff+’, ‘~gxcoff’, or ‘~gvms’ (see
below).

GCC allows you to use ‘-g’ with ‘-=0’. The shortcuts taken by optimized code
may occasionally produce surprising results: some variables you declared may
not exist at all; flow of control may briefly move where you did not expect it;
some statements may not be executed because they compute constant results
or their values are already at hand; some statements may execute in different
places because they have been moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it rea-
sonable to use the optimizer for programs that might have bugs.

The following options are useful when GCC is generated with the capability for
more than one debugging format.

-gsplit-dwarf

Separate as much dwarf debugging information as possible into a separate out-
put file with the extension .dwo. This option allows the build system to avoid

Chapter 3: GCC Command Options 79

-ggdb

—-gpubnames

linking files with debug information. To be useful, this option requires a de-
bugger capable of reading .dwo files.

Produce debugging information for use by GDB. This means to use the most
expressive format available (DWARF 2, stabs, or the native format if neither
of those are supported), including GDB extensions if at all possible.

Generate dwarf .debug_pubnames and .debug_pubtypes sections.

-ggnu-pubnames

-gstabs

Generate .debug_pubnames and .debug_pubtypes sections in a format suitable
for conversion into a GDB index. This option is only useful with a linker that
can produce GDB index version 7.

Produce debugging information in stabs format (if that is supported), without
GDB extensions. This is the format used by DBX on most BSD systems.
On MIPS, Alpha and System V Release 4 systems this option produces stabs
debugging output that is not understood by DBX or SDB. On System V Release
4 systems this option requires the GNU assembler.

-feliminate-unused-debug-symbols

Produce debugging information in stabs format (if that is supported), for only
symbols that are actually used.

-femit-class-debug-always

Instead of emitting debugging information for a C++ class in only one object file,
emit it in all object files using the class. This option should be used only with
debuggers that are unable to handle the way GCC normally emits debugging
information for classes because using this option increases the size of debugging
information by as much as a factor of two.

-fdebug-types-section

-gstabs+

—-gcoff

-gxcoff

-gxcoff+

When using DWARF Version 4 or higher, type DIEs can be put into their own
.debug_types section instead of making them part of the .debug_info section.
It is more efficient to put them in a separate comdat sections since the linker
can then remove duplicates. But not all DWARF consumers support .debug_
types sections yet and on some objects .debug_types produces larger instead
of smaller debugging information.

Produce debugging information in stabs format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program.

Produce debugging information in COFF format (if that is supported). This is
the format used by SDB on most System V systems prior to System V Release
4.

Produce debugging information in XCOFF format (if that is supported). This
is the format used by the DBX debugger on IBM RS/6000 systems.

Produce debugging information in XCOFF format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of

80 Using the GNU Compiler Collection (GCC)

these extensions is likely to make other debuggers crash or refuse to read the
program, and may cause assemblers other than the GNU assembler (GAS) to
fail with an error.

-gdwarf-version
Produce debugging information in DWARF format (if that is supported). The
value of version may be either 2, 3 or 4; the default version for most targets is
4.

Note that with DWARF Version 2, some ports require and always use some
non-conflicting DWARF 3 extensions in the unwind tables.

Version 4 may require GDB 7.0 and ‘-fvar-tracking-assignments’ for max-
imum benefit.

-grecord-gcc-switches
This switch causes the command-line options used to invoke the compiler that
may affect code generation to be appended to the DW_AT _producer attribute
in DWARF debugging information. The options are concatenated with spa-
ces separating them from each other and from the compiler version. See also
‘~frecord-gcc-switches’ for another way of storing compiler options into the
object file. This is the default.

-gno-record-gcc-switches
Disallow appending command-line options to the DW_AT_producer attribute
in DWARF debugging information.

-gstrict-dwarf
Disallow using extensions of later DWARF standard version than selected with
‘~gdwarf-version’. On most targets using non-conflicting DWARF extensions
from later standard versions is allowed.

-gno-strict-dwarf
Allow using extensions of later DWARF standard version than selected with
‘~gdwarf-version’.

-gvms Produce debugging information in Alpha/VMS debug format (if that is sup-
ported). This is the format used by DEBUG on Alpha/VMS systems.

-glevel

-ggdblevel

-gstabslevel

-gcofflevel

-gxcofflevel

-gvmslevel
Request debugging information and also use level to specify how much infor-
mation. The default level is 2.

Level 0 produces no debug information at all. Thus, ‘-g0’ negates ‘-g’.

Level 1 produces minimal information, enough for making backtraces in parts
of the program that you don’t plan to debug. This includes descriptions of
functions and external variables, and line number tables, but no information
about local variables.

Chapter 3: GCC Command Options 81

-gtoggle

Level 3 includes extra information, such as all the macro definitions present in
the program. Some debuggers support macro expansion when you use ‘-g3’.

‘~-gdwarf-2’ does not accept a concatenated debug level, because GCC used
to support an option ‘-gdwarf’ that meant to generate debug information in
version 1 of the DWARF format (which is very different from version 2), and
it would have been too confusing. That debug format is long obsolete, but the
option cannot be changed now. Instead use an additional ‘-~glevel’ option to
change the debug level for DWARF.

Turn off generation of debug info, if leaving out this option generates it, or turn
it on at level 2 otherwise. The position of this argument in the command line
does not matter; it takes effect after all other options are processed, and it does
so only once, no matter how many times it is given. This is mainly intended to
be used with ‘~fcompare-debug’.

-fsanitize=address

Enable AddressSanitizer, a fast memory error detector. Memory access instruc-
tions will be instrumented to detect out-of-bounds and use-after-free bugs. See
http://code.google.com/p/address-sanitizer/ for more details. The
run-time behavior can be influenced using the ASAN_OPTIONS environment vari-
able; see https://code.google.com/p/address-sanitizer/wiki/Flags#
Run-time_flags for a list of supported options.

—-fsanitize=thread

Enable ThreadSanitizer, a fast data race detector. Memory access instructions
will be instrumented to detect data race bugs. See http://code.google.
com/p/thread-sanitizer/ for more details. The run-time behavior can be
influenced using the TSAN_OPTIONS environment variable; see https://code.
google.com/p/thread-sanitizer/wiki/Flags for a list of supported options.

—-fsanitize=leak

Enable LeakSanitizer, a memory leak detector. This option only matters
for linking of executables and if neither ‘-fsanitize=address’ nor
‘~fsanitize=thread’ is used. In that case it will link the executable against
a library that overrides malloc and other allocator functions. See https://
code . google . com/p/address-sanitizer /wiki /LeakSanitizer for more
details. The run-time behavior can be influenced using the LSAN_OPTIONS
environment variable.

—-fsanitize=undefined

Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector. Vari-
ous computations will be instrumented to detect undefined behavior at runtime.
Current suboptions are:

-fsanitize=shift
This option enables checking that the result of a shift operation
is not undefined. Note that what exactly is considered undefined
differs slightly between C and C++, as well as between ISO C90 and
C99, etc.

http://code.google.com/p/address-sanitizer/
https://code.google.com/p/address-sanitizer/wiki/Flags#Run-time_flags
https://code.google.com/p/address-sanitizer/wiki/Flags#Run-time_flags
http://code.google.com/p/thread-sanitizer/
http://code.google.com/p/thread-sanitizer/
https://code.google.com/p/thread-sanitizer/wiki/Flags
https://code.google.com/p/thread-sanitizer/wiki/Flags
https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer
https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer

82

Using the GNU Compiler Collection (GCC)

-fsanitize=integer-divide-by-zero
Detect integer division by zero as well as INT_MIN / -1 division.

-fsanitize=unreachable
With this option, the compiler will turn the __builtin_
unreachable call into a diagnostics message call instead. When
reaching the __builtin_unreachable call, the behavior is
undefined.

-fsanitize=vla-bound
This option instructs the compiler to check that the size of a vari-
able length array is positive. This option does not have any effect
in ‘-std=c++1y’ mode, as the standard requires the exception be
thrown instead.

-fsanitize=null
This option enables pointer checking. Particularly, the application
built with this option turned on will issue an error message when
it tries to dereference a NULL pointer, or if a reference (possibly
an rvalue reference) is bound to a NULL pointer.

-fsanitize=return
This option enables return statement checking. Programs built
with this option turned on will issue an error message when the
end of a non-void function is reached without actually returning a
value. This option works in C++ only.

-fsanitize=signed-integer-overflow
This option enables signed integer overflow checking. We check that
the result of +, *, and both unary and binary - does not overflow
in the signed arithmetics. Note, integer promotion rules must be
taken into account. That is, the following is not an overflow:
signed char a = SCHAR_MAX;
at+;
While ‘-ftrapv’ causes traps for signed overflows to be emitted,
‘~fsanitize=undefined’ gives a diagnostic message. This currently works
only for the C family of languages.

-fdump-final-insns[=file]

Dump the final internal representation (RTL) to file. If the optional argument
is omitted (or if file is .), the name of the dump file is determined by appending
.gkd to the compilation output file name.

-fcompare-debug[=opts]

If no error occurs during compilation, run the compiler a second time, adding
opts and ‘-fcompare-debug-second’ to the arguments passed to the second
compilation. Dump the final internal representation in both compilations, and
print an error if they differ.

If the equal sign is omitted, the default ‘-gtoggle’ is used.

The environment variable GCC_COMPARE_DEBUG, if defined, non-empty and
nonzero, implicitly enables ‘-fcompare-debug’. If GCC_COMPARE_DEBUG is

Chapter 3: GCC Command Options 83

defined to a string starting with a dash, then it is used for opts, otherwise the
default ‘-gtoggle’ is used.

‘~fcompare-debug=', with the equal sign but without opts, is equivalent to
‘~fno-compare-debug’, which disables the dumping of the final representation
and the second compilation, preventing even GCC_COMPARE_DEBUG from taking
effect.

To verify full coverage during ‘-fcompare-debug’ testing, set GCC_COMPARE_
DEBUG to say ‘-fcompare-debug-not-overridden’, which GCC rejects as
an invalid option in any actual compilation (rather than preprocessing,
assembly or linking). To get just a warning, setting GCC_COMPARE_DEBUG to
‘-w)n-fcompare-debug not overridden’ will do.

-fcompare-debug-second
This option is implicitly passed to the compiler for the second compilation
requested by ‘-fcompare-debug’, along with options to silence warnings, and
omitting other options that would cause side-effect compiler outputs to files or
to the standard output. Dump files and preserved temporary files are renamed
so as to contain the .gk additional extension during the second compilation, to
avoid overwriting those generated by the first.

When this option is passed to the compiler driver, it causes the first compilation
to be skipped, which makes it useful for little other than debugging the compiler
proper.

-feliminate-dwarf2-dups
Compress DWARF 2 debugging information by eliminating duplicated infor-
mation about each symbol. This option only makes sense when generating
DWARF 2 debugging information with ‘-gdwarf-2’.

-femit-struct-debug-baseonly
Emit debug information for struct-like types only when the base name of the
compilation source file matches the base name of file in which the struct is
defined.

This option substantially reduces the size of debugging information,
but at significant potential loss in type information to the debugger.
See ‘-femit-struct-debug-reduced’ for a less aggressive option. See
‘~femit-struct-debug-detailed’ for more detailed control.

This option works only with DWARF 2.

-femit-struct-debug-reduced
Emit debug information for struct-like types only when the base name of the
compilation source file matches the base name of file in which the type is defined,
unless the struct is a template or defined in a system header.

This option significantly reduces the size of debugging information,
with some potential loss in type information to the debugger. See
‘~femit-struct-debug-baseonly’ for a more aggressive option. See
‘~femit-struct-debug-detailed’ for more detailed control.

This option works only with DWARF 2.

84

Using the GNU Compiler Collection (GCC)

-femit-struct-debug-detailed[=spec-1ist]

Specify the struct-like types for which the compiler generates debug informa-
tion. The intent is to reduce duplicate struct debug information between dif-
ferent object files within the same program.

This option is a detailed version of ‘-femit-struct-debug-reduced’ and
‘~femit-struct-debug-baseonly’, which serves for most needs.

A specification has the syntax
[‘dir:’|‘ind:’][‘ord:’|‘gen:’](‘any’|‘sys’|‘base’| ‘none’)

The optional first word limits the specification to structs that are used directly
(‘dir:’) or used indirectly (‘ind:’). A struct type is used directly when it is
the type of a variable, member. Indirect uses arise through pointers to structs.
That is, when use of an incomplete struct is valid, the use is indirect. An
example is ‘struct one direct; struct two * indirect;’ .

The optional second word limits the specification to ordinary structs (‘ord:’) or
generic structs (‘gen:’). Generic structs are a bit complicated to explain. For
C++, these are non-explicit specializations of template classes, or non-template
classes within the above. Other programming languages have generics, but
‘~femit-struct-debug-detailed’ does not yet implement them.

The third word specifies the source files for those structs for which the compiler
should emit debug information. The values ‘none’ and ‘any’ have the normal
meaning. The value ‘base’ means that the base of name of the file in which
the type declaration appears must match the base of the name of the main
compilation file. In practice, this means that when compiling ‘foo.c’, debug
information is generated for types declared in that file and ‘foo.h’, but not other
header files. The value ‘sys’ means those types satisfying ‘base’ or declared in
system or compiler headers.

You may need to experiment to determine the best settings for your application.
The default is ‘~femit-struct-debug-detailed=all’.
This option works only with DWARF 2.

-fno-merge-debug-strings

Direct the linker to not merge together strings in the debugging information
that are identical in different object files. Merging is not supported by all
assemblers or linkers. Merging decreases the size of the debug information in
the output file at the cost of increasing link processing time. Merging is enabled
by default.

-fdebug-prefix-map=old=new

When compiling files in directory ‘o1d’, record debugging information describing
them as in ‘new’ instead.

—-fno-dwarf2-cfi-asm

P

Emit DWARF 2 unwind info as compiler generated .eh_frame section instead
of using GAS .cfi_x* directives.

Generate extra code to write profile information suitable for the analysis pro-
gram prof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

Chapter 3: GCC Command Options 85

-pg Generate extra code to write profile information suitable for the analysis pro-
gram gprof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

-Q Makes the compiler print out each function name as it is compiled, and print
some statistics about each pass when it finishes.

-ftime-report
Makes the compiler print some statistics about the time consumed by each pass
when it finishes.

-fmem-report
Makes the compiler print some statistics about permanent memory allocation
when it finishes.

-fmem-report-wpa
Makes the compiler print some statistics about permanent memory allocation
for the WPA phase only.

-fpre-ipa-mem-report

-fpost-ipa-mem-report
Makes the compiler print some statistics about permanent memory allocation
before or after interprocedural optimization.

—-fprofile-report
Makes the compiler print some statistics about consistency of the (estimated)
profile and effect of individual passes.

-fstack-usage
Makes the compiler output stack usage information for the program, on a per-
function basis. The filename for the dump is made by appending ‘.su’ to the
auxname. auxname is generated from the name of the output file, if explicitly
specified and it is not an executable, otherwise it is the basename of the source
file. An entry is made up of three fields:

e The name of the function.
e A number of bytes.

e One or more qualifiers: static, dynamic, bounded.

The qualifier static means that the function manipulates the stack statically: a
fixed number of bytes are allocated for the frame on function entry and released
on function exit; no stack adjustments are otherwise made in the function. The
second field is this fixed number of bytes.

The qualifier dynamic means that the function manipulates the stack dynami-
cally: in addition to the static allocation described above, stack adjustments are
made in the body of the function, for example to push/pop arguments around
function calls. If the qualifier bounded is also present, the amount of these ad-
justments is bounded at compile time and the second field is an upper bound of
the total amount of stack used by the function. If it is not present, the amount
of these adjustments is not bounded at compile time and the second field only
represents the bounded part.

86

Using the GNU Compiler Collection (GCC)

—-fprofile-arcs

——coverage

Add code so that program flow arcs are instrumented. During execution the
program records how many times each branch and call is executed and how
many times it is taken or returns. When the compiled program exits it saves
this data to a file called ‘auxname.gcda’ for each source file. The data may be
used for profile-directed optimizations (‘~fbranch-probabilities’), or for test
coverage analysis (‘~ftest-coverage’). Each object file’s auxname is generated
from the name of the output file, if explicitly specified and it is not the final
executable, otherwise it is the basename of the source file. In both cases any
suffix is removed (e.g. ‘foo.gcda’ for input file ‘dir/foo.c’, or ‘dir/foo.gcda’
for output file specified as ‘-0 dir/foo.0’). See Section 10.5 [Cross-profiling],
page 743.

This option is used to compile and link code instrumented for coverage analysis.
The option is a synonym for ‘~fprofile-arcs’ ‘~ftest-coverage’ (when com-
piling) and ‘-1gcov’ (when linking). See the documentation for those options
for more details.

e Compile the source files with ‘-fprofile-arcs’ plus optimization and
code generation options. For test coverage analysis, use the additional
‘~ftest-coverage’ option. You do not need to profile every source file in
a program.

e Link your object files with ‘~1gcov’ or ‘~fprofile-arcs’ (the latter implies
the former).

e Run the program on a representative workload to generate the arc profile
information. This may be repeated any number of times. You can run
concurrent instances of your program, and provided that the file system
supports locking, the data files will be correctly updated. Also fork calls
are detected and correctly handled (double counting will not happen).

e For profile-directed optimizations, compile the source files again
with the same optimization and code generation options plus
‘~fbranch-probabilities’ (see Section 3.10 [Options that Control
Optimization], page 101).

e For test coverage analysis, use gcov to produce human readable information
from the ‘.gcno’ and ‘.gcda’ files. Refer to the gcov documentation for
further information.

With ‘-fprofile-arcs’, for each function of your program GCC creates a
program flow graph, then finds a spanning tree for the graph. Only arcs that
are not on the spanning tree have to be instrumented: the compiler adds code
to count the number of times that these arcs are executed. When an arc is
the only exit or only entrance to a block, the instrumentation code can be
added to the block; otherwise, a new basic block must be created to hold the
instrumentation code.

Chapter 3: GCC Command Options 87

-ftest-coverage
Produce a notes file that the gcov code-coverage utility (see Chapter 10 [gcov—
a Test Coverage Program|, page 735) can use to show program coverage. Each
source file’s note file is called ‘auxname.gcno’. Refer to the ‘-fprofile-arcs’
option above for a description of auxname and instructions on how to generate
test coverage data. Coverage data matches the source files more closely if you
do not optimize.

-fdbg-cnt-list
Print the name and the counter upper bound for all debug counters.

-fdbg-cnt=counter-value-list
Set the internal debug counter upper bound. counter-value-list is a comma-
separated list of name:value pairs which sets the upper bound of each debug
counter name to value. All debug counters have the initial upper bound of
UINT_MAX; thus dbg_cnt () returns true always unless the upper bound is set
by this option. For example, with ‘-fdbg-cnt=dce:10,tail_call:0’, dbg_
cnt (dce) returns true only for first 10 invocations.

-fenable-kind-pass

-fdisable-kind-pass=range-list
This is a set of options that are used to explicitly disable/enable optimization
passes. These options are intended for use for debugging GCC. Compiler users
should use regular options for enabling/disabling passes instead.

-fdisable-ipa-pass
Disable IPA pass pass. pass is the pass name. If the same pass
is statically invoked in the compiler multiple times, the pass name
should be appended with a sequential number starting from 1.

-fdisable-rtl-pass

-fdisable-rtl-pass=range-list
Disable RTL pass pass. pass is the pass name. If the same pass is
statically invoked in the compiler multiple times, the pass name
should be appended with a sequential number starting from 1.
range-list is a comma-separated list of function ranges or assem-
bler names. Each range is a number pair separated by a colon.
The range is inclusive in both ends. If the range is trivial, the
number pair can be simplified as a single number. If the function’s
call graph node’s uid falls within one of the specified ranges, the
pass is disabled for that function. The uid is shown in the function
header of a dump file, and the pass names can be dumped by using
option ‘-~fdump-passes’.

-fdisable-tree-pass

-fdisable-tree-pass=range-list
Disable tree pass pass. See ‘-fdisable-rtl’ for the description of
option arguments.

88

-dletters

Using the GNU Compiler Collection (GCC)

-fenable-ipa-pass
Enable IPA pass pass. pass is the pass name. If the same pass
is statically invoked in the compiler multiple times, the pass name
should be appended with a sequential number starting from 1.

-fenable-rtl-pass

-fenable-rtl-pass=range-list
Enable RTL pass pass. See
description and examples.

¢

-fdisable-rtl’ for option argument

-fenable-tree-pass

-fenable-tree-pass=range-list
Enable tree pass pass. See ‘-fdisable-rtl’ for the description of
option arguments.

Here are some examples showing uses of these options.

disable ccpl for all functiomns
-fdisable-tree-ccpl
disable complete unroll for function whose cgraph node uid is 1
-fenable-tree-cunroll=1
disable gcse2 for functions at the following ranges [1,1],
[300,400], and [400,1000]
disable gcse2 for functions foo and foo2
-fdisable-rtl-gcse2=foo,foo02
disable early inlining
-fdisable-tree-einline
disable ipa inlining
-fdisable-ipa-inline
enable tree full unroll
-fenable-tree-unroll

H*

-fdump-rtl-pass
-fdump-rtl-pass=filename

Says to make debugging dumps during compilation at times specified by letters.
This is used for debugging the RT'L-based passes of the compiler. The file names
for most of the dumps are made by appending a pass number and a word to
the dumpname, and the files are created in the directory of the output file. In
case of ‘=filename’ option, the dump is output on the given file instead of the
pass numbered dump files. Note that the pass number is computed statically as
passes get registered into the pass manager. Thus the numbering is not related
to the dynamic order of execution of passes. In particular, a pass installed by a
plugin could have a number over 200 even if it executed quite early. dumpname
is generated from the name of the output file, if explicitly specified and it is not
an executable, otherwise it is the basename of the source file. These switches
may have different effects when ‘-E’ is used for preprocessing.

Debug dumps can be enabled with a ‘~fdump-rtl’ switch or some ‘-d’ option
letters. Here are the possible letters for use in pass and letters, and their
meanings:

Chapter 3:

GCC Command Options 89

—fdump-rtl-alignments
Dump after branch alignments have been computed.

-fdump-rtl-asmcons
Dump after fixing rtl statements that have unsatisfied in/out con-
straints.

—-fdump-rtl-auto_inc_dec
Dump after auto-inc-dec discovery. This pass is only run on archi-
tectures that have auto inc or auto dec instructions.

—-fdump-rtl-barriers
Dump after cleaning up the barrier instructions.

-fdump-rtl-bbpart
Dump after partitioning hot and cold basic blocks.

—-fdump-rtl-bbro
Dump after block reordering.

-fdump-rtl-btl1l

-fdump-rtl-btl2
‘~fdump-rtl-btll’ and ‘-fdump-rtl-btl2’ enable dumping after
the two branch target load optimization passes.

—-fdump-rtl-bypass
Dump after jump bypassing and control flow optimizations.

-fdump-rtl-combine
Dump after the RTL instruction combination pass.

-fdump-rtl-compgotos
Dump after duplicating the computed gotos.

-fdump-rtl-cel

—fdump-rtl-ce2

-fdump-rtl-ce3
‘~fdump-rtl-cel’, ‘~fdump-rtl-ce2’, and ‘-fdump-rtl-ce3’ en-
able dumping after the three if conversion passes.

—-fdump-rtl-cprop_hardreg
Dump after hard register copy propagation.

-fdump-rtl-csa
Dump after combining stack adjustments.

—fdump-rtl-csel

—fdump-rtl-cse2
‘~fdump-rtl-csel’ and ‘~fdump-rtl-cse2’ enable dumping after
the two common subexpression elimination passes.

-fdump-rtl-dce
Dump after the standalone dead code elimination passes.

—fdump-rtl-dbr
Dump after delayed branch scheduling.

90 Using the GNU Compiler Collection (GCC)

—fdump-rtl-dcel

-fdump-rtl-dce2
‘~fdump-rtl-dcel’ and ‘~fdump-rtl-dce2’ enable dumping after
the two dead store elimination passes.

—fdump-rtl-eh
Dump after finalization of EH handling code.

—fdump-rtl-eh_ranges
Dump after conversion of EH handling range regions.

-fdump-rtl-expand
Dump after RTL generation.

-fdump-rtl-fwpropl

—fdump-rtl-fwprop2
‘~fdump-rtl-fwpropl’ and ‘-fdump-rtl-fwprop2’ enable dump-
ing after the two forward propagation passes.

—fdump-rtl-gcsel

—fdump-rtl-gcse?2
‘~fdump-rtl-gcsel’ and ‘~fdump-rtl-gcse2’ enable dumping af-
ter global common subexpression elimination.

-fdump-rtl-init-regs
Dump after the initialization of the registers.

—fdump-rtl-initvals
Dump after the computation of the initial value sets.

—fdump-rtl-into_cfglayout
Dump after converting to cfglayout mode.

-fdump-rtl-ira
Dump after iterated register allocation.

-fdump-rtl-jump
Dump after the second jump optimization.

-fdump-rtl-loop2
‘~fdump-rtl-loop2’ enables dumping after the rtl loop optimiza-
tion passes.

-fdump-rtl-mach
Dump after performing the machine dependent reorganization pass,
if that pass exists.

-fdump-rtl-mode_sw
Dump after removing redundant mode switches.

-fdump-rtl-rnreg
Dump after register renumbering.

—fdump-rtl-outof_cfglayout
Dump after converting from cfglayout mode.

Chapter 3:

GCC Command Options 91

—-fdump-rtl-peephole2
Dump after the peephole pass.

—fdump-rtl-postreload
Dump after post-reload optimizations.

—fdump-rtl-pro_and_epilogue
Dump after generating the function prologues and epilogues.

—-fdump-rtl-schedl

—-fdump-rtl-sched2
‘~fdump-rtl-schedl’ and ‘-fdump-rtl-sched2’ enable dumping
after the basic block scheduling passes.

—fdump-rtl-ree
Dump after sign/zero extension elimination.

—-fdump-rtl-seqabstr
Dump after common sequence discovery.

-fdump-rtl-shorten
Dump after shortening branches.

-fdump-rtl-sibling
Dump after sibling call optimizations.

-fdump-rtl-splitl

-fdump-rtl-split2

—fdump-rtl-split3

-fdump-rtl-splité

-fdump-rtl-splitb
‘~fdump-rtl-splitl’, ‘~-fdump-rtl-split2’, ‘~fdump-rtl-split3’|]
‘~fdump-rtl-split4’ and ‘-fdump-rtl-splitb’ enable dumping
after five rounds of instruction splitting.

-fdump-rtl-sms
Dump after modulo scheduling. This pass is only run on some
architectures.

—fdump-rtl-stack
Dump after conversion from GCC’s “flat register file” registers to
the x87’s stack-like registers. This pass is only run on x86 variants.

—-fdump-rtl-subregl

—fdump-rtl-subreg?2
‘~fdump-rtl-subregl’ and ‘-fdump-rtl-subreg2’ enable dump-
ing after the two subreg expansion passes.

—-fdump-rtl-unshare
Dump after all rtl has been unshared.

—fdump-rtl-vartrack
Dump after variable tracking.

92

Using the GNU Compiler Collection (GCC)

—fdump-rtl-vregs

Dump after converting virtual registers to hard registers.

-fdump-rtl-web

Dump after live range splitting.

-fdump-rtl-regclass
-fdump-rtl-subregs_of_mode_init
-fdump-rtl-subregs_of_mode_finish
-fdump-rtl-dfinit
—fdump-rtl-dfinish

-da

These dumps are defined but always produce empty files.

-fdump-rtl-all

-dA

-dD

-dH

-dP

-dx

-fdump-noaddr

Produce all the dumps listed above.

Annotate the assembler output with miscellaneous debugging in-
formation.

Dump all macro definitions, at the end of preprocessing, in addition
to normal output.

Produce a core dump whenever an error occurs.

Annotate the assembler output with a comment indicating which
pattern and alternative is used. The length of each instruction is
also printed.

Dump the RTL in the assembler output as a comment before each
instruction. Also turns on ‘-dp’ annotation.

Just generate RTL for a function instead of compiling it. Usually
used with ‘~fdump-rtl-expand’.

When doing debugging dumps, suppress address output. This makes it more
feasible to use diff on debugging dumps for compiler invocations with different
compiler binaries and/or different text / bss / data / heap / stack / dso start

locations.

—-fdump-unnumbered

When doing debugging dumps, suppress instruction numbers and address out-
put. This makes it more feasible to use diff on debugging dumps for compiler
invocations with different options, in particular with and without ‘-g’.

-fdump-unnumbered-1links
When doing debugging dumps (see ‘-d’ option above), suppress instruction
numbers for the links to the previous and next instructions in a sequence.

-fdump-translation-unit (C++ only)

-fdump-translation-unit-options (C++ only)
Dump a representation of the tree structure for the entire translation unit to
a file. The file name is made by appending ‘.tu’ to the source file name, and

Chapter 3: GCC Command Options 93

the file is created in the same directory as the output file. If the ‘~options’

form is used, options controls the details of the dump as described for the
‘~fdump-tree’ options.

-fdump-class-hierarchy (C++ only)

-fdump-class-hierarchy-options (C++ only)
Dump a representation of each class’s hierarchy and virtual function table layout
to a file. The file name is made by appending ‘.class’ to the source file name,
and the file is created in the same directory as the output file. If the ‘~options’
form is used, options controls the details of the dump as described for the
‘~fdump-tree’ options.

—-fdump-ipa-switch
Control the dumping at various stages of inter-procedural analysis language tree
to a file. The file name is generated by appending a switch specific suffix to the
source file name, and the file is created in the same directory as the output file.
The following dumps are possible:

‘all’ Enables all inter-procedural analysis dumps.

‘cgraph’ Dumps information about call-graph optimization, unused function
removal, and inlining decisions.

‘inline’ Dump after function inlining.

-fdump-passes
Dump the list of optimization passes that are turned on and off by the current
command-line options.

—-fdump-statistics-option
Enable and control dumping of pass statistics in a separate file. The file name
is generated by appending a suffix ending in ‘.statistics’ to the source file
name, and the file is created in the same directory as the output file. If the
‘~option’ form is used, ‘-stats’ causes counters to be summed over the whole
compilation unit while ‘~details’ dumps every event as the passes generate
them. The default with no option is to sum counters for each function compiled.

-fdump-tree-switch

—-fdump-tree-switch-options

-fdump-tree-switch-options=filename
Control the dumping at various stages of processing the intermediate language
tree to a file. The file name is generated by appending a switch-specific suffix to
the source file name, and the file is created in the same directory as the output
file. In case of ‘=filename’ option, the dump is output on the given file instead
of the auto named dump files. If the ‘~options’ form is used, options is a list
of ‘=’ separated options which control the details of the dump. Not all options
are applicable to all dumps; those that are not meaningful are ignored. The
following options are available

‘address’ Print the address of each node. Usually this is not meaningful as it
changes according to the environment and source file. Its primary
use is for tying up a dump file with a debug environment.

94

‘asmname’

‘slim’

raw

‘details’

‘stats’

‘blocks’

‘graph’

‘vops’
‘lineno’
‘uid’
‘verbose’
(eh7
‘scev’

‘optimized’

‘missed’

‘notes’

Using the GNU Compiler Collection (GCC)

If DECL_ASSEMBLER_NAME has been set for a given decl, use that
in the dump instead of DECL_NAME. Its primary use is ease of use
working backward from mangled names in the assembly file.

When dumping front-end intermediate representations, inhibit
dumping of members of a scope or body of a function merely
because that scope has been reached. Only dump such items when
they are directly reachable by some other path.

When dumping pretty-printed trees, this option inhibits dumping
the bodies of control structures.

When dumping RTL, print the RTL in slim (condensed) form in-
stead of the default LISP-like representation.

Print a raw representation of the tree. By default, trees are pretty-
printed into a C-like representation.

Enable more detailed dumps (not honored by every dump option).
Also include information from the optimization passes.

Enable dumping various statistics about the pass (not honored by
every dump option).

Enable showing basic block boundaries (disabled in raw dumps).

For each of the other indicated dump files (‘~fdump-rtl-pass’),
dump a representation of the control flow graph suitable for viewing
with GraphViz to ‘file.passid.pass.dot’. Each function in the
file is pretty-printed as a subgraph, so that GraphViz can render
them all in a single plot.

This option currently only works for RTL dumps, and the RTL is
always dumped in slim form.

Enable showing virtual operands for every statement.

Enable showing line numbers for statements.

Enable showing the unique ID (DECL_UID) for each variable.
Enable showing the tree dump for each statement.

Enable showing the EH region number holding each statement.

Enable showing scalar evolution analysis details.

Enable showing optimization information (only available in certain
passes).

Enable showing missed optimization information (only available in
certain passes).

Enable other detailed optimization information (only available in
certain passes).

Chapter 3: GCC Command Options

‘=filename’

‘all’
‘optall’

95

Instead of an auto named dump file, output into the given file name.
The file names ‘stdout’ and ‘stderr’ are treated specially and are
considered already open standard streams. For example,
gcc -02 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
-fdump-tree-pre=stderr file.c

outputs vectorizer dump into ‘foo.dump’, while the PRE dump is
output on to ‘stderr’. If two conflicting dump filenames are given
for the same pass, then the latter option overrides the earlier one.

Turn on all options, except ‘raw’, ‘slim’, ‘verbose’ and ‘lineno’.

Turn on all optimization options, i.e., ‘optimized’, ‘missed’, and
‘note’

The following tree dumps are possible:

‘original’

‘optimized’

‘gimple’

‘storeccp’

Cpre7

‘fre’

‘copyprop’

Dump before any tree based optimization, to ‘file.original’.

Dump after all tree based optimization, to ‘file.optimized’.

Dump each function before and after the gimplification pass to a
file. The file name is made by appending .gimple’ to the source
file name.

Dump the control flow graph of each function to a file. The file
name is made by appending ‘.cfg’ to the source file name.

Dump each function after copying loop headers. The file name is
made by appending ‘.ch’ to the source file name.

Dump SSA related information to a file. The file name is made by
appending ‘.ssa’ to the source file name.

Dump aliasing information for each function. The file name is made
by appending ‘.alias’ to the source file name.

Dump each function after CCP. The file name is made by append-
ing ‘.ccp’ to the source file name.

Dump each function after STORE-CCP. The file name is made by
appending ‘.storeccp’ to the source file name.

Dump trees after partial redundancy elimination. The file name is
made by appending ‘.pre’ to the source file name.

Dump trees after full redundancy elimination. The file name is
made by appending ‘.fre’ to the source file name.

Dump trees after copy propagation. The file name is made by
appending ‘. copyprop’ to the source file name.

96

-fopt-info
-fopt-info

Using the GNU Compiler Collection (GCC)

‘store_copyprop’

Dump trees after store copy-propagation. The file name is made
by appending ‘.store_copyprop’ to the source file name.

‘dce’ Dump each function after dead code elimination. The file name is
made by appending ‘.dce’ to the source file name.

‘sra’ Dump each function after performing scalar replacement of aggre-
gates. The file name is made by appending ‘.sra’ to the source file
name.

‘sink’ Dump each function after performing code sinking. The file name
is made by appending ‘.sink’ to the source file name.

‘dom’ Dump each function after applying dominator tree optimizations.
The file name is made by appending ‘.dom’ to the source file name.

‘dse’ Dump each function after applying dead store elimination. The file
name is made by appending ‘.dse’ to the source file name.

‘phiopt’ Dump each function after optimizing PHI nodes into straightline
code. The file name is made by appending ‘.phiopt’ to the source
file name.

‘forwprop’

Dump each function after forward propagating single use variables.
The file name is made by appending ‘. forwprop’ to the source file
name.

‘copyrename’

Dump each function after applying the copy rename optimization.
The file name is made by appending . copyrename’ to the source
file name.

‘nrv’ Dump each function after applying the named return value opti-
mization on generic trees. The file name is made by appending
‘.nrv’ to the source file name.

‘vect’ Dump each function after applying vectorization of loops. The file
name is made by appending ‘.vect’ to the source file name.

‘slp’ Dump each function after applying vectorization of basic blocks.
The file name is made by appending ‘.slp’ to the source file name.

‘vrp’ Dump each function after Value Range Propagation (VRP). The
file name is made by appending ‘.vrp’ to the source file name.

‘all’ Enable all the available tree dumps with the flags provided in this
option.

-options

—fopt-info-options=filename
Controls optimization dumps from various optimization passes. If the

‘~-options’

form is used, options is a list of ‘=’ separated options to select

Chapter 3: GCC Command Options 97

the dump details and optimizations. If options is not specified, it defaults to
‘optimized’ for details and ‘optall’ for optimization groups. If the filename
is not specified, it defaults to ‘stderr’. Note that the output filename will be
overwritten in case of multiple translation units. If a combined output from
multiple translation units is desired, ‘stderr’ should be used instead.

The options can be divided into two groups, 1) options describing the ver-
bosity of the dump, and 2) options describing which optimizations should be
included. The options from both the groups can be freely mixed as they are
non-overlapping. However, in case of any conflicts, the latter options override
the earlier options on the command line. Though multiple -fopt-info options
are accepted, only one of them can have ‘=filename’. If other filenames are
provided then all but the first one are ignored.

The dump verbosity has the following options

‘optimized’
Print information when an optimization is successfully applied. It
is up to a pass to decide which information is relevant. For example,
the vectorizer passes print the source location of loops which got
successfully vectorized.

‘missed’ Print information about missed optimizations. Individual passes
control which information to include in the output. For example,
gcc -02 -ftree-vectorize -fopt-info-vec-missed
will print information about missed optimization opportunities
from vectorization passes on stderr.

‘note’ Print verbose information about optimizations, such as certain
transformations, more detailed messages about decisions etc.

‘all’ Print detailed optimization information. This includes optimized,
missed, and note.

The second set of options describes a group of optimizations and may include
one or more of the following.

‘ipa’ Enable dumps from all interprocedural optimizations.
‘loop’ Enable dumps from all loop optimizations.

‘inline’ Enable dumps from all inlining optimizations.

‘vec’ Enable dumps from all vectorization optimizations.

‘optall’ Enable dumps from all optimizations. This is a superset of the
optimization groups listed above.

For example,
gcc -03 -fopt-info-missed=missed.all
outputs missed optimization report from all the passes into ‘missed.all’.

As another example,

gcc -03 -fopt-info-inline-optimized-missed=inline.txt

98

Using the GNU Compiler Collection (GCC)

will output information about missed optimizations as well as optimized loca-
tions from all the inlining passes into ‘inline.txt’.

If the filename is provided, then the dumps from all the applicable optimizations
are concatenated into the ‘filename’. Otherwise the dump is output onto
‘stderr’. If options is omitted, it defaults to ‘all-optall’, which means dump
all available optimization info from all the passes. In the following example, all
optimization info is output on to ‘stderr’.

gcc -03 -fopt-info

Note that ‘-fopt-info-vec-missed’ behaves the same as ‘~fopt-info-missed-vec’.|]

As another example, consider

gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
Here the two output filenames ‘vec.miss’ and ‘loop.opt’ are in conflict since
only one output file is allowed. In this case, only the first option takes effect
and the subsequent options are ignored. Thus only the ‘vec.miss’ is produced
which contains dumps from the vectorizer about missed opportunities.

-frandom-seed=string

This option provides a seed that GCC uses in place of random numbers in
generating certain symbol names that have to be different in every compiled
file. It is also used to place unique stamps in coverage data files and the object
files that produce them. You can use the ‘~frandom-seed’ option to produce
reproducibly identical object files.

The string should be different for every file you compile.

