
Using the GNU Compiler Collection
For gcc version 4.9.0

(GCC)

Richard M. Stallman and the GCC Developer Community

Published by:
GNU Press Website: http://www.gnupress.org
a division of the General: press@gnu.org
Free Software Foundation Orders: sales@gnu.org
51 Franklin Street, Fifth Floor Tel 617-542-5942
Boston, MA 02110-1301 USA Fax 617-542-2652

Last printed October 2003 for GCC 3.3.1.
Printed copies are available for $45 each.

Copyright c© 1988-2014 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.
(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

http://www.gnupress.org
mailto:press@gnu.org
mailto:sales@gnu.org

i

Short Contents

Introduction . 1

1 Programming Languages Supported by GCC 3

2 Language Standards Supported by GCC 5

3 GCC Command Options . 9

4 C Implementation-defined behavior . 339

5 C++ Implementation-defined behavior 347

6 Extensions to the C Language Family 349

7 Extensions to the C++ Language . 