—-fsched-verbose=n

On targets that use instruction scheduling, this option controls the amount of
debugging output the scheduler prints. This information is written to stan-
dard error, unless ‘-fdump-rtl-schedl’ or ‘~fdump-rtl-sched?2’ is specified,
in which case it is output to the usual dump listing file, ‘. schedl’ or ‘.sched?2’
respectively. However for n greater than nine, the output is always printed to
standard error.

For n greater than zero, ‘-fsched-verbose’ outputs the same information as
‘~fdump-rtl-schedl’ and ‘-fdump-rtl-sched2’. For n greater than one, it also
output basic block probabilities, detailed ready list information and unit/insn
info. For n greater than two, it includes RTL at abort point, control-flow and
regions info. And for n over four, ‘-fsched-verbose’ also includes dependence
info.

-save-temps
-save-temps=cwd

Store the usual “temporary” intermediate files permanently; place them in the
current directory and name them based on the source file. Thus, compiling
‘foo.c’ with ‘~c ~save-temps’ produces files ‘foo.i’ and ‘foo.s’, as well as
‘foo.o’. This creates a preprocessed ‘foo.i’ output file even though the com-
piler now normally uses an integrated preprocessor.

When used in combination with the ‘-x’ command-line option, ‘-save-temps’
is sensible enough to avoid over writing an input source file with the same

Chapter 3: GCC Command Options 99

extension as an intermediate file. The corresponding intermediate file may be
obtained by renaming the source file before using ‘-save-temps’.

If you invoke GCC in parallel, compiling several different source files that share
a common base name in different subdirectories or the same source file compiled
for multiple output destinations, it is likely that the different parallel compilers
will interfere with each other, and overwrite the temporary files. For instance:
gcc -save-temps -o outdirl/foo.o indiril/foo.c&
gcc -save-temps -o outdir2/foo.o indir2/foo.c&
may result in ‘foo.i’ and ‘foo.o’ being written to simultaneously by both
compilers.

-save-temps=obj
Store the usual “temporary” intermediate files permanently. If the ‘-0’ option
is used, the temporary files are based on the object file. If the ‘-0’ option is
not used, the ‘-save-temps=obj’ switch behaves like ‘-save-temps’.

For example:

gcc -save-temps=obj -c foo.c

gcc —save-temps=obj -c bar.c -o dir/xbar.o

gcc -save-temps=obj foobar.c -o dir2/yfoobar
creates ‘foo.i’; ‘foo.s’, ‘dir/xbar.i’;, ‘dir/xbar.s’, ‘dir2/yfoobar.i’,
‘dir2/yfoobar.s’, and ‘dir2/yfoobar.o’.

-time[=file]

Report the CPU time taken by each subprocess in the compilation sequence.
For C source files, this is the compiler proper and assembler (plus the linker if
linking is done).
Without the specification of an output file, the output looks like this:

ccl 0.12 0.01

as 0.00 0.01
The first number on each line is the “user time”, that is time spent executing
the program itself. The second number is “system time”, time spent executing
operating system routines on behalf of the program. Both numbers are in
seconds.

With the specification of an output file, the output is appended to the named
file, and it looks like this:

0.12 0.01 ccl options

0.00 0.01 as optiomns
The “user time” and the “system time” are moved before the program name,
and the options passed to the program are displayed, so that one can later tell
what file was being compiled, and with which options.

-fvar-tracking
Run variable tracking pass. It computes where variables are stored at each posi-
tion in code. Better debugging information is then generated (if the debugging
information format supports this information).

It is enabled by default when compiling with optimization (‘-0s’, ‘-0’, ‘-02’,
...), debugging information (‘-g’) and the debug info format supports it.

100 Using the GNU Compiler Collection (GCC)

-fvar-tracking-assignments
Annotate assignments to user variables early in the compilation and attempt to
carry the annotations over throughout the compilation all the way to the end, in
an attempt to improve debug information while optimizing. Use of ‘-gdwarf-4’
is recommended along with it.

It can be enabled even if var-tracking is disabled, in which case annotations are
created and maintained, but discarded at the end.

-fvar-tracking-assignments-toggle
Toggle ‘~-fvar-tracking-assignments’, in the same way that ‘-~gtoggle’ tog-
gles ‘-g’.

-print-file-name=library
Print the full absolute name of the library file library that would be used when
linking—and don’t do anything else. With this option, GCC does not compile
or link anything; it just prints the file name.

-print-multi-directory
Print the directory name corresponding to the multilib selected by any other
switches present in the command line. This directory is supposed to exist in
GCC_EXEC_PREFIX.

-print-multi-1ib
Print the mapping from multilib directory names to compiler switches that
enable them. The directory name is separated from the switches by ‘;’, and
each switch starts with an ‘@’ instead of the ‘-’, without spaces between multiple
switches. This is supposed to ease shell processing.

-print-multi-os-directory
Print the path to OS libraries for the selected multilib, relative to some ‘1ib’
subdirectory. If OS libraries are present in the ‘1ib’ subdirectory and no mul-
tilibs are used, this is usually just ‘.’ if OS libraries are present in ‘libsuffix’
sibling directories this prints e.g. ‘../1ib64’, ‘../1ib’ or ‘../1ib32’; or if
OS libraries are present in ‘lib/subdir’ subdirectories it prints e.g. ‘amd64’,
‘sparcv9’ or ‘ev6’.

-print-multiarch
Print the path to OS libraries for the selected multiarch, relative to some ‘1ib’
subdirectory.

-print-prog-name=program
Like ‘-print-file-name’, but searches for a program such as ‘cpp’.

-print-libgcc-file-name
Same as ‘-print-file-name=libgcc.a’.
This is useful when you use ‘-nostdlib’ or ‘-nodefaultlibs’ but you do want
to link with ‘libgcc.a’. You can do:
gcc -nostdlib files... ‘gcc -print-libgcc-file-name
-print-search-dirs
Print the name of the configured installation directory and a list of program
and library directories gcc searches—and don’t do anything else.

Chapter 3: GCC Command Options 101

This is useful when gcc prints the error message ‘installation problem,
cannot exec cppO: No such file or directory’. To resolve this you either
need to put ‘cpp0’ and the other compiler components where gcc expects to
find them, or you can set the environment variable GCC_EXEC_PREFIX to the di-
rectory where you installed them. Don’t forget the trailing ‘/’. See Section 3.19
[Environment Variables], page 333.

-print-sysroot
Print the target sysroot directory that is used during compilation. This is the
target sysroot specified either at configure time or using the ‘~-sysroot’ option,
possibly with an extra suffix that depends on compilation options. If no target
sysroot is specified, the option prints nothing.

-print-sysroot-headers-suffix
Print the suffix added to the target sysroot when searching for headers, or
give an error if the compiler is not configured with such a suffix—and don’t do
anything else.

—dumpmachine
Print the compiler’s target machine (for example, ‘1686-pc-1linux-gnu’)—and
don’t do anything else.

—dumpversion
Print the compiler version (for example, ‘3.0’)—and don’t do anything else.

—dumpspecs
Print the compiler’s built-in specs—and don’t do anything else. (This is used
when GCC itself is being built.) See Section 3.15 [Spec Files|, page 172.

-fno-eliminate-unused-debug-types

Normally, when producing DWARF 2 output, GCC avoids producing debug
symbol output for types that are nowhere used in the source file being compiled.
Sometimes it is useful to have GCC emit debugging information for all types
declared in a compilation unit, regardless of whether or not they are actually
used in that compilation unit, for example if, in the debugger, you want to cast
a value to a type that is not actually used in your program (but is declared).
More often, however, this results in a significant amount of wasted space.

3.10 Options That Control Optimization

These options control various sorts of optimizations.

Without any optimization option, the compiler’s goal is to reduce the cost of compilation
and to make debugging produce the expected results. Statements are independent: if you
stop the program with a breakpoint between statements, you can then assign a new value
to any variable or change the program counter to any other statement in the function and
get exactly the results you expect from the source code.

Turning on optimization flags makes the compiler attempt to improve the performance
and/or code size at the expense of compilation time and possibly the ability to debug the
program.

102 Using the GNU Compiler Collection (GCC)

The compiler performs optimization based on the knowledge it has of the program. Com-
piling multiple files at once to a single output file mode allows the compiler to use informa-
tion gained from all of the files when compiling each of them.

Not all optimizations are controlled directly by a flag. Only optimizations that have a
flag are listed in this section.

Most optimizations are only enabled if an ‘-0’ level is set on the command line. Otherwise
they are disabled, even if individual optimization flags are specified.

Depending on the target and how GCC was configured, a slightly different set of opti-
mizations may be enabled at each ‘-0’ level than those listed here. You can invoke GCC
with ‘-Q —-—help=optimizers’ to find out the exact set of optimizations that are enabled
at each level. See Section 3.2 [Overall Options|, page 25, for examples.

-0
-01 Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.

With ‘-0’°, the compiler tries to reduce code size and execution time, without
performing any optimizations that take a great deal of compilation time.

‘-0’ turns on the following optimization flags:

-fauto-inc-dec
-fcompare-elim
-fcprop-registers
-fdce
-fdefer-pop
-fdelayed-branch
-fdse
-fguess-branch-probability
-fif-conversion2
-fif-conversion
-fipa-pure-const
-fipa-profile
-fipa-reference
-fmerge-constants -fsplit-wide-types
-ftree-bit-ccp
-ftree-builtin-call-dce
-ftree-ccp
-ftree-ch
-ftree-copyrename
-ftree-dce
-ftree-dominator-opts
-ftree-dse
-ftree-forwprop
-ftree-fre
-ftree-phiprop
-ftree-slsr
-ftree-sra
-ftree-pta
-ftree-ter
-funit-at-a-time

‘-0’ also turns on ‘~-fomit-frame-pointer’ on machines where doing so does
not interfere with debugging.

Chapter 3: GCC Command Options 103

-02

-03

-00

-0s

-0fast

Optimize even more. GCC performs nearly all supported optimizations that do
not involve a space-speed tradeoff. As compared to ‘-0’, this option increases
both compilation time and the performance of the generated code.

‘-02” turns on all optimization flags specified by ‘-0’. It also turns on the
following optimization flags:

-fthread-jumps

-falign-functions -falign-jumps
-falign-loops -falign-labels
-fcaller-saves

-fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks
-fdelete-null-pointer-checks
-fdevirtualize -fdevirtualize-speculatively
-fexpensive-optimizations

-fgcse -fgcse-1m
-fhoist-adjacent-loads
-finline-small-functions
-findirect-inlining

-fipa-sra
-fisolate-erroneous-paths-dereference
-foptimize-sibling-calls
-fpartial-inlining

-fpeephole2

-freorder-blocks -freorder-functions
-frerun-cse-after-loop
-fsched-interblock -fsched-spec
-fschedule-insns -fschedule-insns2
-fstrict-aliasing -fstrict-overflow
-ftree-switch-conversion -ftree-tail-merge
-ftree-pre

-ftree-vrp

Please note the warning under ‘-fgcse’ about invoking ‘-~02’ on programs that
use computed gotos.

Optimize yet more. ‘-03” turns on all optimizations spec-
ified by ‘-02° and also turns on the ‘-finline-functions’,
‘~funswitch-loops’, ‘-fpredictive-commoning’, ‘-fgcse-after-reload’,
‘~ftree-loop-vectorize’, ‘-ftree-slp-vectorize’, ‘-fvect-cost-model’,

‘~ftree-partial-pre’ and ‘-fipa-cp-clone’ options.

Reduce compilation time and make debugging produce the expected results.
This is the default.

Optimize for size. ‘-0s’ enables all ‘-02’ optimizations that do not typically
increase code size. It also performs further optimizations designed to reduce
code size.

‘-0s’ disables the following optimization flags:

-falign-functions -falign-jumps -falign-loops
-falign-labels -freorder-blocks -freorder-blocks-and-partition
-fprefetch-loop-arrays

Disregard strict standards compliance. ‘-0fast’ enables all ‘-03’
optimizations. It also enables optimizations that are not valid for all standard-

104 Using the GNU Compiler Collection (GCC)

compliant programs. It turns on ‘-ffast-math’ and the Fortran-specific
‘~fno-protect-parens’ and ‘-fstack-arrays’.

-Og Optimize debugging experience. ‘-0g’ enables optimizations that do not in-
terfere with debugging. It should be the optimization level of choice for the
standard edit-compile-debug cycle, offering a reasonable level of optimization
while maintaining fast compilation and a good debugging experience.

If you use multiple ‘-0’ options, with or without level numbers, the last such
option is the one that is effective.

Options of the form ‘-fflag’ specify machine-independent flags. Most flags have both
positive and negative forms; the negative form of ‘~ffoo’ is ‘~fno-foo’. In the table below,
only one of the forms is listed—the one you typically use. You can figure out the other form
by either removing ‘no-’ or adding it.

The following options control specific optimizations. They are either activated by ‘-0’
options or are related to ones that are. You can use the following flags in the rare cases
when “fine-tuning” of optimizations to be performed is desired.

-fno-defer-pop
Always pop the arguments to each function call as soon as that function re-
turns. For machines that must pop arguments after a function call, the compiler
normally lets arguments accumulate on the stack for several function calls and
pops them all at once.

Disabled at levels ‘-0°, ‘-02’, ‘-03’, ‘-0s’.

-fforward-propagate
Perform a forward propagation pass on RTL. The pass tries to combine two
instructions and checks if the result can be simplified. If loop unrolling is active,
two passes are performed and the second is scheduled after loop unrolling.

This option is enabled by default at optimization levels ‘-0’°, ‘-02’, ‘~-03’, ‘-0s’.

-ffp-contract=style
‘~ffp-contract=off’ disables floating-point expression contraction.
‘~ffp-contract=fast’ enables floating-point expression contraction such as
forming of fused multiply-add operations if the target has native support for
them. ‘-ffp-contract=on’ enables floating-point expression contraction if
allowed by the language standard. This is currently not implemented and
treated equal to ‘~ffp-contract=off’.

The default is ‘~ffp-contract=fast’.

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that don’t need one.
This avoids the instructions to save, set up and restore frame pointers; it also
makes an extra register available in many functions. It also makes debugging
impossible on some machines.

On some machines, such as the VAX, this flag has no effect, because the stan-
dard calling sequence automatically handles the frame pointer and nothing is
saved by pretending it doesn’t exist. The machine-description macro FRAME_
POINTER_REQUIRED controls whether a target machine supports this flag. See
Section “Register Usage” in GNU Compiler Collection (GCC) Internals.

Chapter 3: GCC Command Options 105

Starting with GCC version 4.6, the default setting (when not optimizing
for size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets
has been changed to ‘-fomit-frame-pointer’. The default can be
reverted to ‘-fno-omit-frame-pointer’ by configuring GCC with the
‘-—enable-frame-pointer’ configure option.

Enabled at levels ‘-0°, ‘~-02’, ‘-03’, ‘-0s’.

-foptimize-sibling-calls
Optimize sibling and tail recursive calls.
Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fno-inline
Do not expand any functions inline apart from those marked with the always_
inline attribute. This is the default when not optimizing.

Single functions can be exempted from inlining by marking them with the
noinline attribute.

-finline-small-functions
Integrate functions into their callers when their body is smaller than expected
function call code (so overall size of program gets smaller). The compiler heuris-
tically decides which functions are simple enough to be worth integrating in this
way. This inlining applies to all functions, even those not declared inline.

Enabled at level ‘-02’.

-findirect-inlining
Inline also indirect calls that are discovered to be known at compile time thanks
to previous inlining. This option has any effect only when inlining itself is turned
on by the ‘~finline-functions’ or ‘~finline-small-functions’ options.

Enabled at level ‘-02°.

-finline-functions
Consider all functions for inlining, even if they are not declared inline. The
compiler heuristically decides which functions are worth integrating in this way.

If all calls to a given function are integrated, and the function is declared
static, then the function is normally not output as assembler code in its own
right.

Enabled at level ‘-03’.

-finline-functions-called-once
Consider all static functions called once for inlining into their caller even if
they are not marked inline. If a call to a given function is integrated, then
the function is not output as assembler code in its own right.

Enabled at levels ‘~-01’, ‘~-02’, ‘-03’ and ‘-0s’.

-fearly-inlining
Inline functions marked by always_inline and functions whose body
seems smaller than the function call overhead early before doing
‘~fprofile-generate’ instrumentation and real inlining pass. Doing so makes
profiling significantly cheaper and usually inlining faster on programs having
large chains of nested wrapper functions.

106 Using the GNU Compiler Collection (GCC)

Enabled by default.

-fipa-sra
Perform interprocedural scalar replacement of aggregates, removal of unused
parameters and replacement of parameters passed by reference by parameters
passed by value.

Enabled at levels ‘-02’, ‘-03’ and ‘-0s’.
-finline-limit=n
By default, GCC limits the size of functions that can be inlined. This flag

allows coarse control of this limit. n is the size of functions that can be inlined
in number of pseudo instructions.

Inlining is actually controlled by a number of parameters, which may be spec-
ified individually by using ‘--param name=value’. The ‘~finline-limit=n’
option sets some of these parameters as follows:

max-inline-insns-single
is set to n/2.

max-inline-insns-auto
is set to n/2.

See below for a documentation of the individual parameters controlling inlining
and for the defaults of these parameters.

Note: there may be no value to ‘-finline-limit’ that results in default be-
havior.

Note: pseudo instruction represents, in this particular context, an abstract
measurement of function’s size. In no way does it represent a count of assembly
instructions and as such its exact meaning might change from one release to an
another.

-fno-keep-inline-dllexport
This is a more fine-grained version of ‘~fkeep-inline-functions’, which ap-
plies only to functions that are declared using the dllexport attribute or de-
clspec (See Section 6.30 [Declaring Attributes of Functions|, page 372.)

-fkeep-inline-functions
In C, emit static functions that are declared inline into the object file, even
if the function has been inlined into all of its callers. This switch does not affect
functions using the extern inline extension in GNU C90. In C++, emit any
and all inline functions into the object file.

-fkeep-static-consts
Emit variables declared static const when optimization isn’t turned on, even
if the variables aren’t referenced.

GCC enables this option by default. If you want to force the compiler to check
if a variable is referenced, regardless of whether or not optimization is turned
on, use the ‘~fno-keep-static-consts’ option.

-fmerge-constants
Attempt to merge identical constants (string constants and floating-point con-
stants) across compilation units.

Chapter 3: GCC Command Options 107

This option is the default for optimized compilation if the assembler and linker
support it. Use ‘-fno-merge-constants’ to inhibit this behavior.

Enabled at levels ‘-0°, ‘~-02°, ‘-03’, ‘-0s’.

-fmerge-all-constants
Attempt to merge identical constants and identical variables.

This option implies ‘~fmerge-constants’. In addition to ‘~fmerge-constants’
this considers e.g. even constant initialized arrays or initialized constant vari-
ables with integral or floating-point types. Languages like C or C++ require each
variable, including multiple instances of the same variable in recursive calls, to
have distinct locations, so using this option results in non-conforming behavior.

-fmodulo-sched
Perform swing modulo scheduling immediately before the first scheduling pass.
This pass looks at innermost loops and reorders their instructions by overlap-
ping different iterations.

-fmodulo-sched-allow-regmoves
Perform more aggressive SMS-based modulo scheduling with register moves
allowed. By setting this flag certain anti-dependences edges are deleted, which
triggers the generation of reg-moves based on the life-range analysis. This
option is effective only with ‘~fmodulo-sched’ enabled.

-fno-branch-count-reg
Do not use “decrement and branch” instructions on a count register, but instead
generate a sequence of instructions that decrement a register, compare it against
zero, then branch based upon the result. This option is only meaningful on
architectures that support such instructions, which include x86, PowerPC, TA-
64 and S/390.

The default is ‘~fbranch-count-reg’.

-fno-function-cse
Do not put function addresses in registers; make each instruction that calls a
constant function contain the function’s address explicitly.
This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option is not used.

The default is ‘-ffunction-cse’

-fno-zero-initialized-in-bss
If the target supports a BSS section, GCC by default puts variables that are
initialized to zero into BSS. This can save space in the resulting code.

This option turns off this behavior because some programs explicitly rely on
variables going to the data section—e.g., so that the resulting executable can
find the beginning of that section and/or make assumptions based on that.
The default is ‘-fzero-initialized-in-bss’.

-fthread-jumps
Perform optimizations that check to see if a jump branches to a location where
another comparison subsumed by the first is found. If so, the first branch is

108 Using the GNU Compiler Collection (GCC)

redirected to either the destination of the second branch or a point immediately
following it, depending on whether the condition is known to be true or false.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fsplit-wide-types
When using a type that occupies multiple registers, such as long long on a
32-bit system, split the registers apart and allocate them independently. This
normally generates better code for those types, but may make debugging more
difficult.

Enabled at levels ‘-0’, ‘-02’, ‘-03’, ‘-0s’.

-fcse-follow-jumps
In common subexpression elimination (CSE), scan through jump instructions
when the target of the jump is not reached by any other path. For example,
when CSE encounters an if statement with an else clause, CSE follows the
jump when the condition tested is false.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fcse-skip-blocks
This is similar to ‘-fcse-follow-jumps’, but causes CSE to follow jumps that
conditionally skip over blocks. When CSE encounters a simple if statement
with no else clause, ‘-fcse-skip-blocks’ causes CSE to follow the jump around
the body of the if.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

—-frerun-cse-after-loop
Re-run common subexpression elimination after loop optimizations are per-
formed.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fgcse Perform a global common subexpression elimination pass. This pass also per-
forms global constant and copy propagation.
Note: When compiling a program using computed gotos, a GCC extension,
you may get better run-time performance if you disable the global common
subexpression elimination pass by adding ‘~fno-gcse’ to the command line.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fgcse-1m
When ‘-fgcse-1m’ is enabled, global common subexpression elimination at-
tempts to move loads that are only killed by stores into themselves. This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.
Enabled by default when ‘-fgcse’ is enabled.

-fgcse-sm
When ‘~-fgcse-sm’ is enabled, a store motion pass is run after global common
subexpression elimination. This pass attempts to move stores out of loops.
When used in conjunction with ‘~fgcse-1m’, loops containing a load/store se-
quence can be changed to a load before the loop and a store after the loop.
Not enabled at any optimization level.

Chapter 3: GCC Command Options 109

-fgcse-las
When ‘-fgcse-las’ is enabled, the global common subexpression elimination
pass eliminates redundant loads that come after stores to the same memory
location (both partial and full redundancies).

Not enabled at any optimization level.

-fgcse-after-reload
When ‘-fgcse-after-reload’ is enabled, a redundant load elimination pass
is performed after reload. The purpose of this pass is to clean up redundant
spilling.

-faggressive-loop-optimizations
This option tells the loop optimizer to use language constraints to derive bounds
for the number of iterations of a loop. This assumes that loop code does not
invoke undefined behavior by for example causing signed integer overflows or
out-of-bound array accesses. The bounds for the number of iterations of a loop
are used to guide loop unrolling and peeling and loop exit test optimizations.
This option is enabled by default.

-funsafe-loop-optimizations
This option tells the loop optimizer to assume that loop indices do not overflow,
and that loops with nontrivial exit condition are not infinite. This enables a
wider range of loop optimizations even if the loop optimizer itself cannot prove
that these assumptions are valid. If you use ‘-Wunsafe-loop-optimizations’,
the compiler warns you if it finds this kind of loop.

-fcrossjumping
Perform cross-jumping transformation. This transformation unifies equivalent
code and saves code size. The resulting code may or may not perform better
than without cross-jumping.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fauto-inc-dec
Combine increments or decrements of addresses with memory accesses. This
pass is always skipped on architectures that do not have instructions to support
this. Enabled by default at ‘-0’ and higher on architectures that support this.

-fdce Perform dead code elimination (DCE) on RTL. Enabled by default at ‘-0’ and
higher.

-fdse Perform dead store elimination (DSE) on RTL. Enabled by default at ‘-0’ and
higher.

-fif-conversion
Attempt to transform conditional jumps into branch-less equivalents. This
includes use of conditional moves, min, max, set flags and abs instructions, and
some tricks doable by standard arithmetics. The use of conditional execution
on chips where it is available is controlled by if-conversion?2.

Enabled at levels ‘-0’, ‘-02’, ‘~-03’, ‘-0s’.

110

Using the GNU Compiler Collection (GCC)

—-fif-conversion2

Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.

Enabled at levels ‘-0°, ‘~-02’, ‘-03’, ‘-0s’.

-fdeclone-ctor-dtor

The C++ ABI requires multiple entry points for constructors and destructors:
one for a base subobject, one for a complete object, and one for a virtual
destructor that calls operator delete afterwards. For a hierarchy with virtual
bases, the base and complete variants are clones, which means two copies of the
function. With this option, the base and complete variants are changed to be
thunks that call a common implementation.

Enabled by ‘-0s’.

-fdelete-null-pointer-checks

Assume that programs cannot safely dereference null pointers, and that no code
or data element resides there. This enables simple constant folding optimiza-
tions at all optimization levels. In addition, other optimization passes in GCC
use this flag to control global dataflow analyses that eliminate useless checks
for null pointers; these assume that if a pointer is checked after it has already
been dereferenced, it cannot be null.

Note however that in some environments this assumption is not true.
Use ‘-fno-delete-null-pointer-checks’ to disable this optimization for
programs that depend on that behavior.

Some targets, especially embedded ones, disable this option at all levels. Oth-
erwise it is enabled at all levels: ‘-00’, ‘~-01’, ‘~-=02’, ‘-03’, ‘-0s’. Passes that use
the information are enabled independently at different optimization levels.

—-fdevirtualize

Attempt to convert calls to virtual functions to direct calls. This is done
both within a procedure and interprocedurally as part of indirect inlining (-
findirect-inlining) and interprocedural constant propagation (‘~fipa-cp’).
Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fdevirtualize-speculatively

Attempt to convert calls to virtual functions to speculative direct calls. Based
on the analysis of the type inheritance graph, determine for a given call the set
of likely targets. If the set is small, preferably of size 1, change the call into an
conditional deciding on direct and indirect call. The speculative calls enable
more optimizations, such as inlining. When they seem useless after further
optimization, they are converted back into original form.

-fexpensive-optimizations

-free

Perform a number of minor optimizations that are relatively expensive.
Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.
Attempt to remove redundant extension instructions. This is especially helpful

for the x86-64 architecture, which implicitly zero-extends in 64-bit registers
after writing to their lower 32-bit half.

Chapter 3: GCC Command Options 111

Enabled for AArch64 and x86 at levels ‘-02’, ‘-03’.

-flive-range-shrinkage
Attempt to decrease register pressure through register live range shrinkage.
This is helpful for fast processors with small or moderate size register sets.

-fira-algorithm=algorithm
Use the specified coloring algorithm for the integrated register allocator. The
algorithm argument can be ‘priority’, which specifies Chow’s priority coloring,
or ‘CB’, which specifies Chaitin-Briggs coloring. Chaitin-Briggs coloring is not
implemented for all architectures, but for those targets that do support it, it is
the default because it generates better code.

-fira-region=region
Use specified regions for the integrated register allocator. The region argument
should be one of the following:

‘all’ Use all loops as register allocation regions. This can give the best
results for machines with a small and/or irregular register set.

‘mixed’ Use all loops except for loops with small register pressure as the
regions. This value usually gives the best results in most cases and
for most architectures, and is enabled by default when compiling
with optimization for speed (‘-0°, ‘=027, ...).

one Use all functions as a single region. This typically results in the
smallest code size, and is enabled by default for ‘-0s’ or ‘-00’.

-fira-hoist-pressure
Use IRA to evaluate register pressure in the code hoisting pass for decisions to
hoist expressions. This option usually results in smaller code, but it can slow
the compiler down.

This option is enabled at level ‘-0s’ for all targets.

-fira-loop-pressure
Use IRA to evaluate register pressure in loops for decisions to move loop in-
variants. This option usually results in generation of faster and smaller code on
machines with large register files (>= 32 registers), but it can slow the compiler
down.

This option is enabled at level ‘-03’ for some targets.

-fno-ira-share-save-slots
Disable sharing of stack slots used for saving call-used hard registers living
through a call. Each hard register gets a separate stack slot, and as a result
function stack frames are larger.

-fno-ira-share-spill-slots
Disable sharing of stack slots allocated for pseudo-registers. Each pseudo-
register that does not get a hard register gets a separate stack slot, and as
a result function stack frames are larger.

112 Using the GNU Compiler Collection (GCC)

-fira-verbose=n
Control the verbosity of the dump file for the integrated register allocator. The
default value is 5. If the value n is greater or equal to 10, the dump output is
sent to stderr using the same format as n minus 10.

-fdelayed-branch
If supported for the target machine, attempt to reorder instructions to exploit
instruction slots available after delayed branch instructions.

Enabled at levels ‘-0’ ‘-02’, ‘-03’, ‘-0s’.

-fschedule-insns
If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines
that have slow floating point or memory load instructions by allowing other
instructions to be issued until the result of the load or floating-point instruction
is required.
Enabled at levels ‘-02’, ‘~-03’.

-fschedule-insns2
Similar to ‘-fschedule-insns’, but requests an additional pass of instruction
scheduling after register allocation has been done. This is especially useful on
machines with a relatively small number of registers and where memory load
instructions take more than one cycle.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fno-sched-interblock
Don’t schedule instructions across basic blocks. This is normally enabled by
default when scheduling before register allocation, i.e. with ‘~fschedule-insns’
or at ‘=02’ or higher.

-fno-sched-spec
Don’t allow speculative motion of non-load instructions. This is normally
enabled by default when scheduling before register allocation, i.e. with
‘-fschedule-insns’ or at ‘-02’ or higher.

-fsched-pressure
Enable register pressure sensitive insn scheduling before register allocation.
This only makes sense when scheduling before register allocation is enabled,
i.e. with ‘-fschedule-insns’ or at ‘-02’ or higher. Usage of this option can
improve the generated code and decrease its size by preventing register pressure
increase above the number of available hard registers and subsequent spills in
register allocation.

-fsched-spec-load
Allow speculative motion of some load instructions. This only makes sense
when scheduling before register allocation, i.e. with ‘~fschedule-insns’ or at
‘~02’ or higher.

-fsched-spec-load-dangerous
Allow speculative motion of more load instructions. This only makes sense
when scheduling before register allocation, i.e. with ‘~fschedule-insns’ or at
‘=02’ or higher.

Chapter 3: GCC Command Options 113

-fsched-stalled-insns

-fsched-stalled-insns=n
Define how many insns (if any) can be moved prematurely from the queue
of stalled insns into the ready list during the second scheduling pass.
‘~fno-sched-stalled-insns’ means that no insns are moved prematurely,
‘~fsched-stalled-insns=0’ means there is no limit on how many queued
insns can be moved prematurely. ‘~fsched-stalled-insns’ without a value
is equivalent to ‘~-fsched-stalled-insns=1".

-fsched-stalled-insns-dep

-fsched-stalled-insns-dep=n
Define how many insn groups (cycles) are examined for a depen-
dency on a stalled insn that is a candidate for premature removal

from the queue of stalled insns. This has an effect only during
the second scheduling pass, and only if ‘-fsched-stalled-insns’
is used. ‘~fno-sched-stalled-insns-dep’ is equivalent to
‘~fsched-stalled-insns-dep=0’. ‘~fsched-stalled-insns-dep’

without a value is equivalent to ‘~fsched-stalled-insns-dep=1".

-fsched2-use-superblocks
When scheduling after register allocation, use superblock scheduling. This al-
lows motion across basic block boundaries, resulting in faster schedules. This
option is experimental, as not all machine descriptions used by GCC model the
CPU closely enough to avoid unreliable results from the algorithm.

This only makes sense when scheduling after register allocation, i.e. with
‘~-fschedule-insns2’ or at ‘-02’ or higher.

-fsched-group-heuristic
Enable the group heuristic in the scheduler. This heuristic favors the instruction
that belongs to a schedule group. This is enabled by default when scheduling
is enabled, i.e. with ‘~fschedule-insns’ or ‘~fschedule-insns2’ or at ‘-02’
or higher.

-fsched-critical-path-heuristic
Enable the critical-path heuristic in the scheduler. This heuristic favors in-
structions on the critical path. This is enabled by default when scheduling is
enabled, i.e. with ‘-fschedule-insns’ or ‘~fschedule-insns2’ or at ‘-02’ or
higher.

-fsched-spec-insn-heuristic
Enable the speculative instruction heuristic in the scheduler. This heuristic
favors speculative instructions with greater dependency weakness. This is en-
abled by default when scheduling is enabled, i.e. with ‘~fschedule-insns’ or
‘~fschedule-insns2’ or at ‘-02’ or higher.

-fsched-rank-heuristic
Enable the rank heuristic in the scheduler. This heuristic favors the instruc-
tion belonging to a basic block with greater size or frequency. This is en-
abled by default when scheduling is enabled, i.e. with ‘~fschedule-insns’ or
‘~fschedule-insns2’ or at ‘=02’ or higher.

114 Using the GNU Compiler Collection (GCC)

-fsched-last-insn-heuristic
Enable the last-instruction heuristic in the scheduler. This heuristic favors the
instruction that is less dependent on the last instruction scheduled. This is
enabled by default when scheduling is enabled, i.e. with ‘-fschedule-insns’
or ‘~fschedule-insns2’ or at ‘-02’ or higher.

-fsched-dep-count-heuristic
Enable the dependent-count heuristic in the scheduler. This heuristic favors
the instruction that has more instructions depending on it. This is enabled
by default when scheduling is enabled, i.e. with ‘-fschedule-insns’ or
‘~fschedule-insns2’ or at ‘-02’ or higher.

-freschedule-modulo-scheduled-loops
Modulo scheduling is performed before traditional scheduling. If a loop is mod-
ulo scheduled, later scheduling passes may change its schedule. Use this option
to control that behavior.

-fselective-scheduling
Schedule instructions using selective scheduling algorithm. Selective scheduling
runs instead of the first scheduler pass.

-fselective-scheduling?2
Schedule instructions using selective scheduling algorithm. Selective scheduling
runs instead of the second scheduler pass.

-fsel-sched-pipelining
Enable software pipelining of innermost loops during selective scheduling.
This option has no effect unless one of ‘-fselective-scheduling’ or
‘-fselective-scheduling?’ is turned on.

-fsel-sched-pipelining-outer-loops
When pipelining loops during selective scheduling, also pipeline outer loops.
This option has no effect unless ‘~-fsel-sched-pipelining’ is turned on.

-fshrink-wrap
Emit function prologues only before parts of the function that need it, rather
than at the top of the function. This flag is enabled by default at ‘-0’ and
higher.

-fcaller-saves
Enable allocation of values to registers that are clobbered by function calls, by
emitting extra instructions to save and restore the registers around such calls.
Such allocation is done only when it seems to result in better code.

This option is always enabled by default on certain machines, usually those
which have no call-preserved registers to use instead.
Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fcombine-stack-adjustments
Tracks stack adjustments (pushes and pops) and stack memory references and
then tries to find ways to combine them.

Enabled by default at ‘-01’ and higher.

Chapter 3: GCC Command Options 115

-fconserve-stack
Attempt to minimize stack usage. The compiler attempts to use less stack
space, even if that makes the program slower. This option implies setting the
‘large-stack-frame’ parameter to 100 and the ‘large-stack-frame-growth’
parameter to 400.

-ftree-reassoc
Perform reassociation on trees. This flag is enabled by default at ‘-0’ and
higher.

-ftree-pre
Perform partial redundancy elimination (PRE) on trees. This flag is enabled
by default at ‘-02’ and ‘-03’.

-ftree-partial-pre
Make partial redundancy elimination (PRE) more aggressive. This flag is en-
abled by default at ‘-03’.

—-ftree-forwprop
Perform forward propagation on trees. This flag is enabled by default at ‘-0’
and higher.

-ftree—-fre
Perform full redundancy elimination (FRE) on trees. The difference between
FRE and PRE is that FRE only considers expressions that are computed on
all paths leading to the redundant computation. This analysis is faster than
PRE, though it exposes fewer redundancies. This flag is enabled by default at
‘-0’ and higher.

-ftree-phiprop
Perform hoisting of loads from conditional pointers on trees. This pass is en-
abled by default at ‘-0’ and higher.

-fhoist-adjacent-loads
Speculatively hoist loads from both branches of an if-then-else if the loads are
from adjacent locations in the same structure and the target architecture has
a conditional move instruction. This flag is enabled by default at ‘-02’ and
higher.

—-ftree-copy-prop
Perform copy propagation on trees. This pass eliminates unnecessary copy
operations. This flag is enabled by default at ‘-0’ and higher.

-fipa-pure-const
Discover which functions are pure or constant. Enabled by default at ‘-0’ and
higher.

-fipa-reference
Discover which static variables do not escape the compilation unit. Enabled by
default at ‘-0’ and higher.

-fipa-pta
Perform interprocedural pointer analysis and interprocedural modification and
reference analysis. This option can cause excessive memory and compile-time

116 Using the GNU Compiler Collection (GCC)

usage on large compilation units. It is not enabled by default at any optimiza-
tion level.

-fipa-profile
Perform interprocedural profile propagation. The functions called only from
cold functions are marked as cold. Also functions executed once (such as cold,
noreturn, static constructors or destructors) are identified. Cold functions and
loop less parts of functions executed once are then optimized for size. Enabled
by default at ‘-0’ and higher.

-fipa-cp Perform interprocedural constant propagation. This optimization analyzes the
program to determine when values passed to functions are constants and then
optimizes accordingly. This optimization can substantially increase perfor-
mance if the application has constants passed to functions. This flag is enabled
by default at ‘-02’, ‘-0s’ and ‘-03’.

-fipa-cp-clone
Perform function cloning to make interprocedural constant propagation
stronger. When enabled, interprocedural constant propagation performs
function cloning when externally visible function can be called with constant
arguments. Because this optimization can create multiple copies of functions, it
may significantly increase code size (see ‘--param ipcp-unit-growth=value’).
This flag is enabled by default at ‘-03’.

-fisolate-erroneous-paths-dereference
Detect paths which trigger erroneous or undefined behaviour due to dereferenc-
ing a NULL pointer. Isolate those paths from the main control flow and turn
the statement with erroneous or undefined behaviour into a trap.

-fisolate-erroneous-paths-attribute
Detect paths which trigger erroneous or undefined behaviour due a NULL value
being used in a way which is forbidden by a returns_nonnull or nonnull at-
tribute. Isolate those paths from the main control flow and turn the statement
with erroneous or undefined behaviour into a trap. This is not currently en-
abled, but may be enabled by -02 in the future.

—-ftree-sink
Perform forward store motion on trees. This flag is enabled by default at ‘-0’
and higher.

-ftree-bit-ccp
Perform sparse conditional bit constant propagation on trees and propagate
pointer alignment information. This pass only operates on local scalar variables
and is enabled by default at ‘-0’ and higher. It requires that ‘-ftree-ccp’ is
enabled.

-ftree-ccp
Perform sparse conditional constant propagation (CCP) on trees. This pass
only operates on local scalar variables and is enabled by default at ‘-0’ and
higher.

Chapter 3: GCC Command Options 117

-ftree-switch-conversion
Perform conversion of simple initializations in a switch to initializations from a
scalar array. This flag is enabled by default at ‘-02’ and higher.

-ftree-tail-merge
Look for identical code sequences. When found, replace one with a jump
to the other. This optimization is known as tail merging or cross jumping.
This flag is enabled by default at ‘-02’ and higher. The compilation time in
this pass can be limited using ‘max-tail-merge-comparisons’ parameter and
‘max-tail-merge-iterations’ parameter.

-ftree-dce
Perform dead code elimination (DCE) on trees. This flag is enabled by default
at ‘-0’ and higher.

-ftree-builtin-call-dce
Perform conditional dead code elimination (DCE) for calls to built-in functions
that may set errno but are otherwise side-effect free. This flag is enabled by
default at ‘=02’ and higher if ‘-0s’ is not also specified.

-ftree-dominator-opts
Perform a variety of simple scalar cleanups (constant/copy propagation, redun-
dancy elimination, range propagation and expression simplification) based on a
dominator tree traversal. This also performs jump threading (to reduce jumps
to jumps). This flag is enabled by default at ‘-0’ and higher.

-ftree-dse
Perform dead store elimination (DSE) on trees. A dead store is a store into a
memory location that is later overwritten by another store without any inter-
vening loads. In this case the earlier store can be deleted. This flag is enabled
by default at ‘-0’ and higher.

—-ftree-ch
Perform loop header copying on trees. This is beneficial since it increases ef-
fectiveness of code motion optimizations. It also saves one jump. This flag is
enabled by default at ‘=0’ and higher. It is not enabled for ‘-0s’, since it usually
increases code size.

-ftree-loop-optimize
Perform loop optimizations on trees. This flag is enabled by default at ‘-0’ and

higher.

-ftree-loop-linear
Perform loop interchange transformations on tree. Same as
‘~floop-interchange’. To wuse this code transformation, GCC has

to be configured with ‘--with-ppl’ and ‘--with-cloog’ to enable the
Graphite loop transformation infrastructure.

—floop-interchange
Perform loop interchange transformations on loops. Interchanging two nested
loops switches the inner and outer loops. For example, given a loop like:

118

Using the GNU Compiler Collection (GCC)

DOJ =1, M
DOI=1, N
A(J, I) = AQJ, I) * C
ENDDO
ENDDO

loop interchange transforms the loop as if it were written:

DOI =1, N
DOJ =1, M
AQJ, I) = A(J, I) x C
ENDDO
ENDDO

which can be beneficial when N is larger than the caches, because in Fortran,
the elements of an array are stored in memory contiguously by column, and
the original loop iterates over rows, potentially creating at each access a cache
miss. This optimization applies to all the languages supported by GCC and
is not limited to Fortran. To use this code transformation, GCC has to be
configured with ‘-—with-ppl’ and ‘--with-cloog’ to enable the Graphite loop
transformation infrastructure.

-floop-strip-mine

Perform loop strip mining transformations on loops. Strip mining splits a loop
into two nested loops. The outer loop has strides equal to the strip size and the
inner loop has strides of the original loop within a strip. The strip length can
be changed using the ‘loop-block-tile-size’ parameter. For example, given
a loop like:

loop strip mining transforms the loop as if it were written:
DO IT = 1, N, 51
DO I = II, min (II + 50, N)
AD) = A(D) + C
ENDDO
ENDDO
This optimization applies to all the languages supported by GCC and is not
limited to Fortran. To use this code transformation, GCC has to be configured
with ‘--with-ppl’ and ‘--with-cloog’ to enable the Graphite loop transfor-
mation infrastructure.

-floop-block

Perform loop blocking transformations on loops. Blocking strip mines each loop
in the loop nest such that the memory accesses of the element loops fit inside
caches. The strip length can be changed using the ‘loop-block-tile-size’
parameter. For example, given a loop like:

DOI=1, N
DOJ =1, M
A(J, I) = B(I) + C(D)
ENDDO
ENDDO

loop blocking transforms the loop as if it were written:

Chapter 3: GCC Command Options 119

DO II =1, N, 51
DO JJ =1, M, 51
DO I = II, min (II + 50, N)
DO J = JJ, min (JJ + 50, M)
A(J, I) = B(I) + C(J)
ENDDO
ENDDO
ENDDO
ENDDO
which can be beneficial when M is larger than the caches, because the innermost
loop iterates over a smaller amount of data which can be kept in the caches. This
optimization applies to all the languages supported by GCC and is not limited
to Fortran. To use this code transformation, GCC has to be configured with
‘~-with-ppl’ and ‘--with-cloog’ to enable the Graphite loop transformation
infrastructure.

-fgraphite-identity
Enable the identity transformation for graphite. For every SCoP we gener-
ate the polyhedral representation and transform it back to gimple. Using
‘-fgraphite-identity’ we can check the costs or benefits of the GIMPLE
-> GRAPHITE -> GIMPLE transformation. Some minimal optimizations are
also performed by the code generator CLooG, like index splitting and dead code
elimination in loops.

-floop—nest-optimize
Enable the ISL based loop nest optimizer. This is a generic loop nest optimizer
based on the Pluto optimization algorithms. It calculates a loop structure
optimized for data-locality and parallelism. This option is experimental.

-floop-parallelize-all
Use the Graphite data dependence analysis to identify loops that can be paral-
lelized. Parallelize all the loops that can be analyzed to not contain loop carried
dependences without checking that it is profitable to parallelize the loops.

-fcheck-data-deps
Compare the results of several data dependence analyzers. This option is used
for debugging the data dependence analyzers.

-ftree-loop-if-convert
Attempt to transform conditional jumps in the innermost loops to branch-less
equivalents. The intent is to remove control-flow from the innermost loops in
order to improve the ability of the vectorization pass to handle these loops.
This is enabled by default if vectorization is enabled.

—-ftree-loop-if-convert-stores
Attempt to also if-convert conditional jumps containing memory writes. This
transformation can be unsafe for multi-threaded programs as it transforms con-
ditional memory writes into unconditional memory writes. For example,
for (i = 0; i < N; i++)
if (cond)
A[i] = expr;

is transformed to

120 Using the GNU Compiler Collection (GCC)

for (i = 0; 1 < N; i++)
A[i] = cond ? expr : A[il;

potentially producing data races.

-ftree-loop-distribution
Perform loop distribution. This flag can improve cache performance on big loop
bodies and allow further loop optimizations, like parallelization or vectorization,
to take place. For example, the loop

DOI =1, N
A(I) = B(I) + C
D(I) = E(D F
ENDDO
is transformed to
DOI =1, N
A(I) = B(I) + C
ENDDO
DOI =1, N
D(I) = E(I) * F
ENDDO

-ftree-loop-distribute-patterns
Perform loop distribution of patterns that can be code generated with calls to
a library. This flag is enabled by default at ‘-03’.
This pass distributes the initialization loops and generates a call to memset
zero. For example, the loop

DOI =1, N
A(I) =0
B(I) = A(I) + I
ENDDO
is transformed to
DOI =1, N
A(I) =0
ENDDO
DOI =1, N
B(I) = A(I) + I
ENDDO

and the initialization loop is transformed into a call to memset zero.
—-ftree-loop-im

Perform loop invariant motion on trees. This pass moves only invariants that

are hard to handle at RTL level (function calls, operations that expand to non-

trivial sequences of insns). With ‘~funswitch-loops’ it also moves operands

of conditions that are invariant out of the loop, so that we can use just trivial

invariantness analysis in loop unswitching. The pass also includes store motion.

-ftree-loop-ivcanon
Create a canonical counter for number of iterations in loops for which deter-
mining number of iterations requires complicated analysis. Later optimizations
then may determine the number easily. Useful especially in connection with
unrolling.

-fivopts Perform induction variable optimizations (strength reduction, induction vari-
able merging and induction variable elimination) on trees.

Chapter 3: GCC Command Options 121

-ftree-parallelize-loops=n
Parallelize loops, i.e., split their iteration space to run in n threads. This is
only possible for loops whose iterations are independent and can be arbitrarily
reordered. The optimization is only profitable on multiprocessor machines, for
loops that are CPU-intensive, rather than constrained e.g. by memory band-
width. This option implies ‘-pthread’, and thus is only supported on targets
that have support for ‘-pthread’.

-ftree-pta
Perform function-local points-to analysis on trees. This flag is enabled by de-
fault at ‘-0’ and higher.

-ftree-sra
Perform scalar replacement of aggregates. This pass replaces structure refer-
ences with scalars to prevent committing structures to memory too early. This
flag is enabled by default at ‘-0’ and higher.

-ftree-copyrename
Perform copy renaming on trees. This pass attempts to rename compiler tem-
poraries to other variables at copy locations, usually resulting in variable names
which more closely resemble the original variables. This flag is enabled by de-
fault at ‘-0’ and higher.

—-ftree-coalesce-inlined-vars

Tell the copyrename pass (see ‘-ftree-copyrename’) to attempt to combine
small user-defined variables too, but only if they were inlined from other func-
tions. It is a more limited form of ‘~-ftree-coalesce-vars’. This may harm
debug information of such inlined variables, but it will keep variables of the
inlined-into function apart from each other, such that they are more likely to
contain the expected values in a debugging session. This was the default in
GCC versions older than 4.7.

-ftree-coalesce-vars
Tell the copyrename pass (see ‘-~ftree-copyrename’) to attempt to combine
small user-defined variables too, instead of just compiler temporaries. This
may severely limit the ability to debug an optimized program compiled with
‘~fno-var-tracking-assignments’. In the negated form, this flag prevents
SSA coalescing of user variables, including inlined ones. This option is enabled
by default.

-ftree-ter
Perform temporary expression replacement during the SSA->normal phase. Sin-
gle use/single def temporaries are replaced at their use location with their defin-
ing expression. This results in non-GIMPLE code, but gives the expanders
much more complex trees to work on resulting in better RTL generation. This
is enabled by default at ‘-0’ and higher.

-ftree-slsr
Perform straight-line strength reduction on trees. This recognizes related ex-
pressions involving multiplications and replaces them by less expensive calcu-
lations when possible. This is enabled by default at ‘-0’ and higher.

122 Using the GNU Compiler Collection (GCC)

-ftree-vectorize
Perform vectorization on trees. This flag enables ‘~ftree-loop-vectorize’
and ‘-ftree-slp-vectorize’ if not explicitly specified.

-ftree-loop-vectorize
Perform loop vectorization on trees. This flag is enabled by default at ‘~03’
and when ‘-ftree-vectorize’ is enabled.

-ftree-slp-vectorize
Perform basic block vectorization on trees. This flag is enabled by default at
‘-03’ and when ‘-ftree-vectorize’ is enabled.

-fvect-cost-model=model

Alter the cost model used for vectorization. The model argument should be one
of unlimited, dynamic or cheap. With the unlimited model the vectorized
code-path is assumed to be profitable while with the dynamic model a runtime
check will guard the vectorized code-path to enable it only for iteration counts
that will likely execute faster than when executing the original scalar loop. The
cheap model will disable vectorization of loops where doing so would be cost
prohibitive for example due to required runtime checks for data dependence or
alignment but otherwise is equal to the dynamic model. The default cost model
depends on other optimization flags and is either dynamic or cheap.

-fsimd-cost-model=model
Alter the cost model used for vectorization of loops marked with the
OpenMP or Cilk Plus simd directive. The model argument should be one of
unlimited, dynamic, cheap. All values of model have the same meaning as
described in ‘-fvect-cost-model’ and by default a cost model defined with
‘~fvect-cost-model’ is used.

-ftree-vrp
Perform Value Range Propagation on trees. This is similar to the constant prop-
agation pass, but instead of values, ranges of values are propagated. This allows
the optimizers to remove unnecessary range checks like array bound checks and
null pointer checks. This is enabled by default at ‘-02” and higher. Null pointer
check elimination is only done if ‘~-fdelete-null-pointer-checks’ is enabled.

-ftracer Perform tail duplication to enlarge superblock size. This transformation simpli-
fies the control flow of the function allowing other optimizations to do a better
job.

-funroll-loops
Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘-funroll-loops’ implies ‘~frerun-cse-after-loop’.
This option makes code larger, and may or may not make it run faster.

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘~-funroll-all-loops’
implies the same options as ‘~funroll-loops’,

Chapter 3: GCC Command Options 123

-fsplit-ivs-in-unroller
Enables expression of values of induction variables in later iterations of the
unrolled loop using the value in the first iteration. This breaks long dependency
chains, thus improving efficiency of the scheduling passes.

A combination of ‘~fweb’ and CSE is often sufficient to obtain the same effect.
However, that is not reliable in cases where the loop body is more complicated
than a single basic block. It also does not work at all on some architectures
due to restrictions in the CSE pass.

This optimization is enabled by default.

-fvariable-expansion-in-unroller
With this option, the compiler creates multiple copies of some local variables
when unrolling a loop, which can result in superior code.

-fpartial-inlining
Inline parts of functions. This option has any effect only when inlining itself
is turned on by the ‘-finline-functions’ or ‘-finline-small-functions’
options.

Enabled at level ‘-02°.

—-fpredictive-commoning
Perform predictive commoning optimization, i.e., reusing computations (espe-
cially memory loads and stores) performed in previous iterations of loops.

This option is enabled at level ‘-03’.

-fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch memory
to improve the performance of loops that access large arrays.

This option may generate better or worse code; results are highly dependent on
the structure of loops within the source code.

Disabled at level ‘-0s’.

-fno-peephole

-fno-peephole2
Disable any machine-specific peephole optimizations. The difference between
‘~fno-peephole’ and ‘~fno-peephole2’ is in how they are implemented in the
compiler; some targets use one, some use the other, a few use both.

‘~fpeephole’ is enabled by default. ‘-fpeephole2’ enabled at levels ‘-02’,
03, “-0s’.

-fno-guess-branch-probability
Do not guess branch probabilities using heuristics.

GCC uses heuristics to guess branch probabilities if they are not provided
by profiling feedback (‘-fprofile-arcs’). These heuristics are based
on the control flow graph. If some branch probabilities are specified by
‘__builtin_expect’, then the heuristics are used to guess branch probabilities
for the rest of the control flow graph, taking the ‘__builtin_expect’ info into
account. The interactions between the heuristics and ‘__builtin_expect’ can

124

Using the GNU Compiler Collection (GCC)

be complex, and in some cases, it may be useful to disable the heuristics so
that the effects of ‘__builtin_expect’ are easier to understand.

The default is ‘~fguess-branch-probability’ at levels ‘-0, ‘~-02’, ‘-03’, ‘-0s’.

—-freorder-blocks

Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality.

Enabled at levels ‘-02’, ‘~-03’.

-freorder-blocks-and-partition

In addition to reordering basic blocks in the compiled function, in order to
reduce number of taken branches, partitions hot and cold basic blocks into
separate sections of the assembly and .o files, to improve paging and cache
locality performance.

This optimization is automatically turned off in the presence of exception han-
dling, for linkonce sections, for functions with a user-defined section attribute
and on any architecture that does not support named sections.

Enabled for x86 at levels ‘-02’, ‘-03’.

—-freorder-functions

Reorder functions in the object file in order to improve code locality. This is im-
plemented by using special subsections .text.hot for most frequently executed
functions and .text.unlikely for unlikely executed functions. Reordering is
done by the linker so object file format must support named sections and linker
must place them in a reasonable way.

Also profile feedback must be available to make this option effective. See
‘~fprofile-arcs’ for details.

Enabled at levels ‘-02’, ‘-03’, ‘-0s’.

-fstrict-aliasing

Allow the compiler to assume the strictest aliasing rules applicable to the lan-
guage being compiled. For C (and C++), this activates optimizations based on
the type of expressions. In particular, an object of one type is assumed never
to reside at the same address as an object of a different type, unless the types
are almost the same. For example, an unsigned int can alias an int, but not
a void* or a double. A character type may alias any other type.

Pay special attention to code like this:
union a_union {
int i;
double d;
};

int £O {
union a_union t;
t.d = 3.0;
return t.i;

}

The practice of reading from a different union member than the one
most recently written to (called “type-punning”) is common. Even with

Chapter 3: GCC Command Options 125

‘~fstrict-aliasing’, type-punning is allowed, provided the memory is
accessed through the union type. So, the code above works as expected. See
Section 4.9 [Structures unions enumerations and bit-fields implementation]
page 343. However, this code might not:

int £ {
union a_union t;
int* ip;
t.d = 3.0;
ip = &t.1i;
return *ip;
}
Similarly, access by taking the address, casting the resulting pointer and deref-
erencing the result has undefined behavior, even if the cast uses a union type,
e.g.:
int £ {
double d = 3.0;
return ((union a_union *) &d)->i;
}
The ‘~fstrict-aliasing’ option is enabled at levels ‘-02’, ‘-03’, ‘-0s’.

9

-fstrict-overflow
Allow the compiler to assume strict signed overflow rules, depending on the
language being compiled. For C (and C++) this means that overflow when doing
arithmetic with signed numbers is undefined, which means that the compiler
may assume that it does not happen. This permits various optimizations. For
example, the compiler assumes that an expression like i + 10 > i is always true
for signed i. This assumption is only valid if signed overflow is undefined, as the
expression is false if i + 10 overflows when using twos complement arithmetic.
When this option is in effect any attempt to determine whether an operation
on signed numbers overflows must be written carefully to not actually involve
overflow.

This option also allows the compiler to assume strict pointer semantics: given
a pointer to an object, if adding an offset to that pointer does not produce a
pointer to the same object, the addition is undefined. This permits the compiler
to conclude that p + u > p is always true for a pointer p and unsigned integer
u. This assumption is only valid because pointer wraparound is undefined, as
the expression is false if p + u overflows using twos complement arithmetic.

See also the ‘~fwrapv’ option. Using ‘~fwrapv’ means that integer signed over-
flow is fully defined: it wraps. When ‘-fwrapv’ is used, there is no difference
between ‘~fstrict-overflow’ and ‘~fno-strict-overflow’ for integers. With
‘~fwrapv’ certain types of overflow are permitted. For example, if the compiler
gets an overflow when doing arithmetic on constants, the overflowed value can
still be used with ‘~fwrapv’, but not otherwise.

)

The ‘~fstrict-overflow’ option is enabled at levels ‘-02’, ‘-03’, ‘-0s’.

-falign-functions

—-falign-functions=n
Align the start of functions to the next power-of-two greater than n, skipping
up to n bytes. For instance, ‘-falign-functions=32’ aligns functions to the

126 Using the GNU Compiler Collection (GCC)

next 32-byte boundary, but ‘-falign-functions=24’" aligns to the next 32-byte
boundary only if this can be done by skipping 23 bytes or less.

‘~fno-align-functions’ and ‘-falign-functions=1’ are equivalent and mean
that functions are not aligned.

Some assemblers only support this flag when n is a power of two; in that case,
it is rounded up.

If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘~-02’, ‘-03’.

-falign-labels

—-falign-labels=n
Align all branch targets to a power-of-two boundary, skipping up to n bytes
like ‘-falign-functions’. This option can easily make code slower, because
it must insert dummy operations for when the branch target is reached in the
usual flow of the code.

‘-fno-align-labels’ and ‘-falign-labels=1" are equivalent and mean that
labels are not aligned.

If ‘~falign-loops’ or ‘~falign-jumps’ are applicable and are greater than this
value, then their values are used instead.

If n is not specified or is zero, use a machine-dependent default which is very
likely to be ‘1’, meaning no alignment.

Enabled at levels ‘-02’, ‘~-03’.

-falign-loops

-falign-loops=n
Align loops to a power-of-two boundary, skipping up to n bytes like
‘~falign-functions’. If the loops are executed many times, this makes up
for any execution of the dummy operations.

‘~fno-align-loops’ and ‘-falign-loops=1’ are equivalent and mean that
loops are not aligned.

If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘-02’, ‘-03’.

-falign-jumps

—-falign-jumps=n
Align branch targets to a power-of-two boundary, for branch targets where
the targets can only be reached by jumping, skipping up to n bytes like
‘~falign-functions’. In this case, no dummy operations need be executed.
‘~fno-align-jumps’ and ‘-falign-jumps=1’ are equivalent and mean that
loops are not aligned.
If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘--02’, ‘-03’.

-funit-at-a-time
This option is left for compatibility reasons. ‘-funit-at-a-time’ has no
effect, while ‘~fno-unit-at-a-time’ implies ‘~fno-toplevel-reorder’ and
‘~fno-section-anchors’.

Chapter 3: GCC Command Options 127

Enabled by default.

-fno-toplevel-reorder

-fweb

Do not reorder top-level functions, variables, and asm statements. Output them
in the same order that they appear in the input file. When this option is
used, unreferenced static variables are not removed. This option is intended to
support existing code that relies on a particular ordering. For new code, it is
better to use attributes when possible.

Enabled at level ‘-00’. When disabled explicitly, it also implies
‘~fno-section-anchors’, which is otherwise enabled at ‘-00’ on some targets.

Constructs webs as commonly used for register allocation purposes and assign
each web individual pseudo register. This allows the register allocation pass
to operate on pseudos directly, but also strengthens several other optimization
passes, such as CSE, loop optimizer and trivial dead code remover. It can,
however, make debugging impossible, since variables no longer stay in a “home
register”.

Enabled by default with ‘~funroll-loops’.

-fwhole-program

-flto[=n]

Assume that the current compilation unit represents the whole program being
compiled. All public functions and variables with the exception of main and
those merged by attribute externally_visible become static functions and
in effect are optimized more aggressively by interprocedural optimizers.

This option should not be used in combination with -f1to. Instead relying on
a linker plugin should provide safer and more precise information.

This option runs the standard link-time optimizer. When invoked with source
code, it generates GIMPLE (one of GCC’s internal representations) and writes
it to special ELF sections in the object file. When the object files are linked
together, all the function bodies are read from these ELF sections and instan-
tiated as if they had been part of the same translation unit.

To use the link-time optimizer, ‘-f1to’ and optimization options should be
specified at compile time and during the final link. For example:

gcc —c¢ -02 -flto foo.c

gcc —c -02 -flto bar.c

gcc -o myprog -flto -02 foo.o bar.o
The first two invocations to GCC save a bytecode representation of GIMPLE
into special ELF sections inside ‘foo.0’” and ‘bar.o’. The final invocation reads
the GIMPLE bytecode from ‘foo.o’ and ‘bar.o’, merges the two files into a
single internal image, and compiles the result as usual. Since both ‘foo.0’
and ‘bar.o’ are merged into a single image, this causes all the interprocedural
analyses and optimizations in GCC to work across the two files as if they were a
single one. This means, for example, that the inliner is able to inline functions
in ‘bar.o’ into functions in ‘foo.o’ and vice-versa.

Another (simpler) way to enable link-time optimization is:
gcc -o myprog -flto -02 foo.c bar.c

128

Using the GNU Compiler Collection (GCC)

The above generates bytecode for ‘foo.c’ and ‘bar.c’, merges them together
into a single GIMPLE representation and optimizes them as usual to produce
‘myprog’.

The only important thing to keep in mind is that to enable link-time optimiza-
tions you need to use the GCC driver to perform the link-step. GCC then
automatically performs link-time optimization if any of the objects involved
were compiled with the ‘-f1to’. You generally should specify the optimization
options to be used for link-time optimization though GCC will try to be clever
at guessing an optimization level to use from the options used at compile-time
if you fail to specify one at link-time. You can always override the automatic
decision to do link-time optimization at link-time by passing ‘-fno-1to’ to the
link command.

To make whole program optimization effective, it is necessary to make
certain whole program assumptions. The compiler needs to know what
functions and variables can be accessed by libraries and runtime outside
of the link-time optimized unit. When supported by the linker, the linker
plugin (see ‘~fuse-linker-plugin’) passes information to the compiler about
used and externally visible symbols. When the linker plugin is not available,
‘~fwhole-program’ should be used to allow the compiler to make these
assumptions, which leads to more aggressive optimization decisions.

When ‘-fuse-linker-plugin’ is not enabled then, when a file is compiled
with ‘-flto’, the generated object file is larger than a regular object
file because it contains GIMPLE bytecodes and the usual final code (see
‘~ffat-1lto-objects’. This means that object files with LTO information
can be linked as normal object files; if ‘-fno-1lto’ is passed to the
linker, no interprocedural optimizations are applied. Note that when
‘~fno-fat-1lto-objects’ is enabled the compile-stage is faster but you cannot
perform a regular, non-LTO link on them.

Additionally, the optimization flags used to compile individual files are not
necessarily related to those used at link time. For instance,
gcc —¢ -00 -ffat-1to-objects -flto foo.c

gcc -c¢ -00 -ffat-lto-objects -flto bar.c
gcc -o myprog -03 foo.o bar.o

This produces individual object files with unoptimized assembler code, but the
resulting binary ‘myprog’ is optimized at ‘-03’. If, instead, the final binary is
generated with ‘-fno-1to’, then ‘myprog’ is not optimized.

When producing the final binary, GCC only applies link-time optimizations to
those files that contain bytecode. Therefore, you can mix and match object
files and libraries with GIMPLE bytecodes and final object code. GCC auto-
matically selects which files to optimize in LTO mode and which files to link
without further processing.

There are some code generation flags preserved by GCC when generating byte-
codes, as they need to be used during the final link stage. Generally options
specified at link-time override those specified at compile-time.

Chapter 3: GCC Command Options 129

If you do not specify an optimization level option ‘-0’ at link-time then GCC
will compute one based on the optimization levels used when compiling the
object files. The highest optimization level will win here.

Currently, the following options and their setting are take from the first ob-
ject file that explicitely specified it: ‘-fPIC’, ‘-fpic’, ‘~fpie’, ‘~fcommon’,
‘~fexceptions’, ‘-fnon-call-exceptions’, ‘-fgnu-tm’ and all the ‘-m’ target
flags.

Certain ABI changing flags are required to match in all compilation-units and
trying to override this at link-time with a conflicting value is ignored. This
includes options such as ‘-freg-struct-return’ and ‘-fpcc-struct-return’.

Other options such as ‘-ffp-contract’, ‘~-fno-strict-overflow’, ‘~fwrapv’,
‘~fno-trapv’ or ‘-fno-strict-aliasing’ are passed through to the link
stage and merged conservatively for conflicting translation units. Specifically
‘~fno-strict-overflow’, ‘~fwrapv’ and ‘~fno-trapv’ take precedence and for
example ‘~ffp-contract=off’ takes precedence over ‘-ffp-contract=fast’.
You can override them at linke-time.

It is recommended that you compile all the files participating in the same link
with the same options and also specify those options at link time.

If LTO encounters objects with C linkage declared with incompatible types in
separate translation units to be linked together (undefined behavior according
to ISO C99 6.2.7), a non-fatal diagnostic may be issued. The behavior is still
undefined at run time. Similar diagnostics may be raised for other languages.

Another feature of LTO is that it is possible to apply interprocedural optimiza-
tions on files written in different languages:

gcc -¢ —-flto foo.c

g++ —-c —-flto bar.cc

gfortran -c -flto baz.f90

g++ -o myprog -flto -03 foo.o bar.o baz.o -lgfortran
Notice that the final link is done with g++ to get the C++ runtime libraries and
‘-lgfortran’ is added to get the Fortran runtime libraries. In general, when
mixing languages in LTO mode, you should use the same link command options
as when mixing languages in a regular (non-LTO) compilation.

If object files containing GIMPLE bytecode are stored in a library archive, say
‘libfoo.a’, it is possible to extract and use them in an LTO link if you are
using a linker with plugin support. To create static libraries suitable for LTO,
use gcc—ar and gcc-ranlib instead of ar and ranlib; to show the symbols
of object files with GIMPLE bytecode, use gcc—nm. Those commands require
that ar, ranlib and nm have been compiled with plugin support. At link time,
use the the flag ‘~fuse-linker-plugin’ to ensure that the library participates
in the LTO optimization process:
gcc -o myprog -02 -flto -fuse-linker-plugin a.o b.o -1lfoo

With the linker plugin enabled, the linker extracts the needed GIMPLE files
from ‘1ibfoo.a’ and passes them on to the running GCC to make them part
of the aggregated GIMPLE image to be optimized.

If you are not using a linker with plugin support and/or do not enable the linker
plugin, then the objects inside ‘libfoo.a’ are extracted and linked as usual,

130

Using the GNU Compiler Collection (GCC)

but they do not participate in the LTO optimization process. In order to make
a static library suitable for both LTO optimization and usual linkage, compile
its object files with ‘~f1to’ -ffat-1to-objects.

Link-time optimizations do not require the presence of the whole program to
operate. If the program does not require any symbols to be exported, it is pos-
sible to combine ‘-flto’ and ‘-~fwhole-program’ to allow the interprocedural
optimizers to use more aggressive assumptions which may lead to improved op-
timization opportunities. Use of ‘~fwhole-program’ is not needed when linker
plugin is active (see ‘~fuse-linker-plugin’).

The current implementation of LTO makes no attempt to generate bytecode
that is portable between different types of hosts. The bytecode files are ver-
sioned and there is a strict version check, so bytecode files generated in one
version of GCC will not work with an older or newer version of GCC.

Link-time optimization does not work well with generation of debugging infor-
mation. Combining ‘-flto’ with ‘-g’ is currently experimental and expected
to produce unexpected results.

If you specify the optional n, the optimization and code generation done at link
time is executed in parallel using n parallel jobs by utilizing an installed make
program. The environment variable MAKE may be used to override the program
used. The default value for n is 1.

You can also specify ‘~flto=jobserver’ to use GNU make’s job server mode to
determine the number of parallel jobs. This is useful when the Makefile calling
GCC is already executing in parallel. You must prepend a ‘+’ to the command
recipe in the parent Makefile for this to work. This option likely only works if
MAKE is GNU make.

-flto-partition=alg

Specify the partitioning algorithm used by the link-time optimizer. The value
is either 1tol to specify a partitioning mirroring the original source files or
balanced to specify partitioning into equally sized chunks (whenever possible)
or max to create new partition for every symbol where possible. Specifying none
as an algorithm disables partitioning and streaming completely. The default
value is balanced. While 1tol can be used as an workaround for various code
ordering issues, the max partitioning is intended for internal testing only.

-flto-compression-level=n

This option specifies the level of compression used for intermediate language
written to LTO object files, and is only meaningful in conjunction with LTO
mode (‘-f1to’). Valid values are 0 (no compression) to 9 (maximum compres-
sion). Values outside this range are clamped to either 0 or 9. If the option is
not given, a default balanced compression setting is used.

-flto-report

Prints a report with internal details on the workings of the link-time optimizer.
The contents of this report vary from version to version. It is meant to be useful
to GCC developers when processing object files in LTO mode (via ‘-f1to’).

Disabled by default.

Chapter 3: GCC Command Options 131

-flto-report-wpa
Like ‘-flto-report’, but only print for the WPA phase of Link Time Opti-
mization.

-fuse-linker-plugin
Enables the use of a linker plugin during link-time optimization. This option
relies on plugin support in the linker, which is available in gold or in GNU 1d
2.21 or newer.

This option enables the extraction of object files with GIMPLE bytecode out
of library archives. This improves the quality of optimization by exposing more
code to the link-time optimizer. This information specifies what symbols can be
accessed externally (by non-LTO object or during dynamic linking). Resulting
code quality improvements on binaries (and shared libraries that use hidden
visibility) are similar to ~-fwhole-program. See ‘~f1to’ for a description of the
effect of this flag and how to use it.

This option is enabled by default when LTO support in GCC is enabled and
GCC was configured for use with a linker supporting plugins (GNU 1d 2.21 or
newer or gold).

-ffat-1lto-objects
Fat LTO objects are object files that contain both the intermediate language
and the object code. This makes them usable for both LTO linking and normal
linking. This option is effective only when compiling with ‘-f1to’ and is ignored
at link time.

‘~fno-fat-1lto-objects’ improves compilation time over plain LTO, but re-
quires the complete toolchain to be aware of LTO. It requires a linker with linker
plugin support for basic functionality. Additionally, nm, ar and ranlib need
to support linker plugins to allow a full-featured build environment (capable of
building static libraries etc). GCC provides the gcc-ar, gcc-nm, gcc-ranlib
wrappers to pass the right options to these tools. With non fat LTO makefiles
need to be modified to use them.

The default is ‘~fno-fat-1to-objects’ on targets with linker plugin support.

-fcompare-elim
After register allocation and post-register allocation instruction splitting, iden-
tify arithmetic instructions that compute processor flags similar to a comparison
operation based on that arithmetic. If possible, eliminate the explicit compar-
ison operation.

This pass only applies to certain targets that cannot explicitly represent the
comparison operation before register allocation is complete.

Enabled at levels ‘-0°, ‘~-02’, ‘-03’, ‘-0s’.

—-fuse-1d=bfd
Use the bfd linker instead of the default linker.

-fuse-1d=gold
Use the gold linker instead of the default linker.

132 Using the GNU Compiler Collection (GCC)

-fcprop-registers
After register allocation and post-register allocation instruction splitting, per-
form a copy-propagation pass to try to reduce scheduling dependencies and
occasionally eliminate the copy.

Enabled at levels ‘-0’, ‘-02’, ‘-03’, ‘-0s’.

-fprofile-correction
Profiles collected using an instrumented binary for multi-threaded programs
may be inconsistent due to missed counter updates. When this option is spec-
ified, GCC uses heuristics to correct or smooth out such inconsistencies. By
default, GCC emits an error message when an inconsistent profile is detected.

-fprofile-dir=path
Set the directory to search for the profile data files in to path. This
option affects only the profile data generated by ‘-fprofile-generate’,
‘~-ftest-coverage’, ‘-fprofile-arcs’ and used by ‘-fprofile-use’ and
‘~fbranch-probabilities’ and its related options. Both absolute and relative
paths can be used. By default, GCC uses the current directory as path, thus
the profile data file appears in the same directory as the object file.

-fprofile-generate

-fprofile-generate=path
Enable options usually used for instrumenting application to produce profile
useful for later recompilation with profile feedback based optimization. You
must use ‘~fprofile-generate’ both when compiling and when linking your
program.

The following options are enabled: -fprofile-arcs, -fprofile-values, -
fvpt.

If path is specified, GCC looks at the path to find the profile feedback data
files. See ‘-fprofile-dir’.

—-fprofile-use

-fprofile-use=path
Enable profile feedback directed optimizations, and optimizations generally
profitable only with profile feedback available.
The following options are enabled: -fbranch-probabilities, -fvpt,
-funroll-loops, -fpeel-loops, —-ftracer, -ftree-vectorize,
ftree-loop-distribute-patterns
By default, GCC emits an error message if the feedback profiles do not
match the source code. This error can be turned into a warning by using
‘~Wcoverage-mismatch’. Note this may result in poorly optimized code.
If path is specified, GCC looks at the path to find the profile feedback data
files. See ‘~fprofile-dir’.

The following options control compiler behavior regarding floating-point arithmetic.
These options trade off between speed and correctness. All must be specifically enabled.

-ffloat-store
Do not store floating-point variables in registers, and inhibit other options that
might change whether a floating-point value is taken from a register or memory.

Chapter 3: GCC Command Options 133

This option prevents undesirable excess precision on machines such as the 68000
where the floating registers (of the 68881) keep more precision than a double
is supposed to have. Similarly for the x86 architecture. For most programs,
the excess precision does only good, but a few programs rely on the precise
definition of IEEE floating point. Use ‘-ffloat-store’ for such programs, after
modifying them to store all pertinent intermediate computations into variables.

-fexcess-precision=style

This option allows further control over excess precision on machines where
floating-point registers have more precision than the IEEE float and double
types and the processor does not support operations rounding to those types.
By default, ‘~fexcess-precision=fast’ is in effect; this means that operations
are carried out in the precision of the registers and that it is unpredictable when
rounding to the types specified in the source code takes place. When compiling
C, if ‘~fexcess-precision=standard’ is specified then excess precision fol-
lows the rules specified in ISO C99; in particular, both casts and assignments
cause values to be rounded to their semantic types (whereas ‘~ffloat-store’
only affects assignments). This option is enabled by default for C if a strict
conformance option such as ‘-std=c99’ is used.

‘~-fexcess-precision=standard’ is not implemented for languages other than
C, and has no effect if ‘~-funsafe-math-optimizations’ or ‘-ffast-math’
is specified. = On the x86, it also has no effect if ‘-mfpmath=sse’ or
‘-mfpmath=sse+387’ is specified; in the former case, IEEE semantics apply
without excess precision, and in the latter, rounding is unpredictable.

—-ffast-math
Sets ‘~fno-math-errno’, ‘-funsafe-math-optimizations’, ‘-ffinite-math-only’ |}
‘~fno-rounding-math’, ‘-fno-signaling-nans’ and ‘~fcx-limited-range’.
This option causes the preprocessor macro __FAST_MATH__ to be defined.

This option is not turned on by any ‘-0’ option besides ‘-~0fast’ since it can
result in incorrect output for programs that depend on an exact implementation
of IEEE or ISO rules/specifications for math functions. It may, however, yield
faster code for programs that do not require the guarantees of these specifica-
tions.

-fno-math-errno

Do not set errno after calling math functions that are executed with a single
instruction, e.g., sqrt. A program that relies on IEEE exceptions for math
error handling may want to use this flag for speed while maintaining IEEE
arithmetic compatibility.

This option is not turned on by any ‘-0’ option since it can result in incorrect
output for programs that depend on an exact implementation of IEEE or ISO
rules/specifications for math functions. It may, however, yield faster code for
programs that do not require the guarantees of these specifications.

The default is ‘~fmath-errno’.

On Darwin systems, the math library never sets errno. There is therefore
no reason for the compiler to consider the possibility that it might, and
‘~fno-math-errno’ is the default.

134 Using the GNU Compiler Collection (GCC)

-funsafe-math-optimizations
Allow optimizations for floating-point arithmetic that (a) assume that argu-
ments and results are valid and (b) may violate IEEE or ANSI standards.
When used at link-time, it may include libraries or startup files that change the
default FPU control word or other similar optimizations.

This option is not turned on by any ‘-0’ option since it can result in incor-
rect output for programs that depend on an exact implementation of IEEE
or ISO rules/specifications for math functions. It may, however, yield faster
code for programs that do not require the guarantees of these specifications.
Enables ‘-fno-signed-zeros’, ‘-fno-trapping-math’, ‘-fassociative-math’
and ‘-freciprocal-math’.

The default is ‘~fno-unsafe-math-optimizations’.

-fassociative-math

Allow re-association of operands in series of floating-point operations. This vi-
olates the ISO C and C++ language standard by possibly changing computation
result. NOTE: re-ordering may change the sign of zero as well as ignore NaNs
and inhibit or create underflow or overflow (and thus cannot be used on code
that relies on rounding behavior like (x + 2%%52) - 2*x*52. May also reorder
floating-point comparisons and thus may not be used when ordered compar-
isons are required. This option requires that both ‘-fno-signed-zeros’ and
‘~fno-trapping-math’ be in effect. Moreover, it doesn’t make much sense with
‘~frounding-math’. For Fortran the option is automatically enabled when both
‘~fno-signed-zeros’ and ‘~fno-trapping-math’ are in effect.

The default is ‘“-fno-associative-math’.

-freciprocal-math
Allow the reciprocal of a value to be used instead of dividing by the value if
this enables optimizations. For example x / y can be replaced with x * (1/y),
which is useful if (1/y) is subject to common subexpression elimination. Note
that this loses precision and increases the number of flops operating on the
value.

The default is ‘~fno-reciprocal-math’.

-ffinite-math-only
Allow optimizations for floating-point arithmetic that assume that arguments
and results are not NaNs or +-Infs.

This option is not turned on by any ‘-0’ option since it can result in incorrect
output for programs that depend on an exact implementation of IEEE or ISO
rules/specifications for math functions. It may, however, yield faster code for
programs that do not require the guarantees of these specifications.

The default is ‘~fno-finite-math-only’.

-fno-signed-zeros
Allow optimizations for floating-point arithmetic that ignore the signedness of
zero. IEEE arithmetic specifies the behavior of distinct +0.0 and —0.0 values,
which then prohibits simplification of expressions such as x+0.0 or 0.0*x (even

Chapter 3: GCC Command Options 135

with ‘~ffinite-math-only’). This option implies that the sign of a zero result
isn’t significant.

The default is ‘~-fsigned-zeros’.

—-fno-trapping-math
Compile code assuming that floating-point operations cannot generate user-
visible traps. These traps include division by zero, overflow, underflow, inexact
result and invalid operation. This option requires that ‘-fno-signaling-nans’
be in effect. Setting this option may allow faster code if one relies on “non-stop”
IEEE arithmetic, for example.

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs that depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘~ftrapping-math’.

-frounding-math

Disable transformations and optimizations that assume default floating-point
rounding behavior. This is round-to-zero for all floating point to integer con-
versions, and round-to-nearest for all other arithmetic truncations. This option
should be specified for programs that change the FP rounding mode dynami-
cally, or that may be executed with a non-default rounding mode. This option
disables constant folding of floating-point expressions at compile time (which
may be affected by rounding mode) and arithmetic transformations that are
unsafe in the presence of sign-dependent rounding modes.

The default is ‘~fno-rounding-math’.

This option is experimental and does not currently guarantee to disable all GCC
optimizations that are affected by rounding mode. Future versions of GCC may
provide finer control of this setting using C99’s FENV_ACCESS pragma. This
command-line option will be used to specify the default state for FENV_ACCESS.

-fsignaling-nans
Compile code assuming that IEEE signaling NaNs may generate user-visible
traps during floating-point operations. Setting this option disables optimiza-
tions that may change the number of exceptions visible with signaling NaNs.
This option implies ‘~ftrapping-math’.
This option causes the preprocessor macro __SUPPORT_SNAN__ to be defined.
The default is ‘~fno-signaling-nans’.

This option is experimental and does not currently guarantee to disable all
GCC optimizations that affect signaling NaN behavior.

-fsingle-precision-constant
Treat floating-point constants as single precision instead of implicitly converting
them to double-precision constants.

-fcx-limited-range
When enabled, this option states that a range reduction step is not needed when
performing complex division. Also, there is no checking whether the result of
a complex multiplication or division is NaN + I*NaN, with an attempt to rescue

136

Using the GNU Compiler Collection (GCC)

the situation in that case. The default is ‘~fno-cx-limited-range’, but is
enabled by ‘-ffast-math’.

This option controls the default setting of the ISO C99 CX_LIMITED_RANGE
pragma. Nevertheless, the option applies to all languages.

—-fcx-fortran-rules

Complex multiplication and division follow Fortran rules. Range reduction is
done as part of complex division, but there is no checking whether the result of
a complex multiplication or division is NaN + I*NaN, with an attempt to rescue
the situation in that case.

The default is ‘-fno-cx-fortran-rules’.

The following options control optimizations that may improve performance, but are not
enabled by any ‘-0’ options. This section includes experimental options that may produce
broken code.

-fbranch-probabilities

After running a program compiled with ‘~-fprofile-arcs’ (see Section 3.9 [Op-
tions for Debugging Your Program or gcc|, page 78), you can compile it a
second time using ‘-fbranch-probabilities’, to improve optimizations based
on the number of times each branch was taken. When a program compiled
with ‘-fprofile-arcs’ exits, it saves arc execution counts to a file called
‘sourcename.gcda’ for each source file. The information in this data file is
very dependent on the structure of the generated code, so you must use the
same source code and the same optimization options for both compilations.
With ‘-fbranch-probabilities’, GCC puts a ‘REG_BR_PROB’ note on each
‘JUMP_INSN’ and ‘CALL_INSN’. These can be used to improve optimization.
Currently, they are only used in one place: in ‘reorg.c’, instead of guessing
which path a branch is most likely to take, the ‘REG_BR_PROB’ values are used
to exactly determine which path is taken more often.

-fprofile-values

If combined with ‘-fprofile-arcs’, it adds code so that some data about
values of expressions in the program is gathered.

With ‘~fbranch-probabilities’, it reads back the data gathered from profil-
ing values of expressions for usage in optimizations.

Enabled with ‘~-fprofile-generate’ and ‘-fprofile-use’.

-fprofile-reorder-functions

-fvpt

Function reordering based on profile instrumentation collects first time of exe-
cution of a function and orders these functions in ascending order.

Enabled with ‘~-fprofile-use’.

If combined with ‘~fprofile-arcs’, this option instructs the compiler to add
code to gather information about values of expressions.

With ‘~-fbranch-probabilities’, it reads back the data gathered and actually
performs the optimizations based on them. Currently the optimizations include
specialization of division operations using the knowledge about the value of the
denominator.

Chapter 3: GCC Command Options 137

—-frename-registers
Attempt to avoid false dependencies in scheduled code by making use of registers
left over after register allocation. This optimization most benefits processors
with lots of registers. Depending on the debug information format adopted by
the target, however, it can make debugging impossible, since variables no longer
stay in a “home register”.

Enabled by default with ‘~funroll-loops’ and ‘-fpeel-loops’.

-ftracer Perform tail duplication to enlarge superblock size. This transformation simpli-
fies the control flow of the function allowing other optimizations to do a better
job.

Enabled with ‘-fprofile-use’.

-funroll-loops
Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘~funroll-loops’ implies ‘~frerun-cse-after-loop’,
‘~fweb’ and ‘~frename-registers’. It also turns on complete loop peeling (i.e.
complete removal of loops with a small constant number of iterations). This
option makes code larger, and may or may not make it run faster.

Enabled with ‘~-fprofile-use’.

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘~funroll-all-loops’
implies the same options as ‘-funroll-loops’.

-fpeel-loops
Peels loops for which there is enough information that they do not roll much
(from profile feedback). It also turns on complete loop peeling (i.e. complete
removal of loops with small constant number of iterations).

Enabled with ‘-fprofile-use’.

-fmove-loop-invariants
Enables the loop invariant motion pass in the RTL loop optimizer. Enabled at
level ‘-01’

-funswitch-loops
Move branches with loop invariant conditions out of the loop, with duplicates
of the loop on both branches (modified according to result of the condition).

-ffunction-sections

-fdata-sections
Place each function or data item into its own section in the output file if the
target supports arbitrary sections. The name of the function or the name of
the data item determines the section’s name in the output file.

Use these options on systems where the linker can perform optimizations to
improve locality of reference in the instruction space. Most systems using the
ELF object format and SPARC processors running Solaris 2 have linkers with
such optimizations. AIX may have these optimizations in the future.

138

Using the GNU Compiler Collection (GCC)

Only use these options when there are significant benefits from doing so. When
you specify these options, the assembler and linker create larger object and
executable files and are also slower. You cannot use gprof on all systems if you
specify this option, and you may have problems with debugging if you specify
both this option and ‘-g’.

-fbranch-target-load-optimize

Perform branch target register load optimization before prologue / epilogue
threading. The use of target registers can typically be exposed only during
reload, thus hoisting loads out of loops and doing inter-block scheduling needs
a separate optimization pass.

-fbranch-target-load-optimize2

Perform branch target register load optimization after prologue / epilogue
threading.

—-fbtr-bb-exclusive

When performing branch target register load optimization, don’t reuse branch
target registers within any basic block.

-fstack-protector

Emit extra code to check for buffer overflows, such as stack smashing attacks.
This is done by adding a guard variable to functions with vulnerable objects.
This includes functions that call alloca, and functions with buffers larger than
8 bytes. The guards are initialized when a function is entered and then checked
when the function exits. If a guard check fails, an error message is printed and
the program exits.

-fstack-protector-all

Like ‘~fstack-protector’ except that all functions are protected.

-fstack-protector-strong

Like ‘~fstack-protector’ but includes additional functions to be protected
— those that have local array definitions, or have references to local frame
addresses.

-fsection—-anchors

Try to reduce the number of symbolic address calculations by using shared
“anchor” symbols to address nearby objects. This transformation can help to
reduce the number of GOT entries and GOT accesses on some targets.

For example, the implementation of the following function foo:

static int a, b, c;

int foo (void) { return a + b + c; }
usually calculates the addresses of all three variables, but if you compile it with
‘~fsection-anchors’, it accesses the variables from a common anchor point
instead. The effect is similar to the following pseudocode (which isn’t valid C):

int foo (void)
{
register int *xr = &x;
return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];

}
Not all targets support this option.

Chapter 3: GCC Command Options 139

—-—-param name=value
In some places, GCC uses various constants to control the amount of optimiza-
tion that is done. For example, GCC does not inline functions that contain
more than a certain number of instructions. You can control some of these
constants on the command line using the ‘--param’ option.

The names of specific parameters, and the meaning of the values, are tied to
the internals of the compiler, and are subject to change without notice in future
releases.

In each case, the value is an integer. The allowable choices for name are:

predictable-branch-outcome
When branch is predicted to be taken with probability lower than
this threshold (in percent), then it is considered well predictable.
The default is 10.

max-crossjump-edges
The maximum number of incoming edges to consider for cross-
jumping. The algorithm used by ‘-fcrossjumping’ is O(N?) in
the number of edges incoming to each block. Increasing values
mean more aggressive optimization, making the compilation time
increase with probably small improvement in executable size.

min-crossjump-insns
The minimum number of instructions that must be matched at the
end of two blocks before cross-jumping is performed on them. This
value is ignored in the case where all instructions in the block being
cross-jumped from are matched. The default value is 5.

max—-grow-copy-bb-insns
The maximum code size expansion factor when copying basic blocks
instead of jumping. The expansion is relative to a jump instruction.
The default value is 8.

max-goto-duplication-insns
The maximum number of instructions to duplicate to a block that
jumps to a computed goto. To avoid O(N?) behavior in a number
of passes, GCC factors computed gotos early in the compilation
process, and unfactors them as late as possible. Only computed
jumps at the end of a basic blocks with no more than max-goto-
duplication-insns are unfactored. The default value is 8.

max-delay-slot-insn-search
The maximum number of instructions to consider when looking for
an instruction to fill a delay slot. If more than this arbitrary number
of instructions are searched, the time savings from filling the delay
slot are minimal, so stop searching. Increasing values mean more
aggressive optimization, making the compilation time increase with
probably small improvement in execution time.

140

Using the GNU Compiler Collection (GCC)

max—-delay-slot-live-search
When trying to fill delay slots, the maximum number of instruc-
tions to consider when searching for a block with valid live register
information. Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compilation time. This pa-
rameter should be removed when the delay slot code is rewritten
to maintain the control-flow graph.

max-gcse-memory
The approximate maximum amount of memory that can be allo-
cated in order to perform the global common subexpression elim-
ination optimization. If more memory than specified is required,
the optimization is not done.

max-gcse-insertion-ratio
If the ratio of expression insertions to deletions is larger than this
value for any expression, then RTL PRE inserts or removes the
expression and thus leaves partially redundant computations in the
instruction stream. The default value is 20.

max-pending-list-length
The maximum number of pending dependencies scheduling allows
before flushing the current state and starting over. Large functions
with few branches or calls can create excessively large lists which
needlessly consume memory and resources.

max-modulo-backtrack-attempts
The maximum number of backtrack attempts the scheduler should
make when modulo scheduling a loop. Larger values can exponen-
tially increase compilation time.

max-inline-insns-single
Several parameters control the tree inliner used in GCC. This num-
ber sets the maximum number of instructions (counted in GCC’s
internal representation) in a single function that the tree inliner
considers for inlining. This only affects functions declared inline
and methods implemented in a class declaration (C++). The de-
fault value is 400.

max-inline-insns-auto
When you use ‘~finline-functions’ (included in ‘-03’), a lot of
functions that would otherwise not be considered for inlining by
the compiler are investigated. To those functions, a different (more
restrictive) limit compared to functions declared inline can be ap-
plied. The default value is 40.

inline-min-speedup
When estimated performance improvement of caller + callee run-
time exceeds this threshold (in precent), the function can be inlined
regardless the limit on ‘--param max-inline-insns-single’ and
‘-—param max-inline-insns-auto’.

Chapter 3: GCC Command Options 141

large-function-insns
The limit specifying really large functions. For functions larger
than this limit after inlining, inlining is constrained by ‘--param
large-function-growth’. This parameter is useful primarily to
avoid extreme compilation time caused by non-linear algorithms
used by the back end. The default value is 2700.

large-function-growth
Specifies maximal growth of large function caused by inlining in per-
cents. The default value is 100 which limits large function growth
to 2.0 times the original size.

large-unit-insns

The limit specifying large translation unit. Growth caused by
inlining of units larger than this limit is limited by ‘--param
inline-unit-growth’. For small units this might be too tight.
For example, consider a unit consisting of function A that is
inline and B that just calls A three times. If B is small relative
to A, the growth of unit is 300\% and yet such inlining is
very sane. For very large units consisting of small inlineable
functions, however, the overall unit growth limit is needed to avoid
exponential explosion of code size. Thus for smaller units, the
size is increased to ‘--param large-unit-insns’ before applying
‘-—param inline-unit-growth’. The default is 10000.

inline-unit-growth
Specifies maximal overall growth of the compilation unit caused by
inlining. The default value is 30 which limits unit growth to 1.3
times the original size.

ipcp—unit-growth
Specifies maximal overall growth of the compilation unit caused
by interprocedural constant propagation. The default value is 10
which limits unit growth to 1.1 times the original size.

large-stack-frame
The limit specifying large stack frames. While inlining the algo-
rithm is trying to not grow past this limit too much. The default
value is 256 bytes.

large-stack-frame-growth
Specifies maximal growth of large stack frames caused by inlining in
percents. The default value is 1000 which limits large stack frame
growth to 11 times the original size.

max-inline-insns-recursive

max-inline-insns-recursive-auto
Specifies the maximum number of instructions an out-of-line copy of
a self-recursive inline function can grow into by performing recursive
inlining.

142

Using the GNU Compiler Collection (GCC)

For functions declared inline, ‘~-param max-inline-insns-recursive’l]
is taken into account. For functions not declared inline, recursive
inlining happens only when ‘-finline-functions’ (included in
‘-03’) is enabled and ‘--param max-inline-insns-recursive-auto’]]

is used. The default value is 450.

max-inline-recursive-depth
max-inline-recursive-depth-auto
Specifies the maximum recursion depth used for recursive inlining.

For functions declared inline, ‘~-param max-inline-recursive-depth’j]
is taken into account. For functions not declared inline, recursive
inlining happens only when ‘-finline-functions’ (included in
‘-03’) is enabled and ‘--param max-inline-recursive-depth-auto’}}

is used. The default value is 8.

min-inline-recursive-probability
Recursive inlining is profitable only for function having deep re-
cursion in average and can hurt for function having little recursion
depth by increasing the prologue size or complexity of function
body to other optimizers.

When profile feedback is available (see ‘~fprofile-generate’) the
actual recursion depth can be guessed from probability that func-
tion recurses via a given call expression. This parameter limits in-
lining only to call expressions whose probability exceeds the given
threshold (in percents). The default value is 10.

early-inlining-insns
Specify growth that the early inliner can make. In effect it increases
the amount of inlining for code having a large abstraction penalty.
The default value is 10.

max-early-inliner-iterations

max-early-inliner-iterations
Limit of iterations of the early inliner. This basically bounds the
number of nested indirect calls the early inliner can resolve. Deeper
chains are still handled by late inlining.

comdat-sharing-probability

comdat-sharing-probability
Probability (in percent) that C++ inline function with comdat vis-
ibility are shared across multiple compilation units. The default
value is 20.

min-vect-loop-bound
The minimum number of iterations under which loops are not vec-
torized when ‘-ftree-vectorize’ is used. The number of itera-
tions after vectorization needs to be greater than the value specified
by this option to allow vectorization. The default value is 0.

Chapter 3: GCC Command Options 143

gcse—cost—-distance-ratio
Scaling factor in calculation of maximum distance an expression can
be moved by GCSE optimizations. This is currently supported only
in the code hoisting pass. The bigger the ratio, the more aggres-
sive code hoisting is with simple expressions, i.e., the expressions
that have cost less than ‘gcse-unrestricted-cost’. Specifying 0
disables hoisting of simple expressions. The default value is 10.

gcse-unrestricted-cost
Cost, roughly measured as the cost of a single typical machine
instruction, at which GCSE optimizations do not constrain the dis-
tance an expression can travel. This is currently supported only
in the code hoisting pass. The lesser the cost, the more aggres-
sive code hoisting is. Specifying 0 allows all expressions to travel
unrestricted distances. The default value is 3.

max-hoist-depth
The depth of search in the dominator tree for expressions to hoist.
This is used to avoid quadratic behavior in hoisting algorithm. The
value of 0 does not limit on the search, but may slow down compi-
lation of huge functions. The default value is 30.

max-tail-merge-comparisons
The maximum amount of similar bbs to compare a bb with. This is
used to avoid quadratic behavior in tree tail merging. The default
value is 10.

max-tail-merge-iterations
The maximum amount of iterations of the pass over the function.
This is used to limit compilation time in tree tail merging. The
default value is 2.

max-unrolled-insns
The maximum number of instructions that a loop may have to be
unrolled. If a loop is unrolled, this parameter also determines how
many times the loop code is unrolled.

max-average-unrolled-insns
The maximum number of instructions biased by probabilities of
their execution that a loop may have to be unrolled. If a loop is
unrolled, this parameter also determines how many times the loop
code is unrolled.

max-unroll-times
The maximum number of unrollings of a single loop.

max-peeled-insns
The maximum number of instructions that a loop may have to be
peeled. If a loop is peeled, this parameter also determines how
many times the loop code is peeled.

max-peel-times
The maximum number of peelings of a single loop.

144

Using the GNU Compiler Collection (GCC)

max—-peel-branches
The maximum number of branches on the hot path through the
peeled sequence.

max-completely-peeled-insns
The maximum number of insns of a completely peeled loop.

max-completely-peel-times
The maximum number of iterations of a loop to be suitable for
complete peeling.

max-completely-peel-loop-nest-depth
The maximum depth of a loop nest suitable for complete peeling.

max-unswitch-insns
The maximum number of insns of an unswitched loop.

max-unswitch-level
The maximum number of branches unswitched in a single loop.

lim-expensive
The minimum cost of an expensive expression in the loop invariant
motion.

iv-consider—-all-candidates-bound
Bound on number of candidates for induction variables, below
which all candidates are considered for each use in induction
variable optimizations. If there are more candidates than this,
only the most relevant ones are considered to avoid quadratic time
complexity.

iv-max-considered-uses
The induction variable optimizations give up on loops that contain
more induction variable uses.

iv-always-prune-cand-set-bound
If the number of candidates in the set is smaller than this value,
always try to remove unnecessary ivs from the set when adding a
new one.

scev-max-expr-size
Bound on size of expressions used in the scalar evolutions analyzer.
Large expressions slow the analyzer.

scev-max—-expr-complexity
Bound on the complexity of the expressions in the scalar evolutions
analyzer. Complex expressions slow the analyzer.

omega-max-vars
The maximum number of variables in an Omega constraint system.
The default value is 128.

omega-max-geqs

The maximum number of inequalities in an Omega constraint sys-
tem. The default value is 256.

Chapter 3: GCC Command Options 145

omega-max-eqs
The maximum number of equalities in an Omega constraint system.
The default value is 128.

omega-max-wild-cards
The maximum number of wildcard variables that the Omega solver
is able to insert. The default value is 18.

omega-hash-table-size
The size of the hash table in the Omega solver. The default value
is 550.

omega-max-keys
The maximal number of keys used by the Omega solver. The de-
fault value is 500.

omega-eliminate-redundant-constraints
When set to 1, use expensive methods to eliminate all redundant
constraints. The default value is 0.

vect-max-version-for-alignment-checks
The maximum number of run-time checks that can be performed
when doing loop versioning for alignment in the vectorizer.

vect-max-version-for-alias-checks
The maximum number of run-time checks that can be performed
when doing loop versioning for alias in the vectorizer.

vect-max-peeling-for-alignment
The maximum number of loop peels to enhance access alignment
for vectorizer. Value -1 means 'no limit’.

max-iterations-to-track
The maximum number of iterations of a loop the brute-force algo-
rithm for analysis of the number of iterations of the loop tries to
evaluate.

hot-bb-count-ws-permille
A basic block profile count is considered hot if it contributes to the
given permillage (i.e. 0...1000) of the entire profiled execution.

hot-bb-frequency-fraction
Select fraction of the entry block frequency of executions of basic
block in function given basic block needs to have to be considered
hot.

max-predicted-iterations
The maximum number of loop iterations we predict statically. This
is useful in cases where a function contains a single loop with known
bound and another loop with unknown bound. The known number
of iterations is predicted correctly, while the unknown number of
iterations average to roughly 10. This means that the loop without
bounds appears artificially cold relative to the other one.

146

Using the GNU Compiler Collection (GCC)

builtin-expect-probability
Control the probability of the expression having the specified value.
This parameter takes a percentage (i.e. 0 ... 100) as input. The
default probability of 90 is obtained empirically.

align-threshold
Select fraction of the maximal frequency of executions of a basic
block in a function to align the basic block.

align-loop-iterations
A loop expected to iterate at least the selected number of iterations
is aligned.

tracer-dynamic-coverage

tracer-dynamic-coverage-feedback
This value is used to limit superblock formation once the given per-
centage of executed instructions is covered. This limits unnecessary
code size expansion.

The ‘tracer-dynamic-coverage-feedback’ is used only when pro-
file feedback is available. The real profiles (as opposed to statically
estimated ones) are much less balanced allowing the threshold to
be larger value.

tracer-max-code-growth
Stop tail duplication once code growth has reached given percent-
age. This is a rather artificial limit, as most of the duplicates are
eliminated later in cross jumping, so it may be set to much higher
values than is the desired code growth.

tracer-min-branch-ratio
Stop reverse growth when the reverse probability of best edge is
less than this threshold (in percent).

tracer-min-branch-ratio

tracer-min-branch-ratio-feedback
Stop forward growth if the best edge has probability lower than
this threshold.

Similarly to ‘tracer-dynamic-coverage’ two values are present,
one for compilation for profile feedback and one for compilation
without. The value for compilation with profile feedback needs to
be more conservative (higher) in order to make tracer effective.

max-cse—-path-length
The maximum number of basic blocks on path that CSE considers.
The default is 10.

max-cse—-insns
The maximum number of instructions CSE processes before flush-
ing. The default is 1000.

Chapter 3: GCC Command Options 147

ggc-min-expand
GCC uses a garbage collector to manage its own memory alloca-
tion. This parameter specifies the minimum percentage by which
the garbage collector’s heap should be allowed to expand between
collections. Tuning this may improve compilation speed; it has no
effect on code generation.

The default is 30% + 70% * (RAM/1GB) with an upper bound
of 100% when RAM >= 1GB. If getrlimit is available, the no-
tion of “RAM” is the smallest of actual RAM and RLIMIT_DATA or
RLIMIT_AS. If GCC is not able to calculate RAM on a particular
platform, the lower bound of 30% is used. Setting this parameter
and ‘ggc-min-heapsize’ to zero causes a full collection to occur
at every opportunity. This is extremely slow, but can be useful for
debugging.

ggc-min-heapsize

Minimum size of the garbage collector’s heap before it begins
bothering to collect garbage. The first collection occurs after the
heap expands by ‘ggc-min-expand’% beyond ‘ggc-min-heapsize’.
Again, tuning this may improve compilation speed, and has no
effect on code generation.

The default is the smaller of RAM/8, RLIMIT_RSS, or a limit
that tries to ensure that RLIMIT_DATA or RLIMIT_AS are not
exceeded, but with a lower bound of 4096 (four megabytes) and
an upper bound of 131072 (128 megabytes). If GCC is not able
to calculate RAM on a particular platform, the lower bound is
used. Setting this parameter very large effectively disables garbage
collection. Setting this parameter and ‘ggc-min-expand’ to zero
causes a full collection to occur at every opportunity.

max-reload-search-insns
The maximum number of instruction reload should look backward
for equivalent register. Increasing values mean more aggressive op-
timization, making the compilation time increase with probably
slightly better performance. The default value is 100.

max-cselib-memory-locations
The maximum number of memory locations cselib should take into
account. Increasing values mean more aggressive optimization,
making the compilation time increase with probably slightly better
performance. The default value is 500.

reorder-blocks-duplicate

reorder-blocks-duplicate-feedback
Used by the basic block reordering pass to decide whether to use
unconditional branch or duplicate the code on its destination. Code
is duplicated when its estimated size is smaller than this value mul-
tiplied by the estimated size of unconditional jump in the hot spots
of the program.

148

Using the GNU Compiler Collection (GCC)

The ‘reorder-block-duplicate-feedback’ is used only when pro-
file feedback is available. It may be set to higher values than
‘reorder-block-duplicate’ since information about the hot spots
is more accurate.

max-sched-ready-insns
The maximum number of instructions ready to be issued the sched-
uler should consider at any given time during the first scheduling
pass. Increasing values mean more thorough searches, making the
compilation time increase with probably little benefit. The default
value is 100.

max-sched-region-blocks
The maximum number of blocks in a region to be considered for
interblock scheduling. The default value is 10.

max-pipeline-region-blocks
The maximum number of blocks in a region to be considered for
pipelining in the selective scheduler. The default value is 15.

max-sched-region-insns
The maximum number of insns in a region to be considered for
interblock scheduling. The default value is 100.

max-pipeline-region-insns
The maximum number of insns in a region to be considered for
pipelining in the selective scheduler. The default value is 200.

min-spec-prob
The minimum probability (in percents) of reaching a source block
for interblock speculative scheduling. The default value is 40.

max-sched-extend-regions-iters
The maximum number of iterations through CFG to extend regions.
A value of 0 (the default) disables region extensions.

max-sched-insn-conflict-delay
The maximum conflict delay for an insn to be considered for spec-
ulative motion. The default value is 3.

sched-spec-prob-cutoff
The minimal probability of speculation success (in percents), so
that speculative insns are scheduled. The default value is 40.

sched-spec-state-edge-prob-cutoff
The minimum probability an edge must have for the scheduler to
save its state across it. The default value is 10.

sched-mem-true-dep-cost
Minimal distance (in CPU cycles) between store and load targeting
same memory locations. The default value is 1.

Chapter 3: GCC Command Options 149

selsched-max—-lookahead
The maximum size of the lookahead window of selective scheduling.
It is a depth of search for available instructions. The default value
is 50.

selsched-max-sched-times
The maximum number of times that an instruction is scheduled
during selective scheduling. This is the limit on the number of
iterations through which the instruction may be pipelined. The
default value is 2.

selsched-max-insns-to-rename
The maximum number of best instructions in the ready list that
are considered for renaming in the selective scheduler. The default
value is 2.

sms-min-sc
The minimum value of stage count that swing modulo scheduler
generates. The default value is 2.

max-last-value-rtl
The maximum size measured as number of RTLs that can be
recorded in an expression in combiner for a pseudo register as last
known value of that register. The default is 10000.

integer-share-limit
Small integer constants can use a shared data structure, reducing
the compiler’s memory usage and increasing its speed. This sets
the maximum value of a shared integer constant. The default value
is 256.

ssp-buffer-size
The minimum size of buffers (i.e. arrays) that receive stack smash-
ing protection when ‘-fstack-protection’ is used.

min-size-for-stack-sharing
The minimum size of variables taking part in stack slot sharing
when not optimizing. The default value is 32.

max-jump-thread-duplication-stmts
Maximum number of statements allowed in a block that needs to
be duplicated when threading jumps.

max-fields-for-field-sensitive
Maximum number of fields in a structure treated in a field sensitive
manner during pointer analysis. The default is zero for ‘-00" and
‘-01’, and 100 for ‘-0s’, ‘-02’, and ‘-03’.

prefetch-latency
Estimate on average number of instructions that are executed be-
fore prefetch finishes. The distance prefetched ahead is propor-
tional to this constant. Increasing this number may also lead to
less streams being prefetched (see ‘simultaneous-prefetches’).

150

Using the GNU Compiler Collection (GCC)

simultaneous-prefetches
Maximum number of prefetches that can run at the same time.

ll-cache-line-size
The size of cache line in L1 cache, in bytes.

ll-cache-size
The size of L1 cache, in kilobytes.

12-cache-size
The size of L2 cache, in kilobytes.

min-insn-to-prefetch-ratio
The minimum ratio between the number of instructions and the
number of prefetches to enable prefetching in a loop.

prefetch-min-insn-to-mem-ratio
The minimum ratio between the number of instructions and the
number of memory references to enable prefetching in a loop.

use-canonical-types
Whether the compiler should use the “canonical” type system. By
default, this should always be 1, which uses a more efficient internal
mechanism for comparing types in C++ and Objective-C++. How-
ever, if bugs in the canonical type system are causing compilation
failures, set this value to 0 to disable canonical types.

switch-conversion-max-branch-ratio
Switch initialization conversion refuses to create arrays that are big-
ger than ‘switch-conversion-max-branch-ratio’ times the num-
ber of branches in the switch.

max-partial-antic-length

Maximum length of the partial antic set computed during the tree
partial redundancy elimination optimization (‘-ftree-pre’) when
optimizing at ‘-03’ and above. For some sorts of source code the en-
hanced partial redundancy elimination optimization can run away,
consuming all of the memory available on the host machine. This
parameter sets a limit on the length of the sets that are computed,
which prevents the runaway behavior. Setting a value of 0 for this
parameter allows an unlimited set length.

sccvn-max-scc-size
Maximum size of a strongly connected component (SCC) during
SCCVN processing. If this limit is hit, SCCVN processing for the
whole function is not done and optimizations depending on it are
disabled. The default maximum SCC size is 10000.

sccvn-max-alias—-queries-per-access
Maximum number of alias-oracle queries we perform when look-
ing for redundancies for loads and stores. If this limit is hit the
search is aborted and the load or store is not considered redundant.

Chapter 3: GCC Command Options 151

The number of queries is algorithmically limited to the number of
stores on all paths from the load to the function entry. The default
maxmimum number of queries is 1000.

ira-max-loops—num
TRA uses regional register allocation by default. If a function con-
tains more loops than the number given by this parameter, only at
most the given number of the most frequently-executed loops form
regions for regional register allocation. The default value of the
parameter is 100.

ira-max-conflict-table-size

Although TRA uses a sophisticated algorithm to compress the con-
flict table, the table can still require excessive amounts of memory
for huge functions. If the conflict table for a function could be more
than the size in MB given by this parameter, the register allocator
instead uses a faster, simpler, and lower-quality algorithm that does
not require building a pseudo-register conflict table. The default
value of the parameter is 2000.

ira-loop-reserved-regs
IRA can be used to evaluate more accurate register pressure in
loops for decisions to move loop invariants (see ‘-03’). The number
of available registers reserved for some other purposes is given by
this parameter. The default value of the parameter is 2, which
is the minimal number of registers needed by typical instructions.
This value is the best found from numerous experiments.

loop-invariant-max-bbs-in-loop
Loop invariant motion can be very expensive, both in compilation
time and in amount of needed compile-time memory, with very
large loops. Loops with more basic blocks than this parameter
won’t have loop invariant motion optimization performed on them.
The default value of the parameter is 1000 for ‘=01’ and 10000 for
‘-02’ and above.

loop—max—-datarefs-for-datadeps
Building data dapendencies is expensive for very large loops. This
parameter limits the number of data references in loops that are
considered for data dependence analysis. These large loops are no
handled by the optimizations using loop data dependencies. The
default value is 1000.

max-vartrack-size

Sets a maximum number of hash table slots to use during variable
tracking dataflow analysis of any function. If this limit is exceeded
with variable tracking at assignments enabled, analysis for that
function is retried without it, after removing all debug insns from
the function. If the limit is exceeded even without debug insns, var
tracking analysis is completely disabled for the function. Setting
the parameter to zero makes it unlimited.

152 Using the GNU Compiler Collection (GCC)

max-vartrack-expr—depth

Sets a maximum number of recursion levels when attempting to
map variable names or debug temporaries to value expressions.
This trades compilation time for more complete debug information.
If this is set too low, value expressions that are available and could
be represented in debug information may end up not being used;
setting this higher may enable the compiler to find more complex
debug expressions, but compile time and memory use may grow.
The default is 12.

min-nondebug-insn-uid
Use uids starting at this parameter for nondebug insns. The range
below the parameter is reserved exclusively for debug insns created
by ‘-fvar-tracking-assignments’, but debug insns may get (non-
overlapping) uids above it if the reserved range is exhausted.

ipa-sra-ptr-growth-factor
IPA-SRA replaces a pointer to an aggregate with one or more
new parameters only when their cumulative size is less or equal
to ‘ipa-sra-ptr-growth-factor’ times the size of the original
pointer parameter.

tm-max-aggregate-size
When making copies of thread-local variables in a transaction, this
parameter specifies the size in bytes after which variables are saved
with the logging functions as opposed to save/restore code sequence
pairs. This option only applies when using ‘~fgnu-tm’.

graphite-max-nb-scop-params
To avoid exponential effects in the Graphite loop transforms, the
number of parameters in a Static Control Part (SCoP) is bounded.
The default value is 10 parameters. A variable whose value is un-
known at compilation time and defined outside a SCoP is a param-
eter of the SCoP.

graphite-max-bbs-per-function
To avoid exponential effects in the detection of SCoPs, the size of
the functions analyzed by Graphite is bounded. The default value
is 100 basic blocks.

loop-block-tile-size
Loop blocking or strip mining transforms, enabled with
‘~floop-block’ or ‘-floop-strip-mine’, strip mine each loop in
the loop nest by a given number of iterations. The strip length
can be changed using the ‘loop-block-tile-size’ parameter.
The default value is 51 iterations.

ipa-cp-value-list-size
IPA-CP attempts to track all possible values and types passed to a
function’s parameter in order to propagate them and perform devir-

Chapter 3: GCC Command Options 153

tualization. ‘ipa-cp-value-list-size’ is the maximum number
of values and types it stores per one formal parameter of a function.

lto-partitions
Specify desired number of partitions produced during WHOPR
compilation. The number of partitions should exceed the number
of CPUs used for compilation. The default value is 32.

lto-minpartition
Size of minimal partition for WHOPR (in estimated instructions).
This prevents expenses of splitting very small programs into too
many partitions.

cxx-max-namespaces-for-diagnostic-help
The maximum number of namespaces to consult for suggestions
when C++ name lookup fails for an identifier. The default is 1000.

sink-frequency-threshold
The maximum relative execution frequency (in percents) of the tar-
get block relative to a statement’s original block to allow statement
sinking of a statement. Larger numbers result in more aggressive
statement sinking. The default value is 75. A small positive ad-
justment is applied for statements with memory operands as those
are even more profitable so sink.

max-stores-to-sink
The maximum number of conditional stores paires that can be
sunk. Set to 0 if either vectorization (‘-ftree-vectorize’) or if-
conversion (‘-ftree-loop-if-convert’) is disabled. The default
is 2.

allow-load-data-races
Allow optimizers to introduce new data races on loads. Set to 1
to allow, otherwise to 0. This option is enabled by default unless
implicitly set by the ‘-fmemory-model=" option.

allow-store-data-races
Allow optimizers to introduce new data races on stores. Set to 1
to allow, otherwise to 0. This option is enabled by default unless
implicitly set by the ‘-fmemory-model=" option.

allow-packed-load-data-races
Allow optimizers to introduce new data races on packed data loads.
Set to 1 to allow, otherwise to 0. This option is enabled by default
unless implicitly set by the ‘~fmemory-model=’ option.

allow-packed-store-data-races
Allow optimizers to introduce new data races on packed data stores.
Set to 1 to allow, otherwise to 0. This option is enabled by default
unless implicitly set by the ‘~fmemory-model=’ option.

154 Using the GNU Compiler Collection (GCC)

case-values-threshold
The smallest number of different values for which it is best to use
a jump-table instead of a tree of conditional branches. If the value
is 0, use the default for the machine. The default is 0.

tree-reassoc-width
Set the maximum number of instructions executed in parallel in re-
associated tree. This parameter overrides target dependent heuris-
tics used by default if has non zero value.

sched-pressure-algorithm

Choose between the two available implementations of
‘~fsched-pressure’. Algorithm 1 is the original implementation
and is the more likely to prevent instructions from being reordered.
Algorithm 2 was designed to be a compromise between the
relatively conservative approach taken by algorithm 1 and the
rather aggressive approach taken by the default scheduler. It relies
more heavily on having a regular register file and accurate register
pressure classes. See ‘haifa-sched.c’ in the GCC sources for
more details.

The default choice depends on the target.

max-slsr-cand-scan
Set the maximum number of existing candidates that will be consid-
ered when seeking a basis for a new straight-line strength reduction
candidate.

asan-globals
Enable buffer overflow detection for global objects. This
kind of protection is enabled by default if you are using
‘~fsanitize=address’ option. To disable global objects
protection use ‘--param asan-globals=0’.

asan-stack
Enable buffer overflow detection for stack objects. This kind of
protection is enabled by default when using'-fsanitize=address’.
To disable stack protection use ‘~-param asan-stack=0" option.

asan-instrument-reads
Enable buffer overflow detection for memory reads. This
kind of protection 1is enabled by default when using
‘~fsanitize=address’. To disable memory reads protection use
‘-—param asan-instrument-reads=0’.

asan-instrument-writes
Enable buffer overflow detection for memory writes. This
kind of protection is enabled by default when using
‘~fsanitize=address’. To disable memory writes protection use
‘-—param asan-instrument-writes=0’ option.

Chapter 3: GCC Command Options 155

asan-memintrin
Enable detection for built-in functions. This kind of protection is
enabled by default when using ‘~fsanitize=address’. To disable
built-in functions protection use ‘--param asan-memintrin=0’.

asan-use-after-return
Enable detection of use-after-return. This kind of protection
is enabled by default when using ‘-fsanitize=address’

option. To disable use-after-return detection use ‘--param
asan-use-after-return=0’.

3.11 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

If you use the ‘-E’ option, nothing is done except preprocessing. Some of these options
make sense only together with ‘~E’ because they cause the preprocessor output to be un-
suitable for actual compilation.

-Wp,option

You can use ‘-Wp, option’ to bypass the compiler driver and pass option directly
through to the preprocessor. If option contains commas, it is split into multiple
options at the commas. However, many options are modified, translated or
interpreted by the compiler driver before being passed to the preprocessor,
and ‘-Wp’ forcibly bypasses this phase. The preprocessor’s direct interface is
undocumented and subject to change, so whenever possible you should avoid
using ‘-Wp’ and let the driver handle the options instead.

-Xpreprocessor option
Pass option as an option to the preprocessor. You can use this to supply
system-specific preprocessor options that GCC does not recognize.

If you want to pass an option that takes an argument, you must use
‘~Xpreprocessor’ twice, once for the option and once for the argument.

-no-integrated-cpp

Perform preprocessing as a separate pass before compilation. By default, GCC
performs preprocessing as an integrated part of input tokenization and parsing.
If this option is provided, the appropriate language front end (ccl, cclplus,
or cclobj for C, C++, and Objective-C, respectively) is instead invoked twice,
once for preprocessing only and once for actual compilation of the preprocessed
input. This option may be useful in conjunction with the ‘-B’ or ‘-~wrapper’
options to specify an alternate preprocessor or perform additional processing of
the program source between normal preprocessing and compilation.

-D name Predefine name as a macro, with definition 1.

-D name=definition
The contents of definition are tokenized and processed as if they appeared dur-
ing translation phase three in a ‘#define’ directive. In particular, the definition
will be truncated by embedded newline characters.

156

-U name

-undef

-I dir

-o file

-Wall

-Wcomment
-Wcomments

Using the GNU Compiler Collection (GCC)

If you are invoking the preprocessor from a shell or shell-like program you may
need to use the shell’s quoting syntax to protect characters such as spaces that
have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its
argument list with surrounding parentheses before the equals sign (if any).
Parentheses are meaningful to most shells, so you will need to quote the option.
With sh and csh, ‘-D’name(args...)=definition’’ works.

‘-D’ and ‘-U’ options are processed in the order they are given on the command
line. All ‘~imacros file’ and ‘-include file’ options are processed after all
‘-D’ and ‘-U’ options.

Cancel any previous definition of name, either built in or provided with a ‘-D’
option.

Do not predefine any system-specific or GCC-specific macros. The standard
predefined macros remain defined.

Add the directory dir to the list of directories to be searched for header files.
Directories named by ‘-I’ are searched before the standard system include di-
rectories. If the directory dir is a standard system include directory, the option
is ignored to ensure that the default search order for system directories and the
special treatment of system headers are not defeated . If dir begins with =, then
the = will be replaced by the sysroot prefix; see ‘~-sysroot’ and ‘-isysroot’.

Write output to file. This is the same as specifying file as the second non-option
argument to cpp. gcc has a different interpretation of a second non-option
argument, so you must use ‘-0’ to specify the output file.

Turns on all optional warnings which are desirable for normal code. At present
this is ‘-Wcomment’, ‘-Wtrigraphs’, ‘-Wmultichar’ and a warning about integer
promotion causing a change of sign in #if expressions. Note that many of the
preprocessor’s warnings are on by default and have no options to control them.

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a backslash-newline appears in a ‘//’ comment. (Both forms have
the same effect.)

-Wtrigraphs

Most trigraphs in comments cannot affect the meaning of the program. How-
ever, a trigraph that would form an escaped newline (‘??7/’ at the end of a line)
can, by changing where the comment begins or ends. Therefore, only trigraphs
that would form escaped newlines produce warnings inside a comment.

This option is implied by ‘-Wall’. If ‘-Wall’ is not given, this option
is still enabled unless trigraphs are enabled. To get trigraph conversion
without warnings, but get the other ‘-Wall’ warnings, use ‘~trigraphs -Wall
-Wno-trigraphs’.

Chapter 3: GCC Command Options 157

-Wtraditional

-Wundef

Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and problematic constructs which should be avoided.

Warn whenever an identifier which is not a macro is encountered in an ‘#if’
directive, outside of ‘defined’. Such identifiers are replaced with zero.

-Wunused-macros

Warn about macros defined in the main file that are unused. A macro is used if
it is expanded or tested for existence at least once. The preprocessor will also
warn if the macro has not been used at the time it is redefined or undefined.

Built-in macros, macros defined on the command line, and macros defined in
include files are not warned about.

Note: If a macro is actually used, but only used in skipped conditional blocks,
then CPP will report it as unused. To avoid the warning in such a case, you
might improve the scope of the macro’s definition by, for example, moving it
into the first skipped block. Alternatively, you could provide a dummy use with
something like:

#if defined the_macro_causing_the_warning
#endif

-Wendif-labels

-Werror

Warn whenever an ‘#else’ or an ‘#endif’ are followed by text. This usually
happens in code of the form
#if FOO

#éise FOO

#endif FOO
The second and third FOO should be in comments, but often are not in older
programs. This warning is on by default.

Make all warnings into hard errors. Source code which triggers warnings will
be rejected.

-Wsystem-headers

-w

-pedantic

-pedantic-

Issue warnings for code in system headers. These are normally unhelpful in
finding bugs in your own code, therefore suppressed. If you are responsible for
the system library, you may want to see them.

Suppress all warnings, including those which GNU CPP issues by default.

Issue all the mandatory diagnostics listed in the C standard. Some of them are
left out by default, since they trigger frequently on harmless code.

errors
Issue all the mandatory diagnostics, and make all mandatory diagnostics
into errors. This includes mandatory diagnostics that GCC issues without
‘-pedantic’ but treats as warnings.

158

-MF file

-MG

-MP

Using the GNU Compiler Collection (GCC)

Instead of outputting the result of preprocessing, output a rule suitable for make
describing the dependencies of the main source file. The preprocessor outputs
one make rule containing the object file name for that source file, a colon, and
the names of all the included files, including those coming from ‘-include’ or
‘-~imacros’ command line options.

Unless specified explicitly (with ‘-MT’ or ‘-MQ’), the object file name consists of
the name of the source file with any suffix replaced with object file suffix and
with any leading directory parts removed. If there are many included files then
the rule is split into several lines using ‘\’-newline. The rule has no commands.

This option does not suppress the preprocessor’s debug output, such as ‘-dM’.
To avoid mixing such debug output with the dependency rules you should ex-
plicitly specify the dependency output file with ‘-MF’, or use an environment
variable like DEPENDENCIES_OUTPUT (see Section 3.19 [Environment Variables|,
page 333). Debug output will still be sent to the regular output stream as
normal.

Passing ‘-M’ to the driver implies ‘-E’, and suppresses warnings with an implicit
3 ?

-w’.

Like ‘-M’ but do not mention header files that are found in system header
directories, nor header files that are included, directly or indirectly, from such
a header.

This implies that the choice of angle brackets or double quotes in an ‘#include’
directive does not in itself determine whether that header will appear in ‘-MM’
dependency output. This is a slight change in semantics from GCC versions
3.0 and earlier.

When used with ‘=M’ or ‘-MM’, specifies a file to write the dependencies to. If
no ‘-MF’ switch is given the preprocessor sends the rules to the same place it

would have sent preprocessed output.

When used with the driver options ‘-MD’ or ‘-MMD’, ‘-MF’ overrides the default
dependency output file.

In conjunction with an option such as ‘-M’ requesting dependency generation,
‘-MG’ assumes missing header files are generated files and adds them to the
dependency list without raising an error. The dependency filename is taken
directly from the #include directive without prepending any path. ‘-MG’ also
suppresses preprocessed output, as a missing header file renders this useless.

This feature is used in automatic updating of makefiles.
This option instructs CPP to add a phony target for each dependency other
than the main file, causing each to depend on nothing. These dummy rules

work around errors make gives if you remove header files without updating the
‘Makefile’ to match.

This is typical output:
test.o: test.c test.h

test.h:

Chapter 3: GCC Command Options 159

-MT target

-MQ target

-MD

-MMD

—-fpch-deps

Change the target of the rule emitted by dependency generation. By default
CPP takes the name of the main input file, deletes any directory components
and any file suffix such as ‘.c’, and appends the platform’s usual object suffix.
The result is the target.

An ‘-MT’ option will set the target to be exactly the string you specify. If you
want multiple targets, you can specify them as a single argument to ‘-MT’, or
use multiple ‘-MT’ options.

For example, ‘-MT *$(objpfx)foo.o’’ might give
$(objpfx)foo.o: foo.c

Same as ‘-MT’, but it quotes any characters which are special to Make.
‘-MQ *$(objpfx)foo.0’’ gives
$$(objpfx)foo.0: foo.c

The default target is automatically quoted, as if it were given with ‘-MQ’.

‘-MD’ is equivalent to ‘-M -MF file’, except that ‘~E’ is not implied. The driver
determines file based on whether an ‘-0’ option is given. If it is, the driver uses
its argument but with a suffix of ‘.d’, otherwise it takes the name of the input
file, removes any directory components and suffix, and applies a ‘.d’ suffix.

If ‘-MD’ is used in conjunction with ‘-E’, any ‘-o’ switch is understood to specify
the dependency output file (see [-MF], page 158), but if used without ‘-E’, each
‘-0’ is understood to specify a target object file.

Since ‘-E’ is not implied, ‘-MD’ can be used to generate a dependency output
file as a side-effect of the compilation process.

Like ‘-MD’ except mention only user header files, not system header files.

When using precompiled headers (see Section 3.20 [Precompiled Headers],
page 336), this flag will cause the dependency-output flags to also list the
files from the precompiled header’s dependencies. If not specified only the
precompiled header would be listed and not the files that were used to create
it because those files are not consulted when a precompiled header is used.

-fpch-preprocess

This option allows use of a precompiled header (see Section 3.20 [Precompiled
Headers|, page 336) together with ‘-E’. It inserts a special #pragma, #pragma
GCC pch_preprocess "filename" in the output to mark the place where the
precompiled header was found, and its filename. When ‘~fpreprocessed’ is in
use, GCC recognizes this #pragma and loads the PCH.

This option is off by default, because the resulting preprocessed output is only
really suitable as input to GCC. It is switched on by ‘-save-temps’.

You should not write this #pragma in your own code, but it is safe to edit the
filename if the PCH file is available in a different location. The filename may
be absolute or it may be relative to GCC’s current directory.

160

X C

-X Cc++

Using the GNU Compiler Collection (GCC)

-x objective-c
-x assembler-with-cpp

Specify the source language: C, C++, Objective-C, or assembly. This has noth-
ing to do with standards conformance or extensions; it merely selects which
base syntax to expect. If you give none of these options, cpp will deduce the
language from the extension of the source file: ‘.c’, ‘.cc’, ‘.m’, or ‘.8’. Some
other common extensions for C++ and assembly are also recognized. If cpp does
not recognize the extension, it will treat the file as C; this is the most generic

mode.

¢

Note: Previous versions of cpp accepted a ‘~lang’ option which selected both
the language and the standards conformance level. This option has been re-
moved, because it conflicts with the ‘-1’ option.

-std=standard

—ansi

Specify the standard to which the code should conform. Currently CPP knows
about C and C++ standards; others may be added in the future.

standard may be one of:
c90

c89

is09899:1990

The ISO C standard from 1990. ‘c90’ is the customary shorthand
for this version of the standard.

The ‘-ansi’ option is equivalent to ‘-std=c90’.

1s09899:199409
The 1990 C standard, as amended in 1994.

1509899:1999

c99
1is09899:199x
c9x The revised ISO C standard, published in December 1999. Before

publication, this was known as C9X.

i509899:2011

cl1

clx The revised ISO C standard, published in December 2011. Before
publication, this was known as C1X.

gnu90

gnu89 The 1990 C standard plus GNU extensions. This is the default.

gnu99

gnu9x The 1999 C standard plus GNU extensions.

gnull

gnulx The 2011 C standard plus GNU extensions.

c++98 The 1998 ISO C++ standard plus amendments.

Chapter 3: GCC Command Options 161

-nostdinc

gnu++98 The same as ‘~std=c++98’ plus GNU extensions. This is the default
for C++ code.

Split the include path. Any directories specified with ‘-I’ options before ‘-=I-’
are searched only for headers requested with #include "file"; they are not
searched for #include <file>. If additional directories are specified with ‘-I’
options after the ‘-I-’, those directories are searched for all ‘#include’ direc-
tives.

In addition, ‘-I-’ inhibits the use of the directory of the current file direc-
tory as the first search directory for #include "file". This option has been
deprecated.

Do not search the standard system directories for header files. Only the direc-
tories you have specified with ‘-I” options (and the directory of the current file,
if appropriate) are searched.

-nostdinc++

Do not search for header files in the C++-specific standard directories, but do
still search the other standard directories. (This option is used when building
the C++ library.)

—-include file

Process file as if #include "file" appeared as the first line of the primary
source file. However, the first directory searched for file is the preprocessor’s
working directory instead of the directory containing the main source file. If
not found there, it is searched for in the remainder of the #include "..."
search chain as normal.

If multiple ‘-~include’ options are given, the files are included in the order they
appear on the command line.

—-imacros file

Exactly like ‘-include’, except that any output produced by scanning file is
thrown away. Macros it defines remain defined. This allows you to acquire all
the macros from a header without also processing its declarations.

All files specified by ‘-imacros’ are processed before all files specified by
‘~include’.

—-idirafter dir

Search dir for header files, but do it after all directories specified with ‘-1’
and the standard system directories have been exhausted. dir is treated as a
system include directory. If dir begins with =, then the = will be replaced by
the sysroot prefix; see ‘-—sysroot’ and ‘~isysroot’.

—-iprefix prefix

Specify prefix as the prefix for subsequent ‘-~iwithprefix’ options. If the prefix
represents a directory, you should include the final /.

162 Using the GNU Compiler Collection (GCC)

—iwithprefix dir

—iwithprefixbefore dir
Append dir to the prefix specified previously with ‘-iprefix’, and add the
resulting directory to the include search path. ‘-iwithprefixbefore’ puts it
in the same place ‘-I’ would; ‘~iwithprefix’ puts it where ‘-idirafter’ would.

—-isysroot dir
This option is like the ‘--sysroot’ option, but applies only to header files
(except for Darwin targets, where it applies to both header files and libraries).
See the ‘--sysroot’ option for more information.

-imultilib dir
Use dir as a subdirectory of the directory containing target-specific C++ headers.

-isystem dir
Search dir for header files, after all directories specified by ‘-I’ but before the
standard system directories. Mark it as a system directory, so that it gets the
same special treatment as is applied to the standard system directories. If dir
begins with =, then the = will be replaced by the sysroot prefix; see ‘~-sysroot’
and ‘-isysroot’.

-iquote dir
Search dir only for header files requested with #include "file"; they are not
searched for #include <file>, before all directories specified by ‘-1’ and before
the standard system directories. If dir begins with =, then the = will be replaced
by the sysroot prefix; see ‘--sysroot’ and ‘-isysroot’.

-fdirectives-only
When preprocessing, handle directives, but do not expand macros.

The option’s behavior depends on the ‘-E’ and ‘-fpreprocessed’ options.

With ‘~E’, preprocessing is limited to the handling of directives such as #define,
#ifdef, and #error. Other preprocessor operations, such as macro expansion
and trigraph conversion are not performed. In addition, the ‘-dD’ option is
implicitly enabled.

With ‘~fpreprocessed’, predefinition of command line and most builtin macros
is disabled. Macros such as __LINE__, which are contextually dependent, are
handled normally. This enables compilation of files previously preprocessed
with -E -fdirectives-only.

With both ‘-E’ and ‘~fpreprocessed’, the rules for ‘~fpreprocessed’ take
precedence. This enables full preprocessing of files previously preprocessed
with -E -fdirectives-only.

-fdollars-in-identifiers

Accept ‘$’ in identifiers.

-fextended-identifiers
Accept universal character names in identifiers. This option is experimental; in
a future version of GCC, it will be enabled by default for C99 and C++.

-fno-canonical-system-headers
When preprocessing, do not shorten system header paths with canonicalization.

Chapter 3: GCC Command Options 163

-fpreprocessed
Indicate to the preprocessor that the input file has already been preprocessed.
This suppresses things like macro expansion, trigraph conversion, escaped new-
line splicing, and processing of most directives. The preprocessor still recognizes
and removes comments, so that you can pass a file preprocessed with ‘~C’ to the
compiler without problems. In this mode the integrated preprocessor is little
more than a tokenizer for the front ends.

‘~fpreprocessed’ is implicit if the input file has one of the extensions ‘.i’,
“.ii’ or ‘.mi’. These are the extensions that GCC uses for preprocessed files

created by ‘-save-temps’.

-ftabstop=width
Set the distance between tab stops. This helps the preprocessor report correct
column numbers in warnings or errors, even if tabs appear on the line. If the
value is less than 1 or greater than 100, the option is ignored. The default is 8.

-fdebug-cpp
This option is only useful for debugging GCC. When used with ‘-E’, dumps
debugging information about location maps. Every token in the output is pre-
ceded by the dump of the map its location belongs to. The dump of the map
holding the location of a token would be:
{‘P’:“/file/path’; ‘F’: ‘/includer/path’; ‘L’ :1ine_num; ‘C’:col_num; ‘S’ :system_header_p; ‘M’ :map_:
When used without ‘-E’, this option has no effect.

-ftrack-macro-expansion|[=level]

Track locations of tokens across macro expansions. This allows the compiler to
emit diagnostic about the current macro expansion stack when a compilation
error occurs in a macro expansion. Using this option makes the preprocessor
and the compiler consume more memory. The level parameter can be used
to choose the level of precision of token location tracking thus decreasing the
memory consumption if necessary. Value ‘0’ of level de-activates this option
just as if no ‘-ftrack-macro-expansion’ was present on the command line.
Value ‘1’ tracks tokens locations in a degraded mode for the sake of minimal
memory overhead. In this mode all tokens resulting from the expansion of an
argument, of a function-like macro have the same location. Value ‘2’ tracks
tokens locations completely. This value is the most memory hungry. When this
option is given no argument, the default parameter value is ‘2’.

Note that -ftrack-macro-expansion=2 is activated by default.

-fexec-charset=charset
Set the execution character set, used for string and character constants. The
default is UTF-8. charset can be any encoding supported by the system’s iconv
library routine.

-fwide-exec-charset=charset
Set the wide execution character set, used for wide string and character con-
stants. The default is UTF-32 or UTF-16, whichever corresponds to the width
of wchar_t. As with ‘~fexec-charset’, charset can be any encoding supported
by the system’s iconv library routine; however, you will have problems with
encodings that do not fit exactly in wchar_t.

164

Using the GNU Compiler Collection (GCC)

-finput-charset=charset

Set the input character set, used for translation from the character set of the
input file to the source character set used by GCC. If the locale does not specify,
or GCC cannot get this information from the locale, the default is UTF-8. This
can be overridden by either the locale or this command line option. Currently
the command line option takes precedence if there’s a conflict. charset can be
any encoding supported by the system’s iconv library routine.

-fworking-directory

Enable generation of linemarkers in the preprocessor output that will let the
compiler know the current working directory at the time of preprocessing.
When this option is enabled, the preprocessor will emit, after the initial line-
marker, a second linemarker with the current working directory followed by
two slashes. GCC will use this directory, when it’s present in the prepro-
cessed input, as the directory emitted as the current working directory in some
debugging information formats. This option is implicitly enabled if debug-
ging information is enabled, but this can be inhibited with the negated form
‘~fno-working-directory’. If the ‘-P’ flag is present in the command line,
this option has no effect, since no #line directives are emitted whatsoever.

-fno-show-column

Do not print column numbers in diagnostics. This may be necessary if diag-
nostics are being scanned by a program that does not understand the column
numbers, such as dejagnu.

-A predicate=answer

Make an assertion with the predicate predicate and answer answer. This form
is preferred to the older form ‘~A predicate(answer)’, which is still supported,
because it does not use shell special characters.

-A -predicate=answer

-dCHARS

Cancel an assertion with the predicate predicate and answer answer.

CHARS is a sequence of one or more of the following characters, and must
not be preceded by a space. Other characters are interpreted by the compiler
proper, or reserved for future versions of GCC, and so are silently ignored. If
you specify characters whose behavior conflicts, the result is undefined.

‘M Instead of the normal output, generate a list of ‘#define’ directives
for all the macros defined during the execution of the preprocessor,
including predefined macros. This gives you a way of finding out
what is predefined in your version of the preprocessor. Assuming
you have no file ‘foo.h’, the command

touch foo.h; cpp -dM foo.h

will show all the predefined macros.
If you use ‘-dM’ without the ‘-E’ option, ‘-dM’ is interpreted as a
synonym for ‘~fdump-rtl-mach’. See Section “Debugging Options”
in gcc.

‘D’ Like ‘M’ except in two respects: it does not include the predefined
macros, and it outputs both the ‘#define’ directives and the result

Chapter 3: GCC Command Options 165

-CC

of preprocessing. Both kinds of output go to the standard output

file.

‘N’ Like ‘D’, but emit only the macro names, not their expansions.

‘T Output ‘#include’ directives in addition to the result of prepro-
cessing.

‘v Like ‘D’ except that only macros that are expanded, or whose de-

finedness is tested in preprocessor directives, are output; the output
is delayed until the use or test of the macro; and ‘#undef’ directives
are also output for macros tested but undefined at the time.

Inhibit generation of linemarkers in the output from the preprocessor. This
might be useful when running the preprocessor on something that is not C code,
and will be sent to a program which might be confused by the linemarkers.

Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the
directive.

You should be prepared for side effects when using ‘-C’; it causes the prepro-
cessor to treat comments as tokens in their own right. For example, comments
appearing at the start of what would be a directive line have the effect of turn-
ing that line into an ordinary source line, since the first token on the line is no
longer a ‘#’.

Do not discard comments, including during macro expansion. This is like ‘-C’,
except that comments contained within macros are also passed through to the
output file where the macro is expanded.

In addition to the side-effects of the ‘-C’ option, the ‘-CC’ option causes all
C++-style comments inside a macro to be converted to C-style comments. This
is to prevent later use of that macro from inadvertently commenting out the
remainder of the source line.

The ‘-CC’ option is generally used to support lint comments.

-traditional-cpp

-trigraphs

-remap

Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO
C preprocessors.

Process trigraph sequences. These are three-character sequences, all starting
with ‘7?7’ that are defined by ISO C to stand for single characters. For example,
“?7/’ stands for ‘\’, so ‘> ?7/n’’ is a character constant for a newline. By default,
GCC ignores trigraphs, but in standard-conforming modes it converts them. See
the ‘-std’ and ‘-ansi’ options.
The nine trigraphs and their replacements are

Trigraph: ?7(?7) ?7< 77> ?7= 7?77/ 7?77 771 ?77-

Replacement: [] { } # \ - | -

Enable special code to work around file systems which only permit very short
file names, such as MS-DOS.

166 Using the GNU Compiler Collection (GCC)

--help

--target-help
Print text describing all the command line options instead of preprocessing
anything.

-v Verbose mode. Print out GNU CPP’s version number at the beginning of
execution, and report the final form of the include path.

-H Print the name of each header file used, in addition to other normal activities.
Each name is indented to show how deep in the ‘#include’ stack it is. Precom-
piled header files are also printed, even if they are found to be invalid; an invalid
precompiled header file is printed with ‘. ..x’ and a valid one with *...!" .

-version

--version
Print out GNU CPP’s version number. With one dash, proceed to preprocess
as normal. With two dashes, exit immediately.

3.12 Passing Options to the Assembler
You can pass options to the assembler.

-Wa,option
Pass option as an option to the assembler. If option contains commas, it is split
into multiple options at the commas.

-Xassembler option
Pass option as an option to the assembler. You can use this to supply system-
specific assembler options that GCC does not recognize.

If you want to pass an option that takes an argument, you must use
‘~Xassembler’ twice, once for the option and once for the argument.

3.13 Options for Linking

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler is not doing a link step.

object-file-name
A file name that does not end in a special recognized suffix is considered to
name an object file or library. (Object files are distinguished from libraries by
the linker according to the file contents.) If linking is done, these object files
are used as input to the linker.

-E If any of these options is used, then the linker is not run, and object file names
should not be used as arguments. See Section 3.2 [Overall Options], page 25.

-llibrary

-1 library
Search the library named library when linking. (The second alternative with
the library as a separate argument is only for POSIX compliance and is not
recommended.)

Chapter 3: GCC Command Options 167

-lobjc

It makes a difference where in the command you write this option; the linker
searches and processes libraries and object files in the order they are speci-
fied. Thus, ‘foo.o -1z bar.o’ searches library ‘z’ after file ‘foo.0o’ but before
‘bar.o’. If ‘bar.o’ refers to functions in ‘z’, those functions may not be loaded.

The linker searches a standard list of directories for the library, which is actually
a file named ‘liblibrary.a’. The linker then uses this file as if it had been
specified precisely by name.

The directories searched include several standard system directories plus any
that you specify with ‘-L’.

Normally the files found this way are library files—archive files whose members
are object files. The linker handles an archive file by scanning through it for
members which define symbols that have so far been referenced but not defined.
But if the file that is found is an ordinary object file, it is linked in the usual
fashion. The only difference between using an ‘-1’ option and specifying a file
name is that ‘-1’ surrounds library with ‘1lib’ and ‘.a’ and searches several
directories.

You need this special case of the ‘-1’ option in order to link an Objective-C or
Objective-C++ program.

-nostartfiles

Do not use the standard system startup files when linking. The standard system
libraries are used normally, unless ‘-nostdlib’ or ‘-nodefaultlibs’ is used.

-nodefaultlibs

-nostdlib

Do not use the standard system libraries when linking. Only the libraries you
specify are passed to the linker, and options specifying linkage of the system
libraries, such as -static-libgcc or -shared-libgcc, are ignored. The stan-
dard startup files are used normally, unless ‘-nostartfiles’ is used.

The compiler may generate calls to memcmp, memset, memcpy and memmove.
These entries are usually resolved by entries in libc. These entry points should
be supplied through some other mechanism when this option is specified.

Do not use the standard system startup files or libraries when linking. No
startup files and only the libraries you specify are passed to the linker, and
options specifying linkage of the system libraries, such as -static-1libgcc or
-shared-libgcc, are ignored.

The compiler may generate calls to memcmp, memset, memcpy and memmove.
These entries are usually resolved by entries in libc. These entry points should
be supplied through some other mechanism when this option is specified.

One of the standard libraries bypassed by ‘-nostdlib’ and ‘-nodefaultlibs’
is ‘libgcc.a’, a library of internal subroutines which GCC uses to overcome
shortcomings of particular machines, or special needs for some languages. (See
Section “Interfacing to GCC Output” in GNU Compiler Collection (GCC) In-
ternals, for more discussion of ‘libgcc.a’.) In most cases, you need ‘libgcc.a’
even when you want to avoid other standard libraries. In other words, when you
specify ‘-nostdlib’ or ‘-nodefaultlibs’ you should usually specify ‘-1gcc’ as

168

-pie

-rdynamic

-static

—-shared

Using the GNU Compiler Collection (GCC)

well. This ensures that you have no unresolved references to internal GCC
library subroutines. (An example of such an internal subroutine is ‘__main’,
used to ensure C++ constructors are called; see Section “collect2” in GNU
Compiler Collection (GCC) Internals.)

Produce a position independent executable on targets that support it. For
predictable results, you must also specify the same set of options used for com-
pilation (‘-fpie’, ‘-fPIE’, or model suboptions) when you specify this linker
option.

Pass the flag ‘~export-dynamic’ to the ELF linker, on targets that support
it. This instructs the linker to add all symbols, not only used ones, to the
dynamic symbol table. This option is needed for some uses of dlopen or to
allow obtaining backtraces from within a program.

Remove all symbol table and relocation information from the executable.

On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no effect.

Produce a shared object which can then be linked with other objects to form
an executable. Not all systems support this option. For predictable results,
you must also specify the same set of options used for compilation (‘~fpic’,
‘~fPIC’, or model suboptions) when you specify this linker option.!

-shared-libgcc
-static-libgcc

On systems that provide ‘libgcc’ as a shared library, these options force the
use of either the shared or static version, respectively. If no shared version of
‘libgcc’ was built when the compiler was configured, these options have no
effect.

There are several situations in which an application should use the shared
‘libgcc’ instead of the static version. The most common of these is when
the application wishes to throw and catch exceptions across different shared li-
braries. In that case, each of the libraries as well as the application itself should
use the shared ‘libgcc’.

Therefore, the G++ and GCJ drivers automatically add ‘-shared-libgcc’
whenever you build a shared library or a main executable, because C++ and
Java programs typically use exceptions, so this is the right thing to do.

If, instead, you use the GCC driver to create shared libraries, you may find
that they are not always linked with the shared ‘libgcc’. If GCC finds, at its
configuration time, that you have a non-GNU linker or a GNU linker that does
not support option ‘--eh-frame-hdr’, it links the shared version of ‘libgcc’
into shared libraries by default. Otherwise, it takes advantage of the linker and

1 On some systems, ‘gcc -shared’ needs to build supplementary stub code for constructors to work. On
multi-libbed systems, ‘gcc -shared’ must select the correct support libraries to link against. Failing to
supply the correct flags may lead to subtle defects. Supplying them in cases where they are not necessary
is innocuous.

Chapter 3: GCC Command Options 169

optimizes away the linking with the shared version of ‘1ibgcc’, linking with the
static version of libgcc by default. This allows exceptions to propagate through
such shared libraries, without incurring relocation costs at library load time.

However, if a library or main executable is supposed to throw or catch excep-
tions, you must link it using the G++ or GCJ driver, as appropriate for the
languages used in the program, or using the option ‘-shared-libgcc’, such
that it is linked with the shared ‘libgcc’.

-static-libasan
When the ‘-fsanitize=address’ option is used to link a program, the GCC
driver automatically links against ‘libasan’. If ‘libasan’ is available as a
shared library, and the ‘-static’ option is not used, then this links against the
shared version of ‘libasan’. The ‘-static-libasan’ option directs the GCC
driver to link ‘libasan’ statically, without necessarily linking other libraries
statically.

-static-libtsan
When the ‘-fsanitize=thread’ option is used to link a program, the GCC
driver automatically links against ‘libtsan’. If ‘libtsan’ is available as a
shared library, and the ‘~static’ option is not used, then this links against the
shared version of ‘libtsan’. The ‘-static-libtsan’ option directs the GCC
driver to link ‘libtsan’ statically, without necessarily linking other libraries
statically.

-static-liblsan
When the ‘-fsanitize=1leak’ option is used to link a program, the GCC driver
automatically links against ‘liblsan’. If ‘liblsan’ is available as a shared
library, and the ‘-static’ option is not used, then this links against the shared
version of ‘liblsan’. The ‘-static-1liblsan’ option directs the GCC driver to
link ‘1iblsan’ statically, without necessarily linking other libraries statically.

-static-libubsan
When the ‘-fsanitize=undefined’ option is used to link a program, the GCC
driver automatically links against ‘libubsan’. If ‘libubsan’ is available as a
shared library, and the ‘~static’ option is not used, then this links against the
shared version of ‘1ibubsan’. The ‘-static-libubsan’ option directs the GCC
driver to link ‘libubsan’ statically, without necessarily linking other libraries
statically.

-static-libstdc++
When the g++ program is used to link a C++ program, it normally automatically
links against ‘libstdc++’. If ‘libstdc++’ is available as a shared library, and
the ‘-static’ option is not used, then this links against the shared version of
‘libstdc++’. That is normally fine. However, it is sometimes useful to freeze
the version of ‘libstdc++’ used by the program without going all the way to
a fully static link. The ‘-static-libstdc++’ option directs the g++ driver to
link ‘libstdc++’ statically, without necessarily linking other libraries statically.

170

—-symbolic

-T script

Using the GNU Compiler Collection (GCC)

Bind references to global symbols when building a shared object. Warn about
any unresolved references (unless overridden by the link editor option ‘-X1linker
-z -Xlinker defs’). Only a few systems support this option.

Use script as the linker script. This option is supported by most systems using
the GNU linker. On some targets, such as bare-board targets without an oper-
ating system, the ‘-T’ option may be required when linking to avoid references
to undefined symbols.

-Xlinker option

-W1l,option

-u symbol

Pass option as an option to the linker. You can use this to supply system-specific
linker options that GCC does not recognize.

If you want to pass an option that takes a separate argument, you must use
‘-Xlinker’ twice, once for the option and once for the argument. For example,
to pass ‘~assert definitions’, you must write ‘~Xlinker -assert -Xlinker
definitions’. It does not work to write ‘-X1inker "-assert definitions"’,
because this passes the entire string as a single argument, which is not what
the linker expects.

When using the GNU linker, it is usually more convenient to pass arguments to
linker options using the ‘option=value’ syntax than as separate arguments. For
example, you can specify ‘-Xlinker -Map=output.map’ rather than ‘-Xlinker
-Map -Xlinker output.map’. Other linkers may not support this syntax for
command-line options.

Pass option as an option to the linker. If option contains commas, it is split into
multiple options at the commas. You can use this syntax to pass an argument
to the option. For example, ‘-W1,-Map,output.map’ passes ‘-Map output.map’
to the linker. When using the GNU linker, you can also get the same effect
with ‘-W1,-Map=output.map’.

Pretend the symbol symbol is undefined, to force linking of library modules
to define it. You can use ‘-u’ multiple times with different symbols to force
loading of additional library modules.

3.14 Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of the

compiler:

-Idir

Add the directory dir to the head of the list of directories to be searched for
header files. This can be used to override a system header file, substituting
your own version, since these directories are searched before the system header
file directories. However, you should not use this option to add directories that
contain vendor-supplied system header files (use ‘-isystem’ for that). If you
use more than one ‘-I’ option, the directories are scanned in left-to-right order;
the standard system directories come after.

If a standard system include directory, or a directory specified with ‘~isystem’,
is also specified with ‘-I’, the ‘-I’ option is ignored. The directory is still

Chapter 3: GCC Command Options 171

searched but as a system directory at its normal position in the system include
chain. This is to ensure that GCC’s procedure to fix buggy system headers and
the ordering for the include_next directive are not inadvertently changed.
If you really need to change the search order for system directories, use the
‘-nostdinc’ and/or ‘~isystem’ options.
-iplugindir=dir
Set the directory to search for plugins that are passed by ‘-fplugin=name’
instead of ‘~fplugin=path/name.so’. This option is not meant to be used by
the user, but only passed by the driver.

-iquotedir
Add the directory dir to the head of the list of directories to be searched for
header files only for the case of ‘#include "file"’; they are not searched for
‘#include <file>’, otherwise just like ‘-I’.

-Ldir Add directory dir to the list of directories to be searched for ‘-1’.

-Bprefix This option specifies where to find the executables, libraries, include files, and
data files of the compiler itself.

The compiler driver program runs one or more of the subprograms cpp, ccl,
as and 1d. It tries prefix as a prefix for each program it tries to run, both with
and without ‘machine/version/’ (see Section 3.16 [Target Options|, page 180).

For each subprogram to be run, the compiler driver first tries the ‘-B’ prefix, if
any. If that name is not found, or if ‘-B’ is not specified, the driver tries two
standard prefixes, ‘/usr/1ib/gcc/’ and ‘/usr/local/lib/gcc/’. If neither of
those results in a file name that is found, the unmodified program name is
searched for using the directories specified in your PATH environment variable.

The compiler checks to see if the path provided by the ‘-B’ refers to a directory,
and if necessary it adds a directory separator character at the end of the path.

‘-B’ prefixes that effectively specify directory names also apply to libraries in
the linker, because the compiler translates these options into ‘-L’ options for
the linker. They also apply to include files in the preprocessor, because the
compiler translates these options into ‘~isystem’ options for the preprocessor.
In this case, the compiler appends ‘include’ to the prefix.

The runtime support file ‘1ibgcc.a’ can also be searched for using the ‘-B’
prefix, if needed. If it is not found there, the two standard prefixes above are
tried, and that is all. The file is left out of the link if it is not found by those
means.
Another way to specify a prefix much like the ‘-B’ prefix is to use the envi-
ronment variable GCC_EXEC_PREFIX. See Section 3.19 [Environment Variables],
page 333.
As a special kludge, if the path provided by ‘-B’ is ‘[dir/]stageN/’, where N
is a number in the range 0 to 9, then it is replaced by ‘[dir/]include’. This
is to help with boot-strapping the compiler.

-specs=file
Process file after the compiler reads in the standard ‘specs’ file, in order to
override the defaults which the gcc driver program uses when determining what

172

Using the GNU Compiler Collection (GCC)

switches to pass to ccl, cclplus, as, 1d, etc. More than one ‘-specs=file’

can be specified on the command line, and they are processed in order, from
left to right.

--sysroot=dir

Use dir as the logical root directory for headers and libraries. For example, if
the compiler normally searches for headers in ‘/usr/include’ and libraries in
‘/usr/1ib’, it instead searches ‘dir/usr/include’ and ‘dir/usr/1ib’.

If you use both this option and the ‘-isysroot’ option, then the ‘--sysroot’
option applies to libraries, but the ‘~isysroot’ option applies to header files.

The GNU linker (beginning with version 2.16) has the necessary support for
this option. If your linker does not support this option, the header file aspect
of ‘--sysroot’ still works, but the library aspect does not.

--no-sysroot-suffix

For some targets, a suffix is added to the root directory specified with
‘-—sysroot’, depending on the other options used, so that headers may for ex-
ample be found in ‘dir/suffix/usr/include’ instead of ‘dir/usr/include’.
This option disables the addition of such a suffix.

¢ ¢

This option has been deprecated. Please use ‘~iquote’ instead for ‘-I’ direc-
tories before the ‘-I-" and remove the ‘-I-". Any directories you specify with
‘I’ options before the ‘~I-’ option are searched only for the case of ‘#include
"file"’; they are not searched for ‘#include <file>’.

If additional directories are specified with ‘=1’ options after the ‘-I-’, these
directories are searched for all ‘#include’ directives. (Ordinarily all ‘-1’ direc-
tories are used this way.)

In addition, the ‘~I-’ option inhibits the use of the current directory (where
the current input file came from) as the first search directory for ‘#include
"file"’. There is no way to override this effect of ‘-I-’. With ‘-I.’ you can
specify searching the directory that is current when the compiler is invoked.
That is not exactly the same as what the preprocessor does by default, but it
is often satisfactory.

‘~I-" does not inhibit the use of the standard system directories for header files.
Thus, ‘-I-’ and ‘-nostdinc’ are independent.

3.15 Specifying subprocesses and the switches to pass to

them

gcc is a driver program. It performs its job by invoking a sequence of other programs to do
the work of compiling, assembling and linking. GCC interprets its command-line parameters
and uses these to deduce which programs it should invoke, and which command-line options
it ought to place on their command lines. This behavior is controlled by spec strings. In
most cases there is one spec string for each program that GCC can invoke, but a few
programs have multiple spec strings to control their behavior. The spec strings built into
GCC can be overridden by using the ‘-specs=" command-line switch to specify a spec file.

Chapter 3: GCC Command Options 173

Spec files are plaintext files that are used to construct spec strings. They consist of a
sequence of directives separated by blank lines. The type of directive is determined by the
first non-whitespace character on the line, which can be one of the following;:

%command

Issues a command to the spec file processor. The commands that can appear
here are:

%include <file>

Search for file and insert its text at the current point in the specs
file.

%include_noerr <file>
Just like ‘%include’, but do not generate an error message if the
include file cannot be found.

%rename old_name new_name
Rename the spec string old_name to new_name.

* [spec_name] :

[suffix]:

This tells the compiler to create, override or delete the named spec string. All
lines after this directive up to the next directive or blank line are considered to
be the text for the spec string. If this results in an empty string then the spec
is deleted. (Or, if the spec did not exist, then nothing happens.) Otherwise, if
the spec does not currently exist a new spec is created. If the spec does exist
then its contents are overridden by the text of this directive, unless the first
character of that text is the ‘+’ character, in which case the text is appended
to the spec.

Creates a new ‘[suffix] spec’ pair. All lines after this directive and up to the
next directive or blank line are considered to make up the spec string for the
indicated suffix. When the compiler encounters an input file with the named
suffix, it processes the spec string in order to work out how to compile that file.
For example:

LZZ:

z-compile -input %i
This says that any input file whose name ends in ‘.ZZ’ should be passed to the
program ‘z-compile’, which should be invoked with the command-line switch
‘~input’ and with the result of performing the ‘%i’ substitution. (See below.)

As an alternative to providing a spec string, the text following a suffix directive
can be one of the following:

@language
This says that the suffix is an alias for a known language. This is
similar to using the ‘-x’ command-line switch to GCC to specify a
language explicitly. For example:
LZZ:
Qc++

Says that .ZZ files are, in fact, C++ source files.

#name This causes an error messages saying:

174

Using the GNU Compiler Collection (GCC)

name compiler not installed on this system.

GCC already has an extensive list of suffixes built into it. This directive adds
an entry to the end of the list of suffixes, but since the list is searched from
the end backwards, it is effectively possible to override earlier entries using this
technique.

GCC has the following spec strings built into it. Spec files can override these strings or
create their own. Note that individual targets can also add their own spec strings to this

list.

asm Options to pass to the assembler

asm_final Options to pass to the assembler post-processor

cpp Options to pass to the C preprocessor

ccl Options to pass to the C compiler

cclplus Options to pass to the C++ compiler

endfile Object files to include at the end of the link

link Options to pass to the linker

1ib Libraries to include on the command line to the linker
libgcc Decides which GCC support library to pass to the linker
linker Sets the name of the linker

signed

startf

predefines Defines to be passed to the C preprocessor

_char Defines to pass to CPP to say whether char is signed
by default
ile Object files to include at the start of the link

Here is a small example of a spec file:

Yirenam

*1ib:
--star

e 1lib old_1ib

t-group -lgcc -lc -levall --end-group %(old_lib)

This example renames the spec called ‘1ib’ to ‘o1d_1ib’ and then overrides the previous
definition of ‘1ib’ with a new one. The new definition adds in some extra command-line
options before including the text of the old definition.

Spec strings are a list of command-line options to be passed to their corresponding pro-
gram. In addition, the spec strings can contain ‘/;’-prefixed sequences to substitute variable
text or to conditionally insert text into the command line. Using these constructs it is
possible to generate quite complex command lines.

Here is a table of all defined ‘%’-sequences for spec strings. Note that spaces are not
generated automatically around the results of expanding these sequences. Therefore you
can concatenate them together or combine them with constant text in a single argument.

Tolh
hi
b

B
hd

Substitute one ‘%’ into the program name or argument.
Substitute the name of the input file being processed.

Substitute the basename of the input file being processed. This is the substring
up to (and not including) the last period and not including the directory.

This is the same as ‘%b’, but include the file suffix (text after the last period).

Marks the argument containing or following the ‘%d’ as a temporary file name,
so that that file is deleted if GCC exits successfully. Unlike ‘%g’, this contributes
no text to the argument.

Chapter 3: GCC Command Options 175

hgsuffix

Y%usuffix

%Usuffix

%hjsuffix

% suffix
Ymsuffix

%.SUFFIX

YA

%o

%0

Substitute a file name that has suffix suffix and is chosen once per compilation,
and mark the argument in the same way as ‘%d’. To reduce exposure to denial-
of-service attacks, the file name is now chosen in a way that is hard to predict
even when previously chosen file names are known. For example, ‘%g.s ...
%g.o ... %g.s’ might turn into ‘ccUVUUAU.s ccXYAXZ12.0 ccUVUUAU.s’. suffix
matches the regexp ‘[.A-Za-z]*’ or the special string ‘%0’, which is treated
exactly as if ‘%0’ had been preprocessed. Previously, ‘%g’ was simply substituted
with a file name chosen once per compilation, without regard to any appended
suffix (which was therefore treated just like ordinary text), making such attacks
more likely to succeed.

Like ‘%g’, but generates a new temporary file name each time it appears instead
of once per compilation.

Substitutes the last file name generated with ‘busuffix’, generating a new
one if there is no such last file name. In the absence of any ‘jusuffix’, this
is just like ‘%gsuffix’, except they don’t share the same suffix space, so ‘%g.s
... WU.s ... %g.s ... %U.s’ involves the generation of two distinct file names,
one for each ‘%g.s’ and another for each ‘4U.s’. Previously, ‘AU’ was simply
substituted with a file name chosen for the previous ‘/u’, without regard to any
appended suffix.

Substitutes the name of the HOST_BIT_BUCKET, if any, and if it is writable, and
if ‘-save-temps’ is not used; otherwise, substitute the name of a temporary
file, just like ‘%u’. This temporary file is not meant for communication between
processes, but rather as a junk disposal mechanism.

Like ‘%g’, except if ‘-pipe’ is in effect. In that case ‘%|’ substitutes a single
dash and ‘%m’ substitutes nothing at all. These are the two most common
ways to instruct a program that it should read from standard input or write
to standard output. If you need something more elaborate you can use an
“%{pipe:X}’ construct: see for example ‘f/lang-specs.h’.

Substitutes .SUFFIX for the suffixes of a matched switch’s args when it is
subsequently output with ‘%*’. SUFFIX is terminated by the next space or %.

Marks the argument containing or following the ‘%4w’ as the designated output
file of this compilation. This puts the argument into the sequence of arguments
that ‘%o’ substitutes.

Substitutes the names of all the output files, with spaces automatically placed
around them. You should write spaces around the ‘%0’ as well or the results are
undefined. ‘%0’ is for use in the specs for running the linker. Input files whose
names have no recognized suffix are not compiled at all, but they are included
among the output files, so they are linked.

Substitutes the suffix for object files. Note that this is handled specially when
it immediately follows ‘%g, %u, or %U’, because of the need for those to form
complete file names. The handling is such that ‘%0’ is treated exactly as if it
had already been substituted, except that ‘%g, %u, and %U’ do not currently

176 Using the GNU Compiler Collection (GCC)

support additional suffix characters following ‘%0’ as they do following, for

example, ‘.o’ .

hp Substitutes the standard macro predefinitions for the current target machine.
Use this when running cpp.

%P Like ‘%p’, but puts ‘__
except for macros that start with ‘_
letter. This is for ISO C.

I Substitute any of ‘-iprefix’ (made from GCC_EXEC_PREFIX), ‘-isysroot’
(made from TARGET_SYSTEM_ROOT), ‘-isystem’ (made from COMPILER_PATH
and ‘-B’ options) and ‘-imultilib’ as necessary.

" before and after the name of each predefined macro,
" or with ‘_L’, where L is an uppercase

hs Current argument is the name of a library or startup file of some sort. Search
for that file in a standard list of directories and substitute the full name found.
The current working directory is included in the list of directories scanned.

WT Current argument is the name of a linker script. Search for that file in the
current list of directories to scan for libraries. If the file is located insert a
‘-—script’ option into the command line followed by the full path name found.
If the file is not found then generate an error message. Note: the current
working directory is not searched.

hestr Print str as an error message. str is terminated by a newline. Use this when
inconsistent options are detected.

% (name) Substitute the contents of spec string name at this point.

%x{option}
Accumulate an option for ‘%X’.

WX Output the accumulated linker options specified by ‘W1’ or a ‘%x’ spec string.

VA'S Output the accumulated assembler options specified by ‘-Wa’.

WZ Output the accumulated preprocessor options specified by ‘-Wp’.

ha Process the asm spec. This is used to compute the switches to be passed to the
assembler.

%A Process the asm_final spec. This is a spec string for passing switches to an

assembler post-processor, if such a program is needed.

yAl Process the 1ink spec. This is the spec for computing the command line passed
to the linker. Typically it makes use of the ‘%L %G %S %D and %E’ sequences.

%D Dump out a ‘-L’ option for each directory that GCC believes might contain
startup files. If the target supports multilibs then the current multilib directory
is prepended to each of these paths.

%L Process the 1ib spec. This is a spec string for deciding which libraries are
included on the command line to the linker.

WG Process the libgcc spec. This is a spec string for deciding which GCC support
library is included on the command line to the linker.

Chapter 3: GCC Command Options 177

hS

hE

%C

hl

h2

YA

%<S

Process the startfile spec. This is a spec for deciding which object files are
the first ones passed to the linker. Typically this might be a file named ‘crt0.0’.

Process the endfile spec. This is a spec string that specifies the last object
files that are passed to the linker.

Process the cpp spec. This is used to construct the arguments to be passed to
the C preprocessor.

Process the cc1 spec. This is used to construct the options to be passed to the
actual C compiler (‘ccl’).

Process the cclplus spec. This is used to construct the options to be passed
to the actual C++ compiler (‘cciplus’).

Substitute the variable part of a matched option. See below. Note that each
comma in the substituted string is replaced by a single space.

Remove all occurrences of -S from the command line. Note—this command is
position dependent. ‘%’ commands in the spec string before this one see -S, ‘%’
commands in the spec string after this one do not.

%:function(args)

Call the named function function, passing it args. args is first processed as a
nested spec string, then split into an argument vector in the usual fashion. The
function returns a string which is processed as if it had appeared literally as
part of the current spec.

The following built-in spec functions are provided:

getenv The getenv spec function takes two arguments: an environment
variable name and a string. If the environment variable is not
defined, a fatal error is issued. Otherwise, the return value is the
value of the environment variable concatenated with the string. For
example, if TOPDIR is defined as ‘/path/to/top’, then:
%:getenv(TOPDIR /include)

expands to ‘/path/to/top/include’.

if-exists
The if-exists spec function takes one argument, an absolute
pathname to a file. If the file exists, if-exists returns the path-
name. Here is a small example of its usage:

xstartfile:
crt0%0%s %:if-exists(crtil0%s) crtbeginy0is

if-exists-else

The if-exists-else spec function is similar to the if-exists spec
function, except that it takes two arguments. The first argument is
an absolute pathname to a file. If the file exists, if-exists-else
returns the pathname. If it does not exist, it returns the second
argument. This way, if-exists-else can be used to select one
file or another, based on the existence of the first. Here is a small
example of its usage:

178

%{s}

hW{S}

%{S*}

%{S*&T*}

Using the GNU Compiler Collection (GCC)

*startfile:
crt0%0%s %:if-exists(crti%0%s) \
%:if-exists-else(crtbeginT¥0%s crtbegin0%s)

replace-outfile
The replace-outfile spec function takes two arguments. It looks
for the first argument in the outfiles array and replaces it with the
second argument. Here is a small example of its usage:
%{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)}

remove-outfile
The remove-outfile spec function takes one argument. It looks
for the first argument in the outfiles array and removes it. Here is
a small example its usage:

% :remove-outfile (-1m)

pass—-through-1ibs
The pass-through-1libs spec function takes any number of argu-
ments. It finds any ‘-1’ options and any non-options ending in
‘.a’ (which it assumes are the names of linker input library archive
files) and returns a result containing all the found arguments each
prepended by ‘-plugin-opt=-pass-through=" and joined by spa-
ces. This list is intended to be passed to the LTO linker plugin.
%:pass-through-1ibs (%G %L %G)

print-asm-header
The print-asm-header function takes no arguments and simply
prints a banner like:

Assembler options

Use "-Wa,0PTION" to pass "OPTION" to the assembler.

It is used to separate compiler options from assembler options in
the ‘--target-help’ output.

Substitutes the -8 switch, if that switch is given to GCC. If that switch is
not specified, this substitutes nothing. Note that the leading dash is omitted
when specifying this option, and it is automatically inserted if the substitution
is performed. Thus the spec string ‘%{foo}’ matches the command-line option
‘~-foo’ and outputs the command-line option ‘-foo’.

Like %{S} but mark last argument supplied within as a file to be deleted on
failure.

Substitutes all the switches specified to GCC whose names start with -S, but
which also take an argument. This is used for switches like ‘-o’, ‘-D’, ‘*=I’, etc.
GCC considers ‘-o foo’ as being one switch whose name starts with ‘o’. %{o*}
substitutes this text, including the space. Thus two arguments are generated.

Like %{S*}, but preserve order of S and T options (the order of S and T in
the spec is not significant). There can be any number of ampersand-separated
variables; for each the wild card is optional. Useful for CPP as ‘%{D*&Ux*&Ax*}’.

Chapter 3: GCC Command Options 179

%{S:X} Substitutes X, if the ‘=8’ switch is given to GCC.
%{!S:X} Substitutes X, if the ‘=8’ switch is not given to GCC.

%{S*:X} Substitutes X if one or more switches whose names start with -S are specified to
GCC. Normally X is substituted only once, no matter how many such switches
appeared. However, if %* appears somewhere in X, then X is substituted once for
each matching switch, with the %* replaced by the part of that switch matching
the *.

If %* appears as the last part of a spec sequence then a space will be added after

the end of the last substitution. If there is more text in the sequence however

then a space will not be generated. This allows the %* substitution to be used

as part of a larger string. For example, a spec string like this:
%{mcu=*:--script=J;*/memory.1d}

when matching an option like -mcu=newchip will produce:

--script=newchip/memory.1ld
%{.8:X} Substitutes X, if processing a file with suffix S.
%{!'.S:X} Substitutes X, if not processing a file with suffix S.
%{,8:X} Substitutes X, if processing a file for language S.
%{!,8:X} Substitutes X, if not processing a file for language S.
%{SIP:X} Substitutes X if either =S or -P is given to GCC. This may be combined with

‘o 4, and * sequences as well, although they have a stronger binding than
the “1’. If %* appears in X, all of the alternatives must be starred, and only the

first matching alternative is substituted.

For example, a spec string like this:
%{.c:-foo} %{!.c:-bar} %{.cld:-baz} %{!.cld:-boggle}

outputs the following command-line options from the following input command-
line options:

fred.c -foo -baz

jim.d -bar -boggle

-d fred.c -foo -baz -boggle
-d jim.d -bar -baz -boggle

%{S:X; T:Y; :D}
If S is given to GCC, substitutes X; else if T is given to GCC, substitutes Y;
else substitutes D. There can be as many clauses as you need. This may be
combined with ., ,, !, |, and * as needed.

The conditional text X in a %{S:X} or similar construct may contain other nested ‘%’
constructs or spaces, or even newlines. They are processed as usual, as described above.
Trailing white space in X is ignored. White space may also appear anywhere on the left side
of the colon in these constructs, except between . or * and the corresponding word.

The ‘-0°, ‘-f’, ‘-m’, and ‘-W switches are handled specifically in these constructs. If
another value of ‘-0’ or the negated form of a ‘-f’, ‘-m’, or ‘W’ switch is found later in
the command line, the earlier switch value is ignored, except with {S*} where S is just one
letter, which passes all matching options.

180 Using the GNU Compiler Collection (GCC)

The character ‘|’ at the beginning of the predicate text is used to indicate that a command
should be piped to the following command, but only if ‘-pipe’ is specified.

It is built into GCC which switches take arguments and which do not. (You might think
it would be useful to generalize this to allow each compiler’s spec to say which switches
take arguments. But this cannot be done in a consistent fashion. GCC cannot even decide
which input files have been specified without knowing which switches take arguments, and
it must know which input files to compile in order to tell which compilers to run).

GCC also knows implicitly that arguments starting in ‘-1’ are to be treated as compiler
output files, and passed to the linker in their proper position among the other output files.

3.16 Specifying Target Machine and Compiler Version

The usual way to run GCC is to run the executable called gcc, or machine-gcc when cross-
compiling, or machine-gcc-version to run a version other than the one that was installed
last.

3.17 Hardware Models and Configurations

Each target machine types can have its own special options, starting with ‘-m’, to choose
among various hardware models or configurations—for example, 68010 vs 68020, floating
coprocessor or none. A single installed version of the compiler can compile for any model
or configuration, according to the options specified.

Some configurations of the compiler also support additional special options, usually for
compatibility with other compilers on the same platform.

3.17.1 AArch64 Options
These options are defined for AArch64 implementations:

-mabi=name
Generate code for the specified data model. Permissible values are ‘11p32’ for
SysV-like data model where int, long int and pointer are 32-bit, and ‘1p64’ for
SysV-like data model where int is 32-bit, but long int and pointer are 64-bit.

The default depends on the specific target configuration. Note that the LP64
and ILP32 ABIs are not link-compatible; you must compile your entire program
with the same ABI, and link with a compatible set of libraries.

-mbig-endian
Generate big-endian code. This is the default when GCC is configured for an
‘aarch64_be-*—*’ target.

-mgeneral-regs-only
Generate code which uses only the general registers.

-mlittle-endian
Generate little-endian code. This is the default when GCC is configured for an
‘aarch64-*—*’ but not an ‘aarch64_be-*-x’ target.

-mcmodel=tiny
Generate code for the tiny code model. The program and its statically defined
symbols must be within 1GB of each other. Pointers are 64 bits. Programs can

Chapter 3: GCC Command Options 181

be statically or dynamically linked. This model is not fully implemented and
mostly treated as ‘small’.

-mcmodel=small
Generate code for the small code model. The program and its statically defined
symbols must be within 4GB of each other. Pointers are 64 bits. Programs can
be statically or dynamically linked. This is the default code model.

-mcmodel=large
Generate code for the large code model. This makes no assumptions about
addresses and sizes of sections. Pointers are 64 bits. Programs can be statically
linked only.

-mstrict-align
Do not assume that unaligned memory references will be handled by the system.

-momit-leaf-frame-pointer

-mno-omit-leaf-frame-pointer
Omit or keep the frame pointer in leaf functions. The former behaviour is the
default.

-mtls-dialect=desc
Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
of TLS variables. This is the default.

-mtls-dialect=traditional
Use traditional TLS as the thread-local storage mechanism for dynamic accesses
of TLS variables.

-march=name
Specify the name of the target architecture, optionally suffixed by one or more
feature modifiers. This option has the form ‘-march=arch{+[no]feature}*’,
where the only permissible value for arch is ‘armv8-a’. The permissible values
for feature are documented in the sub-section below.

Where conflicting feature modifiers are specified, the right-most feature is used.

GCC uses this name to determine what kind of instructions it can emit when
generating assembly code.

Where ‘-march’ is specified without either of ‘-mtune’ or ‘-mcpu’ also being

specified, the code will be tuned to perform well across a range of target pro-
cessors implementing the target architecture.

-mtune=name
Specify the name of the target processor for which GCC should tune the
performance of the code. Permissible values for this option are: ‘generic’,
‘cortex-ab3’, ‘cortex-ab7’.

Additionally, this option can specify that GCC should tune the performance
of the code for a big.LITTLE system. The only permissible value is
‘cortex-ab7.cortex-ab3’.

Where none of ‘-mtune=’, ‘-mcpu=’ or ‘-march=" are specified, the code will be
tuned to perform well across a range of target processors.

This option cannot be suffixed by feature modifiers.

182 Using the GNU Compiler Collection (GCC)

-mcpu=name
Specify the name of the target processor, optionally suffixed by one or more
feature modifiers. This option has the form ‘-mcpu=cpu{+[no|feature}*’, where
the permissible values for cpu are the same as those available for ‘-mtune’.

The permissible values for feature are documented in the sub-section below.
Where conflicting feature modifiers are specified, the right-most feature is used.

GCC uses this name to determine what kind of instructions it can emit when
generating assembly code (as if by ‘-march’) and to determine the target pro-
cessor for which to tune for performance (as if by ‘-mtune’). Where this option
is used in conjunction with ‘-march’ or ‘-mtune’, those options take precedence
over the appropriate part of this option.

3.17.1.1 ‘-march’ and ‘-mcpu’ feature modifiers
Feature modifiers used with ‘-march’ and ‘-mcpu’ can be one the following:
‘crc’ Enable CRC extension.

‘crypto’ Enable Crypto extension. This implies Advanced SIMD is enabled.

i

‘fp Enable floating-point instructions.

‘simd’ Enable Advanced SIMD instructions. This implies floating-point instructions

are enabled. This is the default for all current possible values for options
‘-march’ and ‘-mcpu=’.

3.17.2 Adapteva Epiphany Options
These ‘-m’ options are defined for Adapteva Epiphany:

-mhalf-reg-file
Don’t allocate any register in the range r32...r63. That allows code to run
on hardware variants that lack these registers.

-mprefer-short-insn-regs
Preferrentially allocate registers that allow short instruction generation. This
can result in increased instruction count, so this may either reduce or increase
overall code size.

-mbranch-cost=num
Set the cost of branches to roughly num “simple” instructions. This cost is only
a heuristic and is not guaranteed to produce consistent results across releases.

-mcmove Enable the generation of conditional moves.

-mnops=num
Emit num NOPs before every other generated instruction.

-mno-soft-cmpsf
For single-precision floating-point comparisons, emit an fsub instruction and
test the flags. This is faster than a software comparison, but can get incorrect re-
sults in the presence of NaNs, or when two different small numbers are compared
such that their difference is calculated as zero. The default is ‘-msoft-cmpsf’,
which uses slower, but IEEE-compliant, software comparisons.

Chapter 3: GCC Command Options 183

-mstack-offset=num

Set the offset between the top of the stack and the stack pointer. E.g., a value
of 8 means that the eight bytes in the range sp+0. . .sp+7 can be used by leaf
functions without stack allocation. Values other than ‘8" or ‘16’ are untested
and unlikely to work. Note also that this option changes the ABI; compiling
a program with a different stack offset than the libraries have been compiled
with generally does not work. This option can be useful if you want to evaluate
if a different stack offset would give you better code, but to actually use a
different stack offset to build working programs, it is recommended to configure
the toolchain with the appropriate ‘--with-stack-offset=num’ option.

-mno-round-nearest
Make the scheduler assume that the rounding mode has been set to truncating.
The default is ‘-mround-nearest’.

-mlong-calls
If not otherwise specified by an attribute, assume all calls might be beyond the
offset range of the b / bl instructions, and therefore load the function address
into a register before performing a (otherwise direct) call. This is the default.

-mshort-calls
If not otherwise specified by an attribute, assume all direct calls are in the range
of the b / bl instructions, so use these instructions for direct calls. The default
is ‘-mlong-calls’.

-msmalll6
Assume addresses can be loaded as 16-bit unsigned values. This does not apply
to function addresses for which ‘-mlong-calls’ semantics are in effect.

-mfp-mode=mode
Set the prevailing mode of the floating-point unit. This determines the floating-
point mode that is provided and expected at function call and return time.
Making this mode match the mode you predominantly need at function start can
make your programs smaller and faster by avoiding unnecessary mode switches.

mode can be set to one the following values:

‘caller’ Any mode at function entry is valid, and retained or restored when
the function returns, and when it calls other functions. This mode
is useful for compiling libraries or other compilation units you might
want to incorporate into different programs with different prevail-
ing FPU modes, and the convenience of being able to use a single
object file outweighs the size and speed overhead for any extra
mode switching that might be needed, compared with what would
be needed with a more specific choice of prevailing FPU mode.

‘truncate’
This is the mode used for floating-point calculations with truncating
(i.e. round towards zero) rounding mode. That includes conversion
from floating point to integer.

184 Using the GNU Compiler Collection (GCC)

‘round-nearest’
This is the mode used for floating-point calculations with round-
to-nearest-or-even rounding mode.

=

int’ This is the mode used to perform integer calculations in the FPU,
e.g. integer multiply, or integer multiply-and-accumulate.

The default is ‘-mfp-mode=caller’

-mnosplit-lohi

-mno-postinc

-mno-postmodify
Code generation tweaks that disable, respectively, splitting of 32-bit loads, gen-
eration of post-increment addresses, and generation of post-modify addresses.
The defaults are ‘msplit-lohi’, ‘-mpost-inc’, and ‘-mpost-modify’.

-mnovect-double
Change the preferred SIMD mode to SImode. The default is ‘“-mvect-double’,
which uses DImode as preferred SIMD mode.

-max-vect-align=num
The maximum alignment for SIMD vector mode types. num may be 4 or 8.
The default is 8. Note that this is an ABI change, even though many library
function interfaces are unaffected if they don’t use SIMD vector modes in places
that affect size and/or alignment of relevant types.

-msplit-vecmove-early
Split vector moves into single word moves before reload. In theory this can give
better register allocation, but so far the reverse seems to be generally the case.

-mlreg-reg
Specify a register to hold the constant —1, which makes loading small negative
constants and certain bitmasks faster. Allowable values for reg are ‘r43’ and
‘r63’, which specify use of that register as a fixed register, and ‘none’, which
means that no register is used for this purpose. The default is ‘-mireg-none’.

3.17.3 ARC Options
The following options control the architecture variant for which code is being compiled:

-mbarrel-shifter
Generate instructions supported by barrel shifter. This is the default unless
‘~mcpu=ARC601’ is in effect.

—-mcpu=cpu
Set architecture type, register usage, and instruction scheduling parameters for
cpu. There are also shortcut alias options available for backward compatibility
and convenience. Supported values for cpu are

‘ARC600° Compile for ARC600. Aliases: ‘-mA6’, ‘-mARC600’.
‘ARC601° Compile for ARC601. Alias: ‘-mARC601’.

‘ARC700° Compile for ARC700. Aliases: ‘-mA7’, ‘-mARC700’. This is the
default when configured with ‘--with-cpu=arc700’.

Chapter 3: GCC Command Options 185

-mdpfp

-mdpfp-compact
FPX: Generate Double Precision FPX instructions, tuned for the compact im-
plementation.

-mdpfp-fast
FPX: Generate Double Precision FPX instructions, tuned for the fast imple-
mentation.

-mno-dpfp-lrsr
Disable LR and SR instructions from using FPX extension aux registers.

-mea Generate Extended arithmetic instructions. Currently only divaw, adds, subs,
and sat16 are supported. This is always enabled for ‘-mcpu=ARC700’.

-mno-mpy Do not generate mpy instructions for ARC700.

-mmul32x16
Generate 32x16 bit multiply and mac instructions.

-mmul64 Generate mul64 and mulu64 instructions. Only valid for ‘-mcpu=ARC600’.
-mnorm Generate norm instruction. This is the default if ‘-mcpu=ARC700’ is in effect.

-mspfp

-mspfp-compact
FPX: Generate Single Precision FPX instructions, tuned for the compact im-
plementation.

-mspfp-fast
FPX: Generate Single Precision FPX instructions, tuned for the fast implemen-
tation.

-msimd Enable generation of ARC SIMD instructions via target-specific builtins. Only
valid for ‘-mcpu=ARC700’.

-msoft-float
This option ignored; it is provided for compatibility purposes only. Software
floating point code is emitted by default, and this default can overridden by
FPX options; ‘mspfp’, ‘mspfp-compact’, or ‘mspfp-fast’ for single precision,
and ‘mdpfp’, ‘mdpfp-compact’, or ‘mdpfp-fast’ for double precision.

-mswap Generate swap instructions.

The following options are passed through to the assembler, and also define preprocessor
macro symbols.

-mdsp-packa
Passed down to the assembler to enable the DSP Pack A extensions. Also sets
the preprocessor symbol __Xdsp_packa.

-mdvbf Passed down to the assembler to enable the dual viterbi butterfly extension.
Also sets the preprocessor symbol __Xdvbf.

-mlock Passed down to the assembler to enable the Locked Load/Store Conditional
extension. Also sets the preprocessor symbol __Xlock.

186 Using the GNU Compiler Collection (GCC)

-mmac-d16
Passed down to the assembler. Also sets the preprocessor symbol __Xxmac_d16.

-mmac-24 Passed down to the assembler. Also sets the preprocessor symbol __Xxmac_24.

-mrtsc Passed down to the assembler to enable the 64-bit Time-Stamp Counter exten-
sion instruction. Also sets the preprocessor symbol __Xrtsc.

-mswape Passed down to the assembler to enable the swap byte ordering extension in-
struction. Also sets the preprocessor symbol __Xswape.

-mtelephony
Passed down to the assembler to enable dual and single operand instructions
for telephony. Also sets the preprocessor symbol __Xtelephony.

-mxXy Passed down to the assembler to enable the XY Memory extension. Also sets
the preprocessor symbol __Xxy.

The following options control how the assembly code is annotated:
-misize Annotate assembler instructions with estimated addresses.

-mannotate-align
Explain what alignment considerations lead to the decision to make an instruc-
tion short or long.

The following options are passed through to the linker:

-marclinux
Passed through to the linker, to specify use of the arclinux emulation. This
option is enabled by default in tool chains built for arc-linux-uclibc and
arceb-linux-uclibc targets when profiling is not requested.

-marclinux_prof
Passed through to the linker, to specify use of the arclinux_prof emulation.
This option is enabled by default in tool chains built for arc-linux-uclibc
and arceb-linux-uclibc targets when profiling is requested.

The following options control the semantics of generated code:

-mepilogue-cfi
Enable generation of call frame information for epilogues.

-mno-epilogue-cfi
Disable generation of call frame information for epilogues.

-mlong-calls
Generate call insns as register indirect calls, thus providing access to the full
32-bit address range.

-mmedium-calls
Don’t use less than 25 bit addressing range for calls, which is the offset avail-
able for an unconditional branch-and-link instruction. Conditional execution
of function calls is suppressed, to allow use of the 25-bit range, rather than
the 21-bit range with conditional branch-and-link. This is the default for tool
chains built for arc-linux-uclibc and arceb-linux-uclibc targets.

Chapter 3: GCC Command Options 187

-mno-sdata
Do not generate sdata references. This is the default for tool chains built for
arc-linux-uclibc and arceb-linux-uclibc targets.

-mucb-mcount
Instrument with mcount calls as used in UCB code. l.e. do the counting in the
callee, not the caller. By default ARC instrumentation counts in the caller.

-mvolatile-cache
Use ordinarily cached memory accesses for volatile references. This is the de-
fault.

-mno-volatile-cache
Enable cache bypass for volatile references.

The following options fine tune code generation:

-malign-call
Do alignment optimizations for call instructions.

-mauto-modify-reg
Enable the use of pre/post modify with register displacement.

-mbbit-peephole
Enable bbit peephole2.

-mno-brcc
This option disables a target-specific pass in ‘arc_reorg’ to generate BRcc
instructions. It has no effect on BRcc generation driven by the combiner pass.

-mcase-vector-pcrel
Use pc-relative switch case tables - this enables case table shortening. This is
the default for ‘-0s’.

-mcompact-casesi
Enable compact casesi pattern. This is the default for ‘-0s’.

-mno-cond-exec

Disable ARCompact specific pass to generate conditional execution instructions.
Due to delay slot scheduling and interactions between operand numbers, literal
sizes, instruction lengths, and the support for conditional execution, the target-
independent pass to generate conditional execution is often lacking, so the ARC
port has kept a special pass around that tries to find more conditional execution
generating opportunities after register allocation, branch shortening, and delay
slot scheduling have been done. This pass generally, but not always, improves
performance and code size, at the cost of extra compilation time, which is why
there is an option to switch it off. If you have a problem with call instructions
exceeding their allowable offset range because they are conditionalized, you
should consider using ‘-mmedium-calls’ instead.

-mearly-cbranchsi
Enable pre-reload use of the cbranchsi pattern.

-mexpand-adddi
Expand adddi3 and subdi3 at rtl generation time into add.f, adc etc.

188 Using the GNU Compiler Collection (GCC)

-mindexed-loads
Enable the use of indexed loads. This can be problematic because some opti-
mizers will then assume the that indexed stores exist, which is not the case.

-mlra Enable Local Register Allocation. This is still experimental for ARC, so by
default the compiler uses standard reload (i.e. ‘-mno-1ra’).

-mlra-priority-none
Don’t indicate any priority for target registers.

-mlra-priority-compact
Indicate target register priority for r0..r3 / r12..r15.

-mlra-priority-noncompact
Reduce target regsiter priority for r0..r3 / r12..rl5.

-mno-millicode
When optimizing for size (using ‘-0s’), prologues and epilogues that have to
save or restore a large number of registers are often shortened by using call
to a special function in libgce; this is referred to as a millicode call. As these
calls can pose performance issues, and/or cause linking issues when linking in a
nonstandard way, this option is provided to turn off millicode call generation.

-mmixed-code
Tweak register allocation to help 16-bit instruction generation. This generally
has the effect of decreasing the average instruction size while increasing the
instruction count.

-mq-class
Enable 'q’ instruction alternatives. This is the default for ‘-0s’.

-mRcq Enable Rcq constraint handling - most short code generation depends on this.
This is the default.

-mRcw Enable Recw constraint handling - ccfsm condexec mostly depends on this. This
is the default.

-msize-level=1level
Fine-tune size optimization with regards to instruction lengths and alignment.
The recognized values for level are:

‘0’ No size optimization. This level is deprecated and treated like ‘1.

‘v Short instructions are used opportunistically.

‘2’ In addition, alignment of loops and of code after barriers are
dropped.

‘3 In addition, optional data alignment is dropped, and the option

‘Os’ is enabled.

This defaults to ‘3’ when ‘-0s’ is in effect. Otherwise, the behavior when this
is not set is equivalent to level ‘1’.

-mtune=cpu
Set instruction scheduling parameters for cpu, overriding any implied by
‘~mcpu=".

Chapter 3: GCC Command Options 189

Supported values for cpu are

‘ARC600° Tune for ARC600 cpu.

‘ARC601° Tune for ARC601 cpu.

‘ARC700° Tune for ARC700 cpu with standard multiplier block.

‘ARC700-xmac’
Tune for ARC700 cpu with XMAC block.

‘ARC725D’ Tune for ARC725D cpu.
‘ARC750D° Tune for ARC750D cpu.

-mmultcost=num
Cost to assume for a multiply instruction, with ‘4’ being equal to a normal
instruction.

-munalign-prob-threshold=probability
Set probability threshold for unaligning branches. When tuning for ‘ARC700’
and optimizing for speed, branches without filled delay slot are preferably emit-
ted unaligned and long, unless profiling indicates that the probability for the
branch to be taken is below probability. See Section 10.5 [Cross-profiling]
page 743. The default is (REG-BR-PROB_BASE/2), i.e. 5000.

)

The following options are maintained for backward compatibility, but are now deprecated
and will be removed in a future release:

-margonaut

Obsolete FPX.

-mbig-endian

-EB Compile code for big endian targets. Use of these options is now
deprecated. Users wanting big-endian code, should use the arceb-elf32
and arceb-linux-uclibc targets when building the tool chain, for which
big-endian is the default.

-mlittle-endian

-EL Compile code for little endian targets. Use of these options is now
deprecated. Users wanting little-endian code should use the arc-elf32
and arc-linux-uclibc targets when building the tool chain, for which
little-endian is the default.

-mbarrel_shifter
Replaced by ‘-mbarrel-shifter’

-mdpfp_compact
Replaced by ‘-mdpfp-compact’

-mdpfp_fast
Replaced by ‘-mdpfp-fast’

-mdsp_packa
Replaced by ‘-mdsp-packa’

-mEA Replaced by ‘-mea’

190

-mmac_24

-mmac_d16

Using the GNU Compiler Collection (GCC)

Replaced by ‘-mmac-24’

Replaced by ‘-mmac-d16’

-mspfp_compact

-mspfp_£fas

-mtune=cpu

Replaced by ‘-mspfp-compact’

t
Replaced by ‘-mspfp-fast’

Values ‘arc600’, ‘arc601’, ‘arc700’ and ‘arc700-xmac’ for cpu are replaced by
‘ARC600’, ‘ARC601’, ‘ARC700’ and ‘ARC700-xmac’ respectively

-multcost=num

Replaced by ‘-mmultcost’.

3.17.4 ARM Options
These ‘-m’ options are defined for Advanced RISC Machines (ARM) architectures:

-mabi=name

Generate code for the specified ABI. Permissible values are: ‘apcs-gnu’,
‘atpcs’, ‘aapcs’, ‘aapcs-linux’ and ‘iwmmxt’.

-mapcs-frame

-mapcs

-mthumb-in

-mno-sched

-mfloat-ab

Generate a stack frame that is compliant with the ARM Procedure Call Stan-
dard for all functions, even if this is not strictly necessary for correct execution of
the code. Specifying ‘-fomit-frame-pointer’ with this option causes the stack
frames not to be generated for leaf functions. The default is ‘-mno-apcs-frame’.

This is a synonym for ‘-mapcs-frame’.

terwork

Generate code that supports calling between the ARM and Thumb
instruction sets. Without this option, on pre-v5 architectures, the two
instruction sets cannot be reliably used inside one program. The default
is ‘-mno-thumb-interwork’, since slightly larger code is generated when
‘-mthumb-interwork’ is specified. In AAPCS configurations this option is
meaningless.

-prolog

Prevent the reordering of instructions in the function prologue, or the merging
of those instruction with the instructions in the function’s body. This means
that all functions start with a recognizable set of instructions (or in fact one of
a choice from a small set of different function prologues), and this information
can be used to locate the start of functions inside an executable piece of code.
The default is ‘-msched-prolog’.

i=name
Specifies which floating-point ABI to use. Permissible values are: ‘soft’,
‘softfp’ and ‘hard’.

Chapter 3: GCC Command Options 191

Specifying ‘soft’ causes GCC to generate output containing library calls for
floating-point operations. ‘softfp’ allows the generation of code using hard-
ware floating-point instructions, but still uses the soft-float calling conventions.
‘hard’ allows generation of floating-point instructions and uses FPU-specific
calling conventions.

The default depends on the specific target configuration. Note that the hard-
float and soft-float ABIs are not link-compatible; you must compile your entire
program with the same ABI, and link with a compatible set of libraries.

-mlittle-endian
Generate code for a processor running in little-endian mode. This is the default
for all standard configurations.

-mbig-endian
Generate code for a processor running in big-endian mode; the default is to
compile code for a little-endian processor.

-mwords—-little-endian
This option only applies when generating code for big-endian processors. Gen-
erate code for a little-endian word order but a big-endian byte order. That is,
a byte order of the form ‘32107654’. Note: this option should only be used if
you require compatibility with code for big-endian ARM processors generated
by versions of the compiler prior to 2.8. This option is now deprecated.

-march=name

This specifies the name of the target ARM architecture. GCC uses this name to
determine what kind of instructions it can emit when generating assembly code.
This option can be used in conjunction with or instead of the ‘-mcpu=" option.
Permissible names are: ‘armv2’, ‘armv2a’, ‘armv3’, ‘armv3m’, ‘armv4’, ‘armvét’,
‘armvb’, ‘armvbt’, ‘armvbe’; ‘armvbte’, ‘armv6’, ‘armv6j’, ‘armv6t2’, ‘armvéz’,
‘armv6zk’, ‘armv6-m’, ‘armv7’, ‘armv7-a’, ‘armv7-r’, ‘armv7-m’, ‘armv7e-m’,
‘armv7ve’, ‘armv8-a’, ‘armv8-a+crc’, ‘iwmmxt’, ‘iwmmxt2’, ‘ep9312’.
‘-march=armv7ve’ is the armv7-a architecture with virtualization extensions.

‘-march=armv8-a+crc’ enables code generation for the ARMv8-A architecture
together with the optional CRC32 extensions.

‘-march=native’ causes the compiler to auto-detect the architecture of the
build computer. At present, this feature is only supported on Linux, and not
all architectures are recognized. If the auto-detect is unsuccessful the option
has no effect.

-mtune=name
This option specifies the name of the target ARM processor for which GCC
should tune the performance of the code. For some ARM implementations
better performance can be obtained by using this option. Permissible
names are: ‘arm2’, ‘arm250’, ‘arm3’, ‘arm6’, ‘arm60’, ‘arm600’, ‘arm610’,
‘arm620’, ‘arm7’, ‘arm7m’, ‘arm7d’, ‘arm7dm’, ‘arm7di’, ‘arm7dmi’, ‘arm70’,
‘arm700’, ‘arm700i’, ‘arm710’, ‘arm710c’, ‘arm7100’, ‘arm720’, ‘arm7500’,
‘arm7500fe’, ‘arm7tdmi’;, ‘arm7tdmi-s’, ‘arm710t’, ‘arm720t’, ‘arm740t’,
‘strongarm’, ‘strongarml10’, ‘strongarm1100’, ‘strongarm1110’, ‘arm8’,

192 Using the GNU Compiler Collection (GCC)

‘arm810’, ‘arm9’, ‘arm9e’, ‘arm920’, ‘arm920t’, ‘arm922t’, ‘arm946e-s’,
‘arm966e-s’, ‘arm968e-s’, ‘arm926ej-s’, ‘arm940t’, ‘arm9tdmi’, ‘arm10tdmi’,
‘arm1020t’, ‘arm1026ej-s’, ‘arm10e’, ‘arm1020e’, ‘arm1022e’, ‘arm1136j-s’,
‘arm1136jf-s’, ‘mpcore’, ‘mpcorenovfp’, ‘arml156t2-s’, ‘arml156t2f-s’,

‘arm1176jz-s’, ‘arm1176jzf-s’, ‘cortex-ab’, ‘cortex-a7’, ‘cortex-a8’,
‘cortex-a9’, ‘cortex-al2’, ‘cortex-alb’, ‘cortex-ab3’, ‘cortex-ab7’,
‘cortex-rd’, ‘cortex-r4f’, ‘cortex-r5’, ‘cortex-r7’, ‘cortex-mé4’

‘cortex-m3’, ‘cortex-ml’, ‘cortex-m0O’, ‘cortex-mOplus’, ‘marvell-pj4’,
‘xscale’, ‘iwmmxt’, ‘iwmmxt2’, ‘ep9312’, ‘fab26’, ‘fa626’, ‘fa606te’,
‘fa626te’, ‘fmp626’, ‘fa726te’.

Additionally, this option can specify that GCC should tune the perfor-
mance of the code for a big.LITTLE system. Permissible names are:
‘cortex-alb.cortex-a7’, ‘cortex-ab7.cortex-ab3’.

‘-mtune=generic-arch’ specifies that GCC should tune the performance for a
blend of processors within architecture arch. The aim is to generate code that
run well on the current most popular processors, balancing between optimiza-
tions that benefit some CPUs in the range, and avoiding performance pitfalls
of other CPUs. The effects of this option may change in future GCC versions
as CPU models come and go.

‘-mtune=native’ causes the compiler to auto-detect the CPU of the build com-
puter. At present, this feature is only supported on Linux, and not all archi-
tectures are recognized. If the auto-detect is unsuccessful the option has no
effect.

-mcpu=name
This specifies the name of the target ARM processor. GCC uses this name to
derive the name of the target ARM architecture (as if specified by ‘-march’) and
the ARM processor type for which to tune for performance (as if specified by
‘-mtune’). Where this option is used in conjunction with ‘-march’ or ‘-mtune’,
those options take precedence over the appropriate part of this option.
Permissible names for this option are the same as those for ‘-mtune’.

3

‘-mcpu=generic-arch’ is also permissible, and is equivalent to ‘-march=arch

-mtune=generic-arch’. See ‘-mtune’ for more information.

‘-mcpu=native’ causes the compiler to auto-detect the CPU of the build com-
puter. At present, this feature is only supported on Linux, and not all archi-
tectures are recognized. If the auto-detect is unsuccessful the option has no
effect.

-mfpu=name
This specifies what floating-point hardware (or hardware emulation) is
available on the target. Permissible names are: ‘vfp’, ‘vfpv3’, ‘vipv3-£fpl6’,
‘vifpv3-d16’, ‘vfpv3-di6-fpl6’, ‘vifpv3xd’, ‘vipv3xd-fpl6’, ‘neon’,
‘neon-fpl6’, ‘vfpvd’, ‘vipv4-di6’, ‘fpv4-sp-d16’, ‘neon-vipv4’, ‘fp-armv8’,
‘neon-fp-armv8’, and ‘crypto-neon-fp-armv8’.
If “-msoft-float’ is specified this specifies the format of floating-point values.

If the selected floating-point hardware includes the NEON extension (e.g.
‘-mfpu’=‘neon’), note that floating-point operations are not generated by

Chapter 3: GCC Command Options 193

GCC’s auto-vectorization pass unless ‘-funsafe-math-optimizations’ is
also specified. This is because NEON hardware does not fully implement the
IEEE 754 standard for floating-point arithmetic (in particular denormal values
are treated as zero), so the use of NEON instructions may lead to a loss of
precision.

-mfpl6-format=name
Specify the format of the __fp16 half-precision floating-point type. Permissible
names are ‘none’, ‘ieee’, and ‘alternative’; the default is ‘none’, in which case
the __fp16 type is not defined. See Section 6.12 [Half-Precision|, page 359, for
more information.

-mstructure-size-boundary=n
The sizes of all structures and unions are rounded up to a multiple of the
number of bits set by this option. Permissible values are 8, 32 and 64. The
default value varies for different toolchains. For the COFF targeted toolchain
the default value is 8. A value of 64 is only allowed if the underlying ABI
supports it.

Specifying a larger number can produce faster, more efficient code, but can also
increase the size of the program. Different values are potentially incompatible.
Code compiled with one value cannot necessarily expect to work with code
or libraries compiled with another value, if they exchange information using
structures or unions.

-mabort-on-noreturn
Generate a call to the function abort at the end of a noreturn function. It is
executed if the function tries to return.

-mlong-calls

-mno-long-calls
Tells the compiler to perform function calls by first loading the address of the
function into a register and then performing a subroutine call on this register.
This switch is needed if the target function lies outside of the 64-megabyte
addressing range of the offset-based version of subroutine call instruction.

Even if this switch is enabled, not all function calls are turned into long calls.
The heuristic is that static functions, functions that have the ‘short-call’
attribute, functions that are inside the scope of a ‘#pragma no_long_calls’
directive, and functions whose definitions have already been compiled within
the current compilation unit are not turned into long calls. The exceptions
to this rule are that weak function definitions, functions with the ‘long-call’
attribute or the ‘section’ attribute, and functions that are within the scope of
a ‘#pragma long_calls’ directive are always turned into long calls.

This feature is not enabled by default. Specifying ‘-mno-long-calls’ restores
the default behavior, as does placing the function calls within the scope of a
‘#pragma long_calls_off’ directive. Note these switches have no effect on
how the compiler generates code to handle function calls via function pointers.

194 Using the GNU Compiler Collection (GCC)

-msingle-pic-base
Treat the register used for PIC addressing as read-only, rather than loading
it in the prologue for each function. The runtime system is responsible for
initializing this register with an appropriate value before execution begins.

-mpic-register=reg
Specify the register to be used for PIC addressing. For standard PIC base case,
the default will be any suitable register determined by compiler. For single
PIC base case, the default is ‘R9’ if target is EABI based or stack-checking is
enabled, otherwise the default is ‘R10’.

-mpic-data-is-text-relative
Assume that each data segments are relative to text segment at load time.
Therefore, it permits addressing data using PC-relative operations. This option
is on by default for targets other than VxWorks RTP.

-mpoke-function-name
Write the name of each function into the text section, directly preceding the
function prologue. The generated code is similar to this:
t0
.ascii "arm_poke_function_name", O
.align
t1
.word O0xff000000 + (t1 - tO)
arm_poke_function_name

mov ip, sp
stmfd sp!, {fp, ip, 1lr, pc}
sub fp, ip, #4

When performing a stack backtrace, code can inspect the value of pc stored at
fp + 0. If the trace function then looks at location pc - 12 and the top 8 bits
are set, then we know that there is a function name embedded immediately
preceding this location and has length ((pc[-3]) & 0x££000000).

-mthumb
-marm

Select between generating code that executes in ARM and Thumb states.
The default for most configurations is to generate code that executes in
ARM state, but the default can be changed by configuring GCC with the
‘--with-mode='state configure option.

-mtpcs-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Stan-
dard for all non-leaf functions. (A leaf function is one that does not call any
other functions.) The default is ‘-mno-tpcs-frame’.

-mtpcs-leaf-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Stan-
dard for all leaf functions. (A leaf function is one that does not call any other
functions.) The default is ‘-mno-apcs-leaf-frame’.

-mcallee-super-interworking
Gives all externally visible functions in the file being compiled an ARM in-
struction set header which switches to Thumb mode before executing the rest

Chapter 3: GCC Command Options 195

of the function. This allows these functions to be called from non-interworking
code. This option is not valid in AAPCS configurations because interworking
is enabled by default.

-mcaller-super-interworking
Allows calls via function pointers (including virtual functions) to execute cor-
rectly regardless of whether the target code has been compiled for interworking
or not. There is a small overhead in the cost of executing a function pointer
if this option is enabled. This option is not valid in AAPCS configurations
because interworking is enabled by default.

-mtp=name
Specify the access model for the thread local storage pointer. The valid models
are ‘soft’, which generates calls to __aeabi_read_tp, ‘cpl5’, which fetches the
thread pointer from cp15 directly (supported in the arm6k architecture), and
‘auto’, which uses the best available method for the selected processor. The
default setting is ‘auto’.

-mtls-dialect=dialect

Specify the dialect to use for accessing thread local storage. Two dialects are
supported—‘gnu’ and ‘gnu2’. The ‘gnu’ dialect selects the original GNU scheme
for supporting local and global dynamic TLS models. The ‘gnu2’ dialect selects
the GNU descriptor scheme, which provides better performance for shared li-
braries. The GNU descriptor scheme is compatible with the original scheme,
but does require new assembler, linker and library support. Initial and local
exec TLS models are unaffected by this option and always use the original
scheme.

-mword-relocations
Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
This is enabled by default on targets (uClinux, SymbianOS) where the runtime
loader imposes this restriction, and when ‘~fpic’ or ‘-fPIC’ is specified.

-mfix-cortex-m3-1drd
Some Cortex-M3 cores can cause data corruption when 1ldrd instructions
with overlapping destination and base registers are used. This option
avoids generating these instructions. This option is enabled by default when
‘-mcpu=cortex-m3’ is specified.

-munaligned-access

-mno-unaligned-access
Enables (or disables) reading and writing of 16- and 32- bit values from ad-
dresses that are not 16- or 32- bit aligned. By default unaligned access is
disabled for all pre-ARMv6 and all ARMv6-M architectures, and enabled for
all other architectures. If unaligned access is not enabled then words in packed
data structures will be accessed a byte at a time.

The ARM attribute Tag_CPU_unaligned_access will be set in the generated
object file to either true or false, depending upon the setting of this option.
If unaligned access is enabled then the preprocessor symbol __ARM_FEATURE_
UNALIGNED will also be defined.

196 Using the GNU Compiler Collection (GCC)

-mneon-for-64bits
Enables using Neon to handle scalar 64-bits operations. This is disabled by
default since the cost of moving data from core registers to Neon is high.

-mslow-flash-data
Assume loading data from flash is slower than fetching instruction. Therefore
literal load is minimized for better performance. This option is only supported
when compiling for ARMv7 M-profile and off by default.

-mrestrict-it
Restricts generation of IT blocks to conform to the rules of ARMvS8. IT blocks
can only contain a single 16-bit instruction from a select set of instructions.
This option is on by default for ARMv8 Thumb mode.

3.17.5 AVR Options

These options are defined for AVR implementations:

-mmcu=mcu
Specify Atmel AVR instruction set architectures (ISA) or MCU type.

The default for this option is avr2.
GCC supports the following AVR devices and ISAs:

avr2 “Classic” devices with up to 8 KiB of program memory.
mcu = attiny22, attiny26, at90c8534, at90s2313, at90s2323,
at90s2333, at90s2343, at90s4414, at90s4433, at90s4434,
at90s8515, at90s8535.

avr25 “Classic” devices with up to 8 KiB of program memory and with
the MOVW instruction.
mcu = atab272, ata6289, attinyl3, attinyl3a, attiny2313,
attiny2313a, attiny24, attiny24a, attiny25, attiny261,
attiny26la, attiny43u, attiny4313, attiny44, attinyé44a,
attiny45, attiny461, attiny46la, attiny48, attiny84,
attiny84a, attiny85, attiny861, attiny86la, attiny87,
attiny88, at86rf401.

avr3 “Classic” devices with 16 KiB up to 64 KiB of program memory.
mcu = at43usb355, at76c711.

avr3l “Classic” devices with 128 KiB of program memory.
mcu = atmegal0O3, at43usb320.

avr3b “Classic” devices with 16 KiB up to 64 KiB of program memory
and with the MOVW instruction.
mcu = atabb05, atmegal6bu2, atmega32u2, atmega8u2,

attiny1634, attiny167, at90usb162, at90usbs2.

avrd “Enhanced” devices with up to 8 KiB of program memory.
mcu = ata6285, ata6286, atmegad8, atmegad8a, atmega4dS8p,
atmegad48pa, atmega8, atmega8a, atmegaB8hva, atmega8515,
atmegaB8535, atmega88, atmega88a, atmega88p, atmega88pa,

Chapter 3: GCC Command Options 197

avrb

avrb1l

avr6

avrxmega?2

avrxmegad

at90pwml, at90pwm2, at90pwm2b, at90pwm3, at90pwm3b,
at90pwm81.

“Fnhanced” devices with 16 KiB up to 64 KiB of program
memory.

mcu = atab790, atab5790n, atab795, atmegal6, atmegal6a,
atmegal6hva, atmegal6hva2, atmegal6hvb, atmegal6hvbrevb,
atmegal6bml, atmegal6u4, atmegal6l, atmegal62, atmegal63,
atmegal64a, atmegal64p, atmegal64pa, atmegal6b,
atmegal6ba, atmegal6bp, atmegal6b5pa, atmegal68,
atmegal68a, atmegal68p, atmegal68pa, atmegal69, atmegal69a,
atmegal69p, atmegal69pa, atmega26hvg, atmega32, atmega32a,
atmega32cl, atmega32hvb, atmega32hvbrevb, atmega32ml,
atmega32u4, atmega32ub, atmega323, atmega324a, atmega324p,
atmega324pa, atmega325, atmega325a, atmega325p, atmega3250,
atmega3250a, atmega3250p, atmega3250pa, atmega328,
atmega328p, atmega329, atmega329a, atmega329p, atmega329pa,
atmega3290, atmega3290a, atmega3290p, atmega3290pa,
atmegad406, atmegad8hvf, atmega64, atmegab64a, atmegab4cl,
atmega64hve, atmega64ml, atmegabd4rfa2, atmegabdrfr2,
atmega640, atmega644, atmega644a, atmega644p, atmegab44pa,
atmega645, atmega645a, atmega645p, atmega6450, atmega6450a,
atmega6450p, atmega649, atmega649a, atmegab649p, atmega6490,
atmega6490a, atmega6490p, at90can32, at90can64, at90pwm161,
at90pwm216, at90pwm316, at90scr100, at90usb646, at90usb647,
at94k, m3000.

“Fnhanced” devices with 128 KiB of program memory.

mcu = atmegal28, atmegal28a, atmegal28rfal, atmegal280,
atmegal281, atmegal284, atmegal284p, at90canl28,
at90usb1286, at90usb1287.

“Enhanced” devices with 3-byte PC, i.e. with more than 128 KiB
of program memory.
mcu = atmega2560, atmega2561.

“XMEGA” devices with more than 8 KiB and up to 64 KiB of
program Imemory.

mcu = atmxtll2sl, atmxt224, atmxt224e, atmxt336s,
atxmegal6ad4, atxmegal6adu, atxmegal6c4, atxmegal6d4,
atxmega32a4, atxmega32adu, atxmega32c4, atxmega32d4,
atxmega32eb, atxmega32x1.

“XMEGA” devices with more than 64 KiB and up to 128 KiB of
program memory.

mecu = atxmega64a3, atxmega64a3u, atxmega64adu,
atxmega64bl, atxmega64b3, atxmega64c3, atxmega64d3,
atxmega64d4.

198

Using the GNU Compiler Collection (GCC)

avrxmegab
“XMEGA” devices with more than 64 KiB and up to 128 KiB of
program memory and more than 64 KiB of RAM.
mcu = atxmega64al, atxmega64alu.

avrxmegab

“XMEGA” devices with more than 128 KiB of program memory.
mcu = atmxtb40s, atmxtb540sreva, atxmegal28a3,
atxmegal28a3u, atxmegal28bl, atxmegal28b3, atxmegal28c3,
atxmegal28d3, atxmegal28d4, atxmegal92a3, atxmegal92a3u,
atxmegal92c3, atxmegal92d3, atxmega2b6a3, atxmega256a3b,
atxmega2b6a3bu, atxmega256a3u, atxmega256c3, atxmega256d3,
atxmega384c3, atxmega384d3.

avrxmega’
“XMEGA” devices with more than 128 KiB of program memory
and more than 64 KiB of RAM.
mcu = atxmegal28al, atxmegal28alu, atxmegal28adu.

avril This ISA is implemented by the minimal AVR core and supported
for assembler only.
mcu = attinyll, attinyl2, attinylb, attiny28, at90s1200.

-maccumulate-args

Accumulate outgoing function arguments and acquire/release the needed stack
space for outgoing function arguments once in function prologue/epilogue.
Without this option, outgoing arguments are pushed before calling a function
and popped afterwards.

Popping the arguments after the function call can be expensive on AVR so
that accumulating the stack space might lead to smaller executables because
arguments need not to be removed from the stack after such a function call.

This option can lead to reduced code size for functions that perform several
calls to functions that get their arguments on the stack like calls to printf-like
functions.

-mbranch-cost=cost

Set the branch costs for conditional branch instructions to cost. Reasonable
values for cost are small, non-negative integers. The default branch cost is 0.

-mcall-prologues

-mint8

Functions prologues/epilogues are expanded as calls to appropriate subroutines.
Code size is smaller.

Assume int to be 8-bit integer. This affects the sizes of all types: a char is 1
byte, an int is 1 byte, a long is 2 bytes, and long long is 4 bytes. Please note
that this option does not conform to the C standards, but it results in smaller
code size.

-mno-interrupts

Generated code is not compatible with hardware interrupts. Code size is
smaller.

Chapter 3: GCC Command Options 199

-mrelax Try to replace CALL resp. JMP instruction by the shorter RCALL resp. RIJMP in-
struction if applicable. Setting -mrelax just adds the --relax option to the
linker command line when the linker is called.

Jump relaxing is performed by the linker because jump offsets are not known
before code is located. Therefore, the assembler code generated by the compiler
is the same, but the instructions in the executable may differ from instructions
in the assembler code.

Relaxing must be turned on if linker stubs are needed, see the section on EIND
and linker stubs below.

-msp8 Treat the stack pointer register as an 8-bit register, i.e. assume the high byte of
the stack pointer is zero. In general, you don’t need to set this option by hand.

This option is used internally by the compiler to select and build multilibs for
architectures avr2 and avr25. These architectures mix devices with and with-
out SPH. For any setting other than -mmcu=avr2 or -mmcu=avr25 the compiler
driver will add or remove this option from the compiler proper’s command line,
because the compiler then knows if the device or architecture has an 8-bit stack
pointer and thus no SPH register or not.

-mstrict-X
Use address register X in a way proposed by the hardware. This means that X
is only used in indirect, post-increment or pre-decrement addressing.

Without this option, the X register may be used in the same way as Y or Z which
then is emulated by additional instructions. For example, loading a value with
X+const addressing with a small non-negative const < 64 to a register Rn is
performed as

adiw r26, const ; X += const
1d Rn, X ; Rm = *X
sbiw r26, const ; X —= const

-mtiny-stack
Only change the lower 8 bits of the stack pointer.

-Waddr-space-convert
Warn about conversions between address spaces in the case where the resulting
address space is not contained in the incoming address space.

3.17.5.1 EIND and Devices with more than 128 Ki Bytes of Flash

Pointers in the implementation are 16 bits wide. The address of a function or label is
represented as word address so that indirect jumps and calls can target any code address
in the range of 64 Ki words.

In order to facilitate indirect jump on devices with more than 128 Ki bytes of program
memory space, there is a special function register called EIND that serves as most significant
part of the target address when EICALL or EIJMP instructions are used.

Indirect jumps and calls on these devices are handled as follows by the compiler and are
subject to some limitations:

e The compiler never sets EIND.

200 Using the GNU Compiler Collection (GCC)

The compiler uses EIND implicitely in EICALL/EIJMP instructions or might read EIND
directly in order to emulate an indirect call/jump by means of a RET instruction.

The compiler assumes that EIND never changes during the startup code or during the
application. In particular, EIND is not saved/restored in function or interrupt service
routine prologue/epilogue.

For indirect calls to functions and computed goto, the linker generates stubs. Stubs are
jump pads sometimes also called trampolines. Thus, the indirect call/jump jumps to
such a stub. The stub contains a direct jump to the desired address.

Linker relaxation must be turned on so that the linker will generate the stubs correctly
an all situaltion. See the compiler option -mrelax and the linler option -—relax. There
are corner cases where the linker is supposed to generate stubs but aborts without
relaxation and without a helpful error message.

The default linker script is arranged for code with EIND = 0. If code is supposed to
work for a setup with EIND != 0, a custom linker script has to be used in order to place
the sections whose name start with .trampolines into the segment where EIND points
to.

The startup code from libgcc never sets EIND. Notice that startup code is a blend
of code from libgce and AVR-LibC. For the impact of AVR-LibC on EIND, see the
AVR-LibC user manual.

It is legitimate for user-specific startup code to set up EIND early, for example by means
of initialization code located in section .init3. Such code runs prior to general startup
code that initializes RAM and calls constructors, but after the bit of startup code from
AVR-LibC that sets EIND to the segment where the vector table is located.

#include <avr/io.h>

static void
__attribute__((section(".init3") ,naked,used,no_instrument_function))
init3_set_eind (void)
{
__asm volatile ("1di r24,pm_hh8(__trampolines_start)\n\t"

"out %i0,r24" :: "n" (&EIND) : "r24","memory");
}
The __trampolines_start symbol is defined in the linker script.
e Stubs are generated automatically by the linker if the following two conditions are met:

— The address of a label is taken by means of the gs modifier (short for generate
stubs) like so:

LDI r24, lo8(gs(func))
LDI r25, hi8(gs(func))

— The final location of that label is in a code segment outside the segment where the
stubs are located.

e The compiler emits such gs modifiers for code labels in the following situations:
— Taking address of a function or code label.
— Computed goto.
— If prologue-save function is used, see ‘-mcall-prologues’ command-line option.

http://nongnu.org/avr-libc/user-manual/

Chapter 3: GCC Command Options 201

— Switch/case dispatch tables. If you do not want such dispatch tables you can
specify the ‘~fno-jump-tables’ command-line option.
— C and C++ constructors/destructors called during startup/shutdown.
— If the tools hit a gs() modifier explained above.
e Jumping to non-symbolic addresses like so is not supported:
int main (void)
{
/* Call function at word address 0x2 */
return ((int(*) (void)) 0x2) O ;
}
Instead, a stub has to be set up, i.e. the function has to be called through a symbol
(func_4 in the example):

int main (void)

{
extern int func_4 (void);
/* Call function at byte address 0x4 */
return func_4();

}

and the application be linked with -W1,--defsym,func_4=0x4. Alternatively, func_4
can be defined in the linker script.

3.17.5.2 Handling of the RAMPD, RAMPX, RAMPY and RAMPZ Special
Function Registers

Some AVR devices support memories larger than the 64 KiB range that can be accessed with
16-bit pointers. To access memory locations outside this 64 KiB range, the contentent of a
RAMP register is used as high part of the address: The X, Y, Z address register is concatenated
with the RAMPX, RAMPY, RAMPZ special function register, respectively, to get a wide address.
Similarly, RAMPD is used together with direct addressing.

e The startup code initializes the RAMP special function registers with zero.

e If a [AVR Named Address Spaces|, page 362 other than generic or __flash is used,
then RAMPZ is set as needed before the operation.

e If the device supports RAM larger than 64 KiB and the compiler needs to change RAMPZ
to accomplish an operation, RAMPZ is reset to zero after the operation.

e If the device comes with a specific RAMP register, the ISR prologue/epilogue
saves/restores that SFR and initializes it with zero in case the ISR code might
(implicitly) use it.

e RAM larger than 64 KiB is not supported by GCC for AVR targets. If you use inline
assembler to read from locations outside the 16-bit address range and change one of
the RAMP registers, you must reset it to zero after the access.

3.17.5.3 AVR Built-in Macros

GCC defines several built-in macros so that the user code can test for the presence or
absence of features. Almost any of the following built-in macros are deduced from device
capabilities and thus triggered by the -mmcu= command-line option.

202 Using the GNU Compiler Collection (GCC)

For even more AVR-specific built-in macros see [AVR Named Address Spaces|, page 362
and Section 6.57.8 [AVR Built-in Functions], page 595.

__AVR_ARCH__
Build-in macro that resolves to a decimal number that identifies the architecture
and depends on the -mmcu=mcu option. Possible values are:

2, 25, 3, 31, 35, 4, 5, 51, 6, 102, 104, 105, 106, 107

for mcu=avr2, avr25, avr3, avr3l, avr35, avr4, avrb5, avrbl, avr6,
avrxmega?2, avrxmegad, avrxmegab, avrxmegaf, avrxmega7, respectively. If
mcu specifies a device, this built-in macro is set accordingly. For example,
with -mmcu=atmega8 the macro will be defined to 4.

__AVR_Device__
Setting -mmcu=device defines this built-in macro which reflects the
device’s name. For example, -mmcu=atmega8 defines the built-in macro
__AVR_ATmega8__, -mmcu=attiny261la defines __AVR_ATtiny261A__, etc.

The built-in macros’ names follow the scheme __AVR_Device__ where Device is
the device name as from the AVR user manual. The difference between Device
in the built-in macro and device in -mmcu=device is that the latter is always
lowercase.

-

If device is not a device but only a core architecture like avr51, this macro will
not be defined.

__AVR_XMEGA__
The device / architecture belongs to the XMEGA family of devices.

__AVR_HAVE_ELPM__
The device has the the ELPM instruction.

__AVR_HAVE_ELPMX__
The device has the ELPM Rn,Z and ELPM Rn,Z+ instructions.

__AVR_HAVE_MOVW__
The device has the MOVW instruction to perform 16-bit register-register moves.

__AVR_HAVE_LPMX__
The device has the LPM Rn,Z and LPM Rn,Z+ instructions.

__AVR_HAVE_MUL__
The device has a hardware multiplier.

__AVR_HAVE_JMP_CALL__
The device has the JMP and CALL instructions. This is the case for devices with
at least 16 KiB of program memory.

__AVR_HAVE_EIJMP_EICALL__

__AVR_3_BYTE_PC__
The device has the EIJMP and EICALL instructions. This is the case for devices
with more than 128 KiB of program memory. This also means that the program
counter (PC) is 3 bytes wide.

Chapter 3: GCC Command Options 203

__AVR_2_BYTE_PC__
The program counter (PC) is 2 bytes wide. This is the case for devices with up
to 128 KiB of program memory.

__AVR_HAVE_8BIT_SP__

__AVR_HAVE_16BIT_SP__
The stack pointer (SP) register is treated as 8-bit respectively 16-bit register
by the compiler. The definition of these macros is affected by -mtiny-stack.

__AVR_HAVE_SPH__

__AVR_SP8__
The device has the SPH (high part of stack pointer) special function register
or has an 8-bit stack pointer, respectively. The definition of these macros is
affected by -mmcu= and in the cases of -mmcu=avr2 and -mmcu=avr25 also by
-msp8.

__AVR_HAVE_RAMPD__

__AVR_HAVE_RAMPX__

__AVR_HAVE_RAMPY__

__AVR_HAVE_RAMPZ__
The device has the RAMPD, RAMPX, RAMPY, RAMPZ special function register, re-
spectively.

__NO_INTERRUPTS__
This macro reflects the -mno-interrupts command line option.

__AVR_ERRATA_SKIP__

__AVR_ERRATA_SKIP_JMP_CALL__
Some AVR devices (AT90S8515, ATmegal03) must not skip 32-bit instructions
because of a hardware erratum. Skip instructions are SBRS, SBRC, SBIS, SBIC
and CPSE. The second macro is only defined if __AVR_HAVE_JMP_CALL__ is also
set.

__AVR_TISA_RMW__
The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).

__AVR_SFR_OFFSET__=offset
Instructions that can address I/O special function registers directly like IN, OUT,
SBI, etc. may use a different address as if addressed by an instruction to access
RAM like LD or STS. This offset depends on the device architecture and has to
be subtracted from the RAM address in order to get the respective I/O address.

__WITH_AVRLIBC__
The compiler is configured to be used together with AVR-Libc. See the --
with-avrlibc configure option.

3.17.6 Blackfin Options

-mcpu=cpu[-sirevision]
Specifies the name of the target Blackfin processor. Currently, cpu can be
one of ‘bf512’, ‘bf514’, ‘bf516’, ‘bf518’, ‘bf522’, ‘bf523’, ‘bf524’, ‘bf525’,
‘bf526’°, ‘bf527’, ‘bf531’°, ‘bf532’°, ‘bf533’, ‘bf534’, ‘bf536’, ‘bf537’, ‘bf538’,

204 Using the GNU Compiler Collection (GCC)

‘f539°, ‘bf542°, ‘bf544’, ‘bf547°, ‘bf548’, ‘bf549’, ‘bf542m’, ‘bf544m’,
‘Df547m’, ‘bf548m’, ‘bf549m’, ‘bf561’, ‘bf592.

The optional sirevision specifies the silicon revision of the target Blackfin pro-
cessor. Any workarounds available for the targeted silicon revision are en-
abled. If sirevision is ‘none’, no workarounds are enabled. If sirevision is
‘any’, all workarounds for the targeted processor are enabled. The __SILICON_
REVISION__ macro is defined to two hexadecimal digits representing the major
and minor numbers in the silicon revision. If sirevision is ‘none’, the __SILICON_
REVISION__ is not defined. If sirevision is ‘any’, the __SILICON_REVISION__ is
defined to be Oxffff. If this optional sirevision is not used, GCC assumes the
latest known silicon revision of the targeted Blackfin processor.

GCC defines a preprocessor macro for the specified cpu. For the ‘bfin-elf’
toolchain, this option causes the hardware BSP provided by libgloss to be linked
in if ‘-msim’ is not given.

Without this option, ‘b£532’ is used as the processor by default.

Note that support for ‘b£561’ is incomplete. For ‘bf561’°, only the preprocessor
macro is defined.

-msim Specifies that the program will be run on the simulator. This causes the simu-
lator BSP provided by libgloss to be linked in. This option has effect only for
‘pfin-elf’ toolchain. Certain other options, such as ‘-mid-shared-library’
and ‘-mfdpic’, imply ‘-msim’.

-momit-leaf-frame-pointer
Don’t keep the frame pointer in a register for leaf functions. This avoids the
instructions to save, set up and restore frame pointers and makes an extra reg-
ister available in leaf functions. The option ‘~fomit-frame-pointer’ removes
the frame pointer for all functions, which might make debugging harder.

-mspecld-anomaly
When enabled, the compiler ensures that the generated code does not contain
speculative loads after jump instructions. If this option is used, __WORKAROUND_
SPECULATIVE_LOADS is defined.

Pp——

-mno-specld-anomaly
Don’t generate extra code to prevent speculative loads from occurring.

-mcsync-anomaly
When enabled, the compiler ensures that the generated code does not contain
CSYNC or SSYNC instructions too soon after conditional branches. If this
option is used, __WORKAROUND_SPECULATIVE_SYNCS is defined.

[Jp——

-mno-csync-anomaly
Don’t generate extra code to prevent CSYNC or SSYNC instructions from
occurring too soon after a conditional branch.

-mlow-64k
When enabled, the compiler is free to take advantage of the knowledge that the
entire program fits into the low 64k of memory.

Chapter 3: GCC Command Options 205

-mno—low—-64k
Assume that the program is arbitrarily large. This is the default.

-mstack-check-11
Do stack checking using information placed into L1 scratchpad memory by the
uClinux kernel.

-mid-shared-library
Generate code that supports shared libraries via the library ID method. This
allows for execute in place and shared libraries in an environment without vir-
tual memory management. This option implies ‘-fPIC’. With a ‘bfin-elf’
target, this option implies ‘-msim’.

-mno-id-shared-library
Generate code that doesn’t assume ID-based shared libraries are being used.
This is the default.

-mleaf-id-shared-library
Generate code that supports shared libraries via the library ID method, but
assumes that this library or executable won’t link against any other ID shared
libraries. That allows the compiler to use faster code for jumps and calls.

-mno-leaf-id-shared-library
Do not assume that the code being compiled won’t link against any ID shared
libraries. Slower code is generated for jump and call insns.

-mshared-library-id=n
Specifies the identification number of the ID-based shared library being com-
piled. Specifying a value of 0 generates more compact code; specifying other
values forces the allocation of that number to the current library but is no more
space- or time-efficient than omitting this option.

-msep-data
Generate code that allows the data segment to be located in a different area of
memory from the text segment. This allows for execute in place in an environ-
ment without virtual memory management by eliminating relocations against
the text section.

-mno-sep-data
Generate code that assumes that the data segment follows the text segment.
This is the default.

-mlong-calls

-mno-long-calls
Tells the compiler to perform function calls by first loading the address of the
function into a register and then performing a subroutine call on this register.
This switch is needed if the target function lies outside of the 24-bit addressing
range of the offset-based version of subroutine call instruction.

This feature is not enabled by default. Specifying ‘-mno-long-calls’ restores
the default behavior. Note these switches have no effect on how the compiler
generates code to handle function calls via function pointers.

206 Using the GNU Compiler Collection (GCC)

-mfast-fp
Link with the fast floating-point library. This library relaxes some of the
IEEE floating-point standard’s rules for checking inputs against Not-a-Number
(NAN), in the interest of performance.

-minline-plt
Enable inlining of PLT entries in function calls to functions that are not known
to bind locally. It has no effect without ‘-mfdpic’.

-mmulticore
Build a standalone application for multicore Blackfin processors. This
option causes proper start files and link scripts supporting multicore to be
used, and defines the macro __BFIN_MULTICORE. It can only be used with
‘-mcpu=bf561[-sirevision]|’.

This option can be used with ‘-mcorea’ or ‘-mcoreb’, which selects the one-
application-per-core programming model. Without ‘-mcorea’ or ‘-mcoreb’, the
single-application/dual-core programming model is used. In this model, the
main function of Core B should be named as coreb_main.

If this option is not used, the single-core application programming model is
used.

-mcorea Build a standalone application for Core A of BF561 when using the one-
application-per-core programming model. Proper start files and link scripts
are used to support Core A, and the macro __BFIN_COREA is defined. This
option can only be used in conjunction with ‘-mmulticore’.

-mcoreb Build a standalone application for Core B of BF561 when using the
one-application-per-core programming model. Proper start files and link
scripts are used to support Core B, and the macro __BFIN_COREB is defined.
When this option is used, coreb_main should be used instead of main. This
option can only be used in conjunction with ‘-mmulticore’.

-msdram Build a standalone application for SDRAM. Proper start files and link scripts
are used to put the application into SDRAM, and the macro __BFIN_SDRAM is
defined. The loader should initialize SDRAM before loading the application.

-micplb Assume that ICPLBs are enabled at run time. This has an effect on certain
anomaly workarounds. For Linux targets, the default is to assume ICPLBs are
enabled; for standalone applications the default is off.

3.17.7 C6X Options

-march=name
This specifies the name of the target architecture. GCC uses this name to
determine what kind of instructions it can emit when generating assembly code.
Permissible names are: ‘c62x’, ‘c64x’, ‘c64x+’, ‘c67x’, ‘c67x+’, ‘c674x .

-mbig-endian
Generate code for a big-endian target.

-mlittle-endian
Generate code for a little-endian target. This is the default.

Chapter 3: GCC Command Options 207

-msim Choose startup files and linker script suitable for the simulator.

-msdata=default
Put small global and static data in the ‘.neardata’ section, which is pointed
to by register B14. Put small uninitialized global and static data in the ‘.bss’
section, which is adjacent to the ‘.neardata’ section. Put small read-only data
into the ‘.rodata’ section. The corresponding sections used for large pieces of
data are ‘.fardata’, ‘.far’ and ‘.const’.

-msdata=all
Put all data, not just small objects, into the sections reserved for small data,
and use addressing relative to the B14 register to access them.

-msdata=none
Make no use of the sections reserved for small data, and use absolute addresses
to access all data. Put all initialized global and static data in the ‘.fardata’
section, and all uninitialized data in the ‘.far’ section. Put all constant data
into the ‘. const’ section.

3.17.8 CRIS Options
These options are defined specifically for the CRIS ports.

-march=architecture-type

-mcpu=architecture-type
Generate code for the specified architecture. The choices for architecture-
type are ‘v3’, ‘v8’ and ‘v10’ for respectively ETRAX 4, ETRAX 100, and
ETRAX 100 LX. Default is ‘vO’ except for cris-axis-linux-gnu, where the de-
fault is ‘v10’.

-mtune=architecture-type
Tune to architecture-type everything applicable about the generated code,
except for the ABI and the set of available instructions. The choices for
architecture-type are the same as for ‘-march=architecture-type’.

-mmax-stack-frame=n
Warn when the stack frame of a function exceeds n bytes.

-metrax4

-metrax100
The options ‘-metrax4’ and ‘-metrax100’ are synonyms for
‘-march=v8’ respectively.

¢ ¢

-march=v3’ and

-mmul-bug-workaround

-mno-mul-bug-workaround
Work around a bug in the muls and mulu instructions for CPU models where
it applies. This option is active by default.

-mpdebug Enable CRIS-specific verbose debug-related information in the assembly code.
This option also has the effect of turning off the ‘#NO_APP’ formatted-code
indicator to the assembler at the beginning of the assembly file.

208 Using the GNU Compiler Collection (GCC)

-mcc-init
Do not use condition-code results from previous instruction; always emit com-
pare and test instructions before use of condition codes.

-mno-side-effects
Do not emit instructions with side effects in addressing modes other than post-
increment.

-mstack-align

-mno-stack-align

-mdata-align

-mno-data-align

-mconst-align

-mno-const-align
These options (‘no-’ options) arrange (eliminate arrangements) for the stack
frame, individual data and constants to be aligned for the maximum single
data access size for the chosen CPU model. The default is to arrange for 32-
bit alignment. ABI details such as structure layout are not affected by these
options.

9

-m32-bit

-m16-bit

-m8-bit Similar to the stack- data- and const-align options above, these options arrange
for stack frame, writable data and constants to all be 32-bit, 16-bit or 8-bit
aligned. The default is 32-bit alignment.

-mno-prologue-epilogue

-mprologue-epilogue
With ‘-mno-prologue-epilogue’, the normal function prologue and epilogue
which set up the stack frame are omitted and no return instructions or return
sequences are generated in the code. Use this option only together with visual
inspection of the compiled code: no warnings or errors are generated when
call-saved registers must be saved, or storage for local variables needs to be
allocated.

-mno-gotplt

-mgotplt With ‘~fpic’ and ‘~fPIC’, don’t generate (do generate) instruction sequences
that load addresses for functions from the PLT part of the GOT rather than
(traditional on other architectures) calls to the PLT. The default is ‘-mgotplt’.

-melf Legacy no-op option only recognized with the cris-axis-elf and cris-axis-linux-
gnu targets.

-mlinux Legacy no-op option only recognized with the cris-axis-linux-gnu target.

-sim This option, recognized for the cris-axis-elf, arranges to link with input-output
functions from a simulator library. Code, initialized data and zero-initialized
data are allocated consecutively.

-sim2 Like ‘-sim’, but pass linker options to locate initialized data at 0x40000000 and
zero-initialized data at 0x80000000.

Chapter 3: GCC Command Options 209

3.17.9 CR16 Options
These options are defined specifically for the CR16 ports.

-mmac Enable the use of multiply-accumulate instructions. Disabled by default.

-mcrl6cplus

-mcri6c Generate code for CR16C or CR16C+ architecture. CR16C+ architecture is
default.

-msim Links the library libsim.a which is in compatible with simulator. Applicable to

ELF compiler only.
-mint32 Choose integer type as 32-bit wide.

-mbit-ops
Generates sbit/cbit instructions for bit manipulations.

-mdata-model=model
Choose a data model. The choices for model are ‘near’, ‘far’ or ‘medium’.
‘medium’ is default. However, ‘far’ is not valid with ‘-mcri6c’, as the CR16C
architecture does not support the far data model.

3.17.10 Darwin Options
These options are defined for all architectures running the Darwin operating system.

FSF GCC on Darwin does not create “fat” object files; it creates an object file for the
single architecture that GCC was built to target. Apple’s GCC on Darwin does create
“fat” files if multiple ‘-arch’ options are used; it does so by running the compiler or linker
multiple times and joining the results together with ‘lipo’.

The subtype of the file created (like ‘ppc7400’ or ‘ppc970’ or ‘i686’) is determined
by the flags that specify the ISA that GCC is targeting, like ‘-mcpu’ or ‘-march’. The
‘~force_cpusubtype_ALL’ option can be used to override this.

The Darwin tools vary in their behavior when presented with an ISA mismatch. The
assembler, ‘as’, only permits instructions to be used that are valid for the subtype of the
file it is generating, so you cannot put 64-bit instructions in a ‘ppc750’ object file. The
linker for shared libraries, ‘/usr/bin/libtool’, fails and prints an error if asked to create
a shared library with a less restrictive subtype than its input files (for instance, trying to
put a ‘ppc970’ object file in a ‘ppc7400’ library). The linker for executables, 1d, quietly
gives the executable the most restrictive subtype of any of its input files.

-Fdir Add the framework directory dir to the head of the list of directories to be
searched for header files. These directories are interleaved with those specified
by ‘-I’ options and are scanned in a left-to-right order.

A framework directory is a directory with frameworks in it. A framework is
a directory with a ‘Headers’ and/or ‘PrivateHeaders’ directory contained
directly in it that ends in ‘.framework’. The name of a framework is the
name of this directory excluding the ‘.framework’. Headers associated with
the framework are found in one of those two directories, with ‘Headers’
being searched first. A subframework is a framework directory that is in a
framework’s ‘Frameworks’ directory. Includes of subframework headers can

210

Using the GNU Compiler Collection (GCC)

only appear in a header of a framework that contains the subframework,
or in a sibling subframework header. Two subframeworks are siblings
if they occur in the same framework. A subframework should not have
the same name as a framework; a warning is issued if this is violated.
Currently a subframework cannot have subframeworks; in the future, the
mechanism may be extended to support this. The standard frameworks can
be found in ‘/System/Library/Frameworks’ and ‘/Library/Frameworks’.
An example include looks like #include <Framework/header.h>, where
‘Framework’ denotes the name of the framework and ‘header.h’ is found in
the ‘PrivateHeaders’ or ‘Headers’ directory.

—-iframeworkdir

-gused

~gfull

Like ‘-F’ except the directory is a treated as a system directory. The main
difference between this ‘~iframework’ and ‘-F’ is that with ‘~iframework’ the
compiler does not warn about constructs contained within header files found
via dir. This option is valid only for the C family of languages.

Emit debugging information for symbols that are used. For stabs debugging
format, this enables ‘~feliminate-unused-debug-symbols’. This is by default
ON.

Emit debugging information for all symbols and types.

-mmacosx-version-min=version

The earliest version of MacOS X that this executable will run on is version.
Typical values of version include 10.1, 10.2, and 10.3.9.

If the compiler was built to use the system’s headers by default, then the default
for this option is the system version on which the compiler is running, otherwise
the default is to make choices that are compatible with as many systems and
code bases as possible.

-mkernel FEnable kernel development mode. The ‘-mkernel’ option sets
‘-static’, ‘~fno-common’, ‘~fno-cxa-atexit’, ‘~fno-exceptions’,
‘-fno-non-call-exceptions’, ‘-fapple-kext’, ‘~fno-weak’ and ‘-fno-rtti’
where applicable. This mode also sets ‘-mno-altivec’, ‘-msoft-float’,

‘~fno-builtin’ and ‘-mlong-branch’ for PowerPC targets.

-mone-byte-bool

Override the defaults for ‘bool’ so that ‘sizeof(bool)==1’. By default
‘sizeof (bool)’ is ‘4’ when compiling for Darwin/PowerPC and ‘1’ when
compiling for Darwin/x86, so this option has no effect on x86.

¢

Warning: The ‘-mone-byte-bool’ switch causes GCC to generate code that
is not binary compatible with code generated without that switch. Using this
switch may require recompiling all other modules in a program, including sys-
tem libraries. Use this switch to conform to a non-default data model.

Chapter 3: GCC Command Options 211

-mfix-and-continue

-ffix-and-continue

-findirect-data
Generate code suitable for fast turnaround development, such as to allow GDB
to dynamically load .o files into already-running programs. ‘-findirect-data’
and ‘~-ffix-and-continue’ are provided for backwards compatibility

-all_load
Loads all members of static archive libraries. See man 1d(1) for more informa-
tion.

—arch_errors_fatal
Cause the errors having to do with files that have the wrong architecture to be
fatal.

-bind_at_load
Causes the output file to be marked such that the dynamic linker will bind all
undefined references when the file is loaded or launched.

-bundle Produce a Mach-o bundle format file. See man 1d(1) for more information.

-bundle_loader executable
This option specifies the executable that will load the build output file being
linked. See man 1d(1) for more information.

-dynamiclib
When passed this option, GCC produces a dynamic library instead of an exe-
cutable when linking, using the Darwin ‘1libtool’ command.

-force_cpusubtype_ALL
This causes GCC’s output file to have the ALL subtype, instead of one con-
trolled by the ‘-mcpu’ or ‘-march’ option.

-allowable_client client_name
-client_name
-compatibility_version
-current_version
—-dead_strip
—-dependency-file
-dylib_file
—-dylinker_install_name
—dynamic
—exported_symbols_list
-filelist

212

-flat_namespace
-force_flat_namespace
-headerpad_max_install_names
-image_base

-init

-install_name
-keep_private_externs
-multi_module
-multiply_defined

-multiply_defined_unused
-noall_load

-no_dead_strip_inits_and_terms
-nofixprebinding

-nomultidefs

-noprebind

-noseglinkedit

-pagezero_size

-prebind
-prebind_all_twolevel_modules

-private_bundle
-read_only_relocs
-sectalign
-sectobjectsymbols
-whyload

-segladdr

-sectcreate
-sectobjectsymbols
-sectorder

-segaddr
-segs_read_only_addr
-segs_read_write_addr
-seg_addr_table
-seg_addr_table_filename
-seglinkedit

-segprot
-segs_read_only_addr
-segs_read_write_addr
-single_module
-static

-sub_library

Using the GNU Compiler Collection (GCC)

Chapter 3: GCC Command Options 213

—-sub_umbrella
-twolevel_namespace

—umbrella
—undefined

-unexported_symbols_list
-weak_reference_mismatches
-whatsloaded

These options are passed to the Darwin linker. The Darwin linker man page
describes them in detail.

3.17.11 DEC Alpha Options
These ‘-m’ options are defined for the DEC Alpha implementations:

-mno-soft-float
-msoft-float

-mfp-reg

Use (do not use) the hardware floating-point instructions for floating-point op-
erations. When ‘-msoft-float’ is specified, functions in ‘libgcc.a’ are used
to perform floating-point operations. Unless they are replaced by routines that
emulate the floating-point operations, or compiled in such a way as to call such
emulations routines, these routines issue floating-point operations. If you are
compiling for an Alpha without floating-point operations, you must ensure that
the library is built so as not to call them.

Note that Alpha implementations without floating-point operations are required
to have floating-point registers.

-mno-fp-regs

-mieee

Generate code that uses (does not use) the floating-point register set.
‘-mno-fp-regs’ implies ‘-msoft-float’. If the floating-point register set is
not used, floating-point operands are passed in integer registers as if they were
integers and floating-point results are passed in $0 instead of $£0. This is a
non-standard calling sequence, so any function with a floating-point argument
or return value called by code compiled with ‘-mno-fp-regs’ must also be
compiled with that option.

A typical use of this option is building a kernel that does not use, and hence
need not save and restore, any floating-point registers.

The Alpha architecture implements floating-point hardware optimized for max-
imum performance. It is mostly compliant with the IEEE floating-point stan-
dard. However, for full compliance, software assistance is required. This option
generates code fully IEEE-compliant code except that the inexact-flag is not
maintained (see below). If this option is turned on, the preprocessor macro
_IEEE_FP is defined during compilation. The resulting code is less efficient but
is able to correctly support denormalized numbers and exceptional IEEE values
such as not-a-number and plus/minus infinity. Other Alpha compilers call this
option ‘-~ieee_with_no_inexact’.

214 Using the GNU Compiler Collection (GCC)

-mieee-with-inexact
This is like ‘-mieee’ except the generated code also maintains the IEEE inexact-
flag. Turning on this option causes the generated code to implement fully-
compliant IEEE math. In addition to _IEEE_FP, _IEEE_FP_EXACT is defined as
a preprocessor macro. On some Alpha implementations the resulting code may
execute significantly slower than the code generated by default. Since there is
very little code that depends on the inexact-flag, you should normally not spec-
ify this option. Other Alpha compilers call this option ‘-ieee_with_inexact’.

-mfp-trap-mode=trap-mode
This option controls what floating-point related traps are enabled. Other Alpha
compilers call this option ‘~fptm trap-mode’. The trap mode can be set to one
of four values:

n This is the default (normal) setting. The only traps that are en-
abled are the ones that cannot be disabled in software (e.g., division
by zero trap).

‘o’ In addition to the traps enabled by ‘n’, underflow traps are enabled
as well.
‘su’ Like ‘u’, but the instructions are marked to be safe for software

completion (see Alpha architecture manual for details).

4 L

sui Like ‘su’, but inexact traps are enabled as well.

-mfp-rounding-mode=rounding-mode
Selects the IEEE rounding mode. Other Alpha compilers call this option ‘~fprm
rounding-mode’. The rounding-mode can be one of:

n Normal IEEE rounding mode. Floating-point numbers are rounded
towards the nearest machine number or towards the even machine
number in case of a tie.

‘m’ Round towards minus infinity.

‘c’ Chopped rounding mode. Floating-point numbers are rounded to-
wards zero.

‘d’ Dynamic rounding mode. A field in the floating-point control reg-

ister (fpcr, see Alpha architecture reference manual) controls the
rounding mode in effect. The C library initializes this register for
rounding towards plus infinity. Thus, unless your program modifies
the fpcr, ‘d’ corresponds to round towards plus infinity.

-mtrap-precision=trap-precision
In the Alpha architecture, floating-point traps are imprecise. This means with-
out software assistance it is impossible to recover from a floating trap and
program execution normally needs to be terminated. GCC can generate code
that can assist operating system trap handlers in determining the exact loca-
tion that caused a floating-point trap. Depending on the requirements of an
application, different levels of precisions can be selected:

Chapter 3: GCC Command Options 215

‘p’ Program precision. This option is the default and means a trap
handler can only identify which program caused a floating-point
exception.

‘£ Function precision. The trap handler can determine the function

that caused a floating-point exception.

i Instruction precision. The trap handler can determine the exact
instruction that caused a floating-point exception.

Other Alpha compilers provide the equivalent options called ‘-scope_safe’ and
‘-resumption_safe’.

-mieee-conformant

This option marks the generated code as IEEE conformant. You must not
use this option unless you also specify ‘-mtrap-precision=i’ and either
‘-mfp-trap-mode=su’ or ‘-mfp-trap-mode=sui’. Its only effect is to emit the
line ‘.eflag 48’ in the function prologue of the generated assembly file.

-mbuild-constants

-mbwx
-mno-bwx
-mcix
-mno-cix
-mfix
-mno-fix
-mmax
-mno-max

Normally GCC examines a 32- or 64-bit integer constant to see if it can construct
it from smaller constants in two or three instructions. If it cannot, it outputs
the constant as a literal and generates code to load it from the data segment
at run time.

Use this option to require GCC to construct all integer constants using code,
even if it takes more instructions (the maximum is six).
You typically use this option to build a shared library dynamic loader. Itself a

shared library, it must relocate itself in memory before it can find the variables
and constants in its own data segment.

Indicate whether GCC should generate code to use the optional BWX, CIX, FIX
and MAX instruction sets. The default is to use the instruction sets supported
by the CPU type specified via ‘-mcpu=" option or that of the CPU on which
GCC was built if none is specified.

-mfloat-vax
-mfloat-ieee

Generate code that uses (does not use) VAX F and G floating-point arithmetic
instead of IEEE single and double precision.

-mexplicit-relocs
-mno-explicit-relocs

Older Alpha assemblers provided no way to generate symbol relocations except
via assembler macros. Use of these macros does not allow optimal instruction

216

Using the GNU Compiler Collection (GCC)

scheduling. GNU binutils as of version 2.12 supports a new syntax that al-
lows the compiler to explicitly mark which relocations should apply to which
instructions. This option is mostly useful for debugging, as GCC detects the
capabilities of the assembler when it is built and sets the default accordingly.

-msmall-data
-mlarge-data

When ‘-mexplicit-relocs’ is in effect, static data is accessed via gp-relative
relocations. When ‘-msmall-data’ is used, objects 8 bytes long or smaller are
placed in a small data area (the .sdata and .sbss sections) and are accessed
via 16-bit relocations off of the $gp register. This limits the size of the small
data area to 64KB, but allows the variables to be directly accessed via a single
instruction.

The default is ‘-mlarge-data’. With this option the data area is limited to just
below 2GB. Programs that require more than 2GB of data must use malloc or
mmap to allocate the data in the heap instead of in the program’s data segment.

When generating code for shared libraries, ‘-fpic’ implies ‘-msmall-data’ and
‘~fPIC’ implies ‘-mlarge-data’.

-msmall-text
-mlarge-text

When ‘-msmall-text’ is used, the compiler assumes that the code of the entire
program (or shared library) fits in 4MB, and is thus reachable with a branch in-
struction. When ‘-msmall-data’ is used, the compiler can assume that all local
symbols share the same $gp value, and thus reduce the number of instructions
required for a function call from 4 to 1.

The default is ‘-mlarge-text’.

-mcpu=cpu_type

Set the instruction set and instruction scheduling parameters for machine type
cpu_type. You can specify either the ‘EV’ style name or the corresponding chip
number. GCC supports scheduling parameters for the EV4, EV5 and EV6
family of processors and chooses the default values for the instruction set from
the processor you specify. If you do not specify a processor type, GCC defaults
to the processor on which the compiler was built.

Supported values for cpu_type are

‘evd’

‘evab’

‘21064’ Schedules as an EV4 and has no instruction set extensions.
‘evb’

‘21164’ Schedules as an EV5 and has no instruction set extensions.

‘evb6’
‘21164a’ Schedules as an EV5 and supports the BWX extension.

‘pcab6’
‘21164pc’
‘21164PC° Schedules as an EV5 and supports the BWX and MAX extensions.

Chapter 3: GCC Command Options 217

‘eve’

‘21264’ Schedules as an EV6 and supports the BWX, FIX, and MAX ex-
tensions.

‘eveT’

‘21264a’ Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX
extensions.

Native toolchains also support the value ‘native’, which selects the best ar-
chitecture option for the host processor. ‘-mcpu=native’ has no effect if GCC
does not recognize the processor.

-mtune=cpu_type
Set only the instruction scheduling parameters for machine type cpu-type. The
instruction set is not changed.

Native toolchains also support the value ‘native’, which selects the best archi-
tecture option for the host processor. ‘-mtune=native’ has no effect if GCC
does not recognize the processor.

-mmemory-latency=time
Sets the latency the scheduler should assume for typical memory references
as seen by the application. This number is highly dependent on the memory
access patterns used by the application and the size of the external cache on
the machine.

Valid options for time are

‘number’ A decimal number representing clock cycles.

CL17

4L27

(L37

‘main’ The compiler contains estimates of the number of clock cycles for
“typical” EV4 & EV5 hardware for the Level 1, 2 & 3 caches (also

called Dcache, Scache, and Bcache), as well as to main memory.
Note that L3 is only valid for EV5.

3.17.12 FR30 Options
These options are defined specifically for the FR30 port.

-msmall-model
Use the small address space model. This can produce smaller code, but it does
assume that all symbolic values and addresses fit into a 20-bit range.
-mno-lsim
Assume that runtime support has been provided and so there is no need to
include the simulator library (‘libsim.a’) on the linker command line.

3.17.13 FRV Options
-mgpr—-32

Only use the first 32 general-purpose registers.

218

-mgpr-64

-mfpr-32

-mfpr-64

-mhard-flo

-msoft-flo

-malloc-cc

-mfixed-cc

-mdword

-mno-dword

-mdouble

-mno—-doubl

-mmedia

-mno-media

-mmuladd

-mno-mulad

-mfdpic

Using the GNU Compiler Collection (GCC)

Use all 64 general-purpose registers.

Use only the first 32 floating-point registers.

Use all 64 floating-point registers.

at
Use hardware instructions for floating-point operations.

at
Use library routines for floating-point operations.

Dynamically allocate condition code registers.

Do not try to dynamically allocate condition code registers, only use iccO and
fccO.

Change ABI to use double word insns.

Do not use double word instructions.

Use floating-point double instructions.

e
Do not use floating-point double instructions.

Use media instructions.

Do not use media instructions.

Use multiply and add/subtract instructions.

d
Do not use multiply and add/subtract instructions.

Select the FDPIC ABI, which uses function descriptors to represent pointers
to functions. Without any PIC/PIE-related options, it implies ‘~fPIE’. With
‘~fpic’ or ‘-fpie’, it assumes GOT entries and small data are within a 12-bit
range from the GOT base address; with ‘-fPIC’ or ‘~fPIE’, GOT offsets are
computed with 32 bits. With a ‘bfin-elf’ target, this option implies ‘-msim’.

Chapter 3: GCC Command Options 219

-minline-plt
Enable inlining of PLT entries in function calls to functions that are not known
to bind locally. It has no effect without ‘-mfdpic’. It’s enabled by default if
optimizing for speed and compiling for shared libraries (i.e., ‘-fPIC’ or ‘-fpic’),
or when an optimization option such as ‘-03’ or above is present in the command
line.

-mTLS

Assume a large TLS segment when generating thread-local code.

-mtls

Do not assume a large TLS segment when generating thread-local code.

-mgprel-ro

Enable the use of GPREL relocations in the FDPIC ABI for data that is known to
be in read-only sections. It’s enabled by default, except for ‘~fpic’ or ‘~fpie’:
even though it may help make the global offset table smaller, it trades 1 in-
struction for 4. With ‘-fPIC’ or ‘-fPIE’, it trades 3 instructions for 4, one of
which may be shared by multiple symbols, and it avoids the need for a GOT
entry for the referenced symbol, so it’s more likely to be a win. If it is not,
‘-mno-gprel-ro’ can be used to disable it.

-multilib-library-pic
Link with the (library, not FD) pic libraries. It’s implied by ‘-mlibrary-pic’,
as well as by ‘~fPIC” and ‘-fpic’ without ‘-mfdpic’. You should never have to
use it explicitly.

-mlinked-fp
Follow the EABI requirement of always creating a frame pointer whenever a
stack frame is allocated. This option is enabled by default and can be disabled
with ‘-mno-linked-fp’.

-mlong-calls
Use indirect addressing to call functions outside the current compilation unit.
This allows the functions to be placed anywhere within the 32-bit address space.

-malign-labels
Try to align labels to an 8-byte boundary by inserting NOPs into the previous
packet. This option only has an effect when VLIW packing is enabled. It
doesn’t create new packets; it merely adds NOPs to existing ones.

-mlibrary-pic
Generate position-independent EABI code.

-macc-4

Use only the first four media accumulator registers.
-macc-8

Use all eight media accumulator registers.
-mpack

Pack VLIW instructions.

220

-mno-pack

Using the GNU Compiler Collection (GCC)

Do not pack VLIW instructions.

-mno-eflags

Do not mark ABI switches in e_flags.

-mcond-move

Enable the use of conditional-move instructions (default).

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-cond-move

—msSccC

—mno-—-scc

Disable the use of conditional-move instructions.

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

Enable the use of conditional set instructions (default).

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

Disable the use of conditional set instructions.

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mcond-exec

-mno-cond-

Enable the use of conditional execution (default).

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

exec

Disable the use of conditional execution.

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mvliw-branch

Run a pass to pack branches into VLIW instructions (default).

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-vliw-branch

Do not run a pass to pack branches into VLIW instructions.

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mmulti-cond-exec

Enable optimization of && and || in conditional execution (default).

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

Chapter 3: GCC Command Options 221

-mno-multi-cond-exec
Disable optimization of && and || in conditional execution.

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mnested-cond-exec
Enable nested conditional execution optimizations (default).

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-nested-cond-exec
Disable nested conditional execution optimizations.

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-moptimize-membar
This switch removes redundant membar instructions from the compiler-
generated code. It is enabled by default.

-mno-optimize-membar
This switch disables the automatic removal of redundant membar instructions
from the generated code.

-mtomcat-stats
Cause gas to print out tomcat statistics.

-mcpu=cpu
Select the processor type for which to generate code. Possible values are ‘frv’,
‘fr550’, ‘tomcat’, ‘fr500’, ‘fr450’, ‘fr405’, ‘fr400’, ‘fr300’ and ‘simple’.

3.17.14 GNU/Linux Options
These ‘-m’ options are defined for GNU/Linux targets:

-mglibc Use the GNU C library. This is the default except on ‘*-*-1linux-*uclibc*’
and ‘*—*-linux-*android*’ targets.

-muclibc Use uClibc C library. This is the default on ‘“*-*-linux-*uclibc*’ targets.
-mbionic Use Bionic C library. This is the default on ‘*-*-linux-*android*’ targets.

-mandroid
Compile code compatible with Android platform. This is the default on
‘*-x-1inux-*android*’ targets.

When compiling, this option enables ‘-mbionic’, ‘-fPIC’, ‘~-fno-exceptions’
and ‘~fno-rtti’ by default. When linking, this option makes the GCC driver
pass Android-specific options to the linker. Finally, this option causes the
preprocessor macro __ANDROID__ to be defined.

—-tno-android-cc
Disable compilation effects of ‘-mandroid’, i.e., do not enable ‘-mbionic’,
‘~-fPIC’, ‘~fno-exceptions’ and ‘-fno-rtti’ by default.

222 Using the GNU Compiler Collection (GCC)

—-tno-android-1d
Disable linking effects of ‘-mandroid’, i.e., pass standard Linux linking options
to the linker.

3.17.15 H8/300 Options
These ‘-m’ options are defined for the H8/300 implementations:

-mrelax Shorten some address references at link time, when possible; uses the linker
option ‘-relax’. See Section “1d and the H8/300” in Using Id, for a fuller

description.
-mh Generate code for the H8/300H.
-ms Generate code for the HS8S.
-mn Generate code for the H8S and H8/300H in the normal mode. This switch must

be used either with ‘-mh’ or ‘-ms’.
-ms2600 Generate code for the H8S/2600. This switch must be used with ‘-ms’.

-mexr Extended registers are stored on stack before execution of function with monitor
attribute. Default option is ‘-mexr’. This option is valid only for H8S targets.

-mno-exr Fxtended registers are not stored on stack before execution of function with
monitor attribute. Default option is ‘-mno-exr’. This option is valid only for
HS8S targets.

-mint32 Make int data 32 bits by default.

-malign-300
On the H8/300H and H8S, use the same alignment rules as for the H8/300.
The default for the H8/300H and H8S is to align longs and floats on 4-byte
boundaries. ‘-malign-300’ causes them to be aligned on 2-byte boundaries.
This option has no effect on the H8/300.

3.17.16 HPPA Options
These ‘-m’ options are defined for the HPPA family of computers:

-march=architecture-type
Generate code for the specified architecture. The choices for architecture-type
are ‘1.0 for PA 1.0, ‘1.1 for PA 1.1, and ‘2.0’ for PA 2.0 processors. Refer
to ‘/usr/lib/sched.models’ on an HP-UX system to determine the proper
architecture option for your machine. Code compiled for lower numbered archi-
tectures runs on higher numbered architectures, but not the other way around.

-mpa-risc-1-0
-mpa-risc-1-1
-mpa-risc-2-0
Synonyms for ‘-march=1.0’, ‘-march=1.1’, and ‘-march=2.0’ respectively.
-mjump-in-delay
Fill delay slots of function calls with unconditional jump instructions by modi-
fying the return pointer for the function call to be the target of the conditional
jump.

Chapter 3: GCC Command Options 223

-mdisable-fpregs
Prevent floating-point registers from being used in any manner. This is neces-
sary for compiling kernels that perform lazy context switching of floating-point
registers. If you use this option and attempt to perform floating-point opera-
tions, the compiler aborts.

-mdisable-indexing
Prevent the compiler from using indexing address modes. This avoids some
rather obscure problems when compiling MIG generated code under MACH.

-mno-space-regs
Generate code that assumes the target has no space registers. This allows GCC
to generate faster indirect calls and use unscaled index address modes.

Such code is suitable for level 0 PA systems and kernels.

-mfast-indirect-calls
Generate code that assumes calls never cross space boundaries. This allows
GCC to emit code that performs faster indirect calls.

This option does not work in the presence of shared libraries or nested functions.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed regis-
ter is one that the register allocator cannot use. This is useful when compiling
kernel code. A register range is specified as two registers separated by a dash.
Multiple register ranges can be specified separated by a comma.

-mlong-load-store
Generate 3-instruction load and store sequences as sometimes required by the
HP-UX 10 linker. This is equivalent to the ‘+k’ option to the HP compilers.

-mportable-runtime
Use the portable calling conventions proposed by HP for ELF systems.

-mgas Enable the use of assembler directives only GAS understands.

-mschedule=cpu-type
Schedule code according to the constraints for the machine type cpu-type. The
choices for cpu-type are ‘700’ ‘7100°, ‘7100LC’, ‘7200’, ‘7300’ and ‘8000°. Refer
to ‘/usr/lib/sched.models’ on an HP-UX system to determine the proper
scheduling option for your machine. The default scheduling is ‘8000’.

-mlinker-opt
Enable the optimization pass in the HP-UX linker. Note this makes symbolic
debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
linkers in which they give bogus error messages when linking some programs.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all HPPA targets. Normally the facilities of
the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation.

224

-msio

-mgnu-1d

-mhp-1d

Using the GNU Compiler Collection (GCC)

‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile ‘libgcc.a’, the library that comes with GCC, with
‘-msoft-float’ in order for this to work.

Generate the predefine, _SI0, for server IO. The default is ‘-mwsio’. This gen-
erates the predefines, __hp9000s700, __hp9000s700__ and _WSIO, for worksta-
tion I0. These options are available under HP-UX and HI-UX.

9 ——

Use options specific to GNU 1d. This passes ‘-shared’ to 1d when building a
shared library. It is the default when GCC is configured, explicitly or implic-
itly, with the GNU linker. This option does not affect which 1d is called; it
only changes what parameters are passed to that 1d. The 1d that is called is
determined by the ‘--with-14d’ configure option, GCC’s program search path,
and finally by the user’s PATH. The linker used by GCC can be printed us-
ing ‘which ‘gcc -print-prog-name=1d°‘’. This option is only available on the
64-bit HP-UX GCC, i.e. configured with ‘hppa*64*—*-hpux*’.

Use options specific to HP 1d. This passes ‘-b’ to 1d when building a shared
library and passes ‘+Accept TypeMismatch’ to 1d on all links. It is the default
when GCC is configured, explicitly or implicitly, with the HP linker. This op-
tion does not affect which 14 is called; it only changes what parameters are
passed to that 1d. The 1d that is called is determined by the ‘--with-1d’ con-
figure option, GCC’s program search path, and finally by the user’s PATH. The
linker used by GCC can be printed using ‘which ‘gcc -print-prog-name=1d°’.
This option is only available on the 64-bit HP-UX GCC, i.e. configured with
‘hppa*64*—*-hpux*’.

-mlong-calls

Generate code that uses long call sequences. This ensures that a call is always
able to reach linker generated stubs. The default is to generate long calls
only when the distance from the call site to the beginning of the function or
translation unit, as the case may be, exceeds a predefined limit set by the
branch type being used. The limits for normal calls are 7,600,000 and 240,000
bytes, respectively for the PA 2.0 and PA 1.X architectures. Sibcalls are always
limited at 240,000 bytes.

Distances are measured from the beginning of functions when using
the ‘-ffunction-sections’ option, or when using the ‘-mgas’ and
‘-mno-portable-runtime’ options together under HP-UX with the SOM
linker.

It is normally not desirable to use this option as it degrades performance. How-
ever, it may be useful in large applications, particularly when partial linking is
used to build the application.

The types of long calls used depends on the capabilities of the assembler and
linker, and the type of code being generated. The impact on systems that
support long absolute calls, and long pic symbol-difference or pc-relative calls
should be relatively small. However, an indirect call is used on 32-bit ELF
systems in pic code and it is quite long.

Chapter 3: GCC Command Options 225

-munix=unix-std

-nolibdld

-static

—threads

Generate compiler predefines and select a startfile for the specified UNIX stan-
dard. The choices for unix-std are ‘93’, ‘95’ and ‘98’. ‘93’ is supported on all
HP-UX versions. ‘95’ is available on HP-UX 10.10 and later. ‘98’ is available
on HP-UX 11.11 and later. The default values are ‘93’ for HP-UX 10.00, ‘95’
for HP-UX 10.10 though to 11.00, and ‘98’ for HP-UX 11.11 and later.

‘-munix=93’ provides the same predefines as GCC 3.3 and 3.4. ‘-munix=95’
provides additional predefines for XOPEN_UNIX and _XOPEN_SOURCE_EXTENDED,
and the startfile ‘unix95.0’. ‘-munix=98’ provides additional predefines for
_XOPEN_UNIX, _XOPEN_SOURCE_EXTENDED, _INCLUDE__STDC_A1_SOURCE and _
INCLUDE_XOPEN_SOURCE_500, and the startfile ‘unix98.0’.

It is smportant to note that this option changes the interfaces for various library
routines. It also affects the operational behavior of the C library. Thus, extreme
care is needed in using this option.

Library code that is intended to operate with more than one UNIX standard
must test, set and restore the variable __xpg4_extended_mask as appropriate.
Most GNU software doesn’t provide this capability.

Suppress the generation of link options to search libdld.sl when the ‘-static’
option is specified on HP-UX 10 and later.

The HP-UX implementation of setlocale in libc has a dependency on libdld.sl.
There isn’t an archive version of libdld.sl. Thus, when the ‘-static’ option is
specified, special link options are needed to resolve this dependency.

On HP-UX 10 and later, the GCC driver adds the necessary options to link
with libdld.sl when the ‘-static’ option is specified. This causes the resulting
binary to be dynamic. On the 64-bit port, the linkers generate dynamic binaries
by default in any case. The ‘-nolibdld’ option can be used to prevent the GCC
driver from adding these link options.

Add support for multithreading with the dce thread library under HP-UX. This
option sets flags for both the preprocessor and linker.

3.17.17 Intel 386 and AMD x86-64 Options
These ‘-m’ options are defined for the i386 and x86-64 family of computers:

-march=cpu-type

Generate instructions for the machine type cpu-type. In contrast to
‘-mtune=cpu-type’, which merely tunes the generated code for the specified
cpu-type, ‘-march=cpu-type’ allows GCC to generate code that may
not run at all on processors other than the one indicated. Specifying
‘-march=cpu-type’ implies ‘-mtune=cpu-type’.

The choices for cpu-type are:

‘native’ This selects the CPU to generate code for at compilation time by
determining the processor type of the compiling machine. Using
‘-march=native’ enables all instruction subsets supported by the

226

‘1386’
‘1486’

‘1586’
‘pentium’

Using the GNU Compiler Collection (GCC)

local machine (hence the result might not run on different ma-
chines). Using ‘-mtune=native’ produces code optimized for the
local machine under the constraints of the selected instruction set.

Original Intel 1386 CPU.
Intel 486 CPU. (No scheduling is implemented for this chip.)

Intel Pentium CPU with no MMX support.

‘pentium-mmx’

Intel Pentium MMX CPU, based on Pentium core with MMX in-
struction set support.

‘pentiumpro’

‘1686’

‘pentium?2’

‘pentium3’

‘pentium3m’

‘pentium-m’

‘pentiumé’

‘pentiumém’

‘prescott’

‘nocona’

‘core?’

‘nehalem’

Intel Pentium Pro CPU.

When used with ‘-march’, the Pentium Pro instruction set is used,
so the code runs on all 1686 family chips. When used with ‘-mtune’,
it has the same meaning as ‘generic’.

Intel Pentium IT CPU, based on Pentium Pro core with MMX in-
struction set support.

Intel Pentium III CPU, based on Pentium Pro core with MMX and
SSE instruction set support.

Intel Pentium M; low-power version of Intel Pentium III CPU with
MMX, SSE and SSE2 instruction set support. Used by Centrino
notebooks.

Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set
support.

Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2
and SSE3 instruction set support.

Improved version of Intel Pentium 4 CPU with 64-bit extensions,
MMX, SSE, SSE2 and SSE3 instruction set support.

Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3
and SSSE3 instruction set support.

Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSE4.2 and POPCNT instruction set sup-
port.

Chapter 3: GCC Command Options 227

‘westmere’
Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AES and PCLMUL in-
struction set support.

‘sandybridge’
Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE,
SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AES and
PCLMUL instruction set support.

‘ivybridge’
Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL,
FSGSBASE, RDRND and F16C instruction set support.

‘haswell’ Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE,
SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2,
AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2 and
F16C instruction set support.

‘broadwell’
Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE,
SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2,
AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C,
RDSEED, ADCX and PREFETCHW instruction set support.

‘bonnell’ Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE,
SSE2, SSE3 and SSSE3 instruction set support.

‘silvermont’
Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE,
SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PCLMUL
and RDRND instruction set support.

‘k6’ AMD K6 CPU with MMX instruction set support.
‘k6-2’
‘k6-3’ Improved versions of AMD K6 CPU with MMX and 3DNow! in-

struction set support.

‘athlon’
‘athlon-tbird’

AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow! and
SSE prefetch instructions support.

‘athlon-4’

‘athlon-xp’

‘athlon-mp’
Improved AMD Athlon CPU with MMX, 3DNow!, enhanced
3DNow! and full SSE instruction set support.

228

Ck87
‘opteron’
‘athlon64’
‘athlon-fx’

‘k8-sse3’

Using the GNU Compiler Collection (GCC)

Processors based on the AMD K8 core with x86-64 instruction set
support, including the AMD Opteron, Athlon 64, and Athlon 64 FX
processors. (This supersets MMX, SSE, SSE2, 3DNow!, enhanced
3DNow! and 64-bit instruction set extensions.)

‘opteron-sse3’
‘athlon64-sse3’

‘amdfam10’
‘barcelona’

‘bdverl’

‘bdver2’

‘bdver3d’

‘bdverd’

‘btverl’

‘btver?2’

Improved versions of AMD K8 cores with SSE3 instruction set sup-
port.

CPUs based on AMD Family 10h cores with x86-64 instruction
set support. (This supersets MMX, SSE, SSE2, SSE3, SSE4A,
3DNow!, enhanced 3DNow!, ABM and 64-bit instruction set exten-
sions.)

CPUs based on AMD Family 15h cores with x86-64 instruction
set support. (This supersets FMA4, AVX, XOP, LWP, AES,
PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)

AMD Family 15h core based CPUs with x86-64 instruction set sup-
port. (This supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP,
LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set exten-
sions.)

AMD Family 15h core based CPUs with x86-64 instruction set
support. (This supersets BMI, TBM, F16C, FMA, FMA4, FS-
GSBASE, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE,
SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit in-

struction set extensions.

AMD Family 15h core based CPUs with x86-64 instruction set
support. (This supersets BMI, BMI2, TBM, F16C, FMA, FMA4,
FSGSBASE, AVX, AVX2, XOP, LWP, AES, PCL_MUL, CX16,
MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
SSE4.2, ABM and 64-bit instruction set extensions.

CPUs based on AMD Family 14h cores with x86-64 instruction set
support. (This supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A,
CX16, ABM and 64-bit instruction set extensions.)

CPUs based on AMD Family 16h cores with x86-64 instruction set
support. This includes MOVBE, F16C, BMI, AVX, PCL_MUL,

Chapter 3:

GCC Command Options 229

AES, SSE4.2, SSE4.1, CX16, ABM, SSE4A, SSSE3, SSE3, SSE2,
SSE, MMX and 64-bit instruction set extensions.

‘winchip-c6’
IDT WinChip C6 CPU, dealt in same way as i486 with additional
MMX instruction set support.

‘winchip2’
IDT WinChip 2 CPU, dealt in same way as i486 with additional
MMX and 3DNow! instruction set support.

‘3’ VIA C3 CPU with MMX and 3DNow! instruction set support. (No
scheduling is implemented for this chip.)
‘c3-2’ VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction

set support. (No scheduling is implemented for this chip.)

‘geode’ AMD Geode embedded processor with MMX and 3DNow! instruc-
tion set support.

-mtune=cpu-type

Tune to cpu-type everything applicable about the generated code, except for
the ABI and the set of available instructions. While picking a specific cpu-type
schedules things appropriately for that particular chip, the compiler does not
generate any code that cannot run on the default machine type unless you use
a ‘-march=cpu-type’ option. For example, if GCC is configured for i686-pc-
linux-gnu then ‘-mtune=pentium4’ generates code that is tuned for Pentium 4
but still runs on 1686 machines.

¢

The choices for cpu-type are the same as for
supports 2 extra choices for cpu-type:

-march’. In addition, ‘-mtune’

‘generic’ Produce code optimized for the most common I[A32/AMD64/
EM64T processors. If you know the CPU on which your code will
run, then you should use the corresponding ‘-mtune’ or ‘-march’
option instead of ‘-mtune=generic’. But, if you do not know
exactly what CPU users of your application will have, then you
should use this option.

As new processors are deployed in the marketplace, the behavior of
this option will change. Therefore, if you upgrade to a newer version
of GCC, code generation controlled by this option will change to
reflect the processors that are most common at the time that version
of GCC is released.

There is no ‘-march=generic’ option because ‘-march’ indicates
the instruction set the compiler can use, and there is no generic
instruction set applicable to all processors. In contrast, ‘-mtune’
indicates the processor (or, in this case, collection of processors) for
which the code is optimized.

‘intel’ Produce code optimized for the most current Intel processors, which
are Haswell and Silvermont for this version of GCC. If you know

230

-mcpu=cpu-type

Using the GNU Compiler Collection (GCC)

the CPU on which your code will run, then you should use the cor-
responding ‘-mtune’ or ‘-march’ option instead of ‘-mtune=intel’.
But, if you want your application performs better on both Haswell
and Silvermont, then you should use this option.

As new Intel processors are deployed in the marketplace, the be-
havior of this option will change. Therefore, if you upgrade to a
newer version of GCC, code generation controlled by this option
will change to reflect the most current Intel processors at the time
that version of GCC is released.

There is no ‘-march=intel’ option because ‘-march’ indicates the
instruction set the compiler can use, and there is no common in-
struction set applicable to all processors. In contrast, ‘-mtune’
indicates the processor (or, in this case, collection of processors)
for which the code is optimized.

A deprecated synonym for ‘-mtune’.

-mfpmath=unit

Generate floating-point arithmetic for selected unit unit. The choices for unit

are:

‘387’

sse

Use the standard 387 floating-point coprocessor present on the ma-
jority of chips and emulated otherwise. Code compiled with this
option runs almost everywhere. The temporary results are com-
puted in 80-bit precision instead of the precision specified by the
type, resulting in slightly different results compared to most of other
chips. See ‘~ffloat-store’ for more detailed description.

This is the default choice for 1386 compiler.

Use scalar floating-point instructions present in the SSE instruction
set. This instruction set is supported by Pentium IIT and newer
chips, and in the AMD line by Athlon-4, Athlon XP and Athlon MP
chips. The earlier version of the SSE instruction set supports only
single-precision arithmetic, thus the double and extended-precision
arithmetic are still done using 387. A later version, present only
in Pentium 4 and AMD x86-64 chips, supports double-precision
arithmetic too.

For the 1386 compiler, you must use ‘-march=cpu-type’, ‘-msse’ or
‘-msse2’ switches to enable SSE extensions and make this option
effective. For the x86-64 compiler, these extensions are enabled by
default.

The resulting code should be considerably faster in the majority of
cases and avoid the numerical instability problems of 387 code, but
may break some existing code that expects temporaries to be 80
bits.

This is the default choice for the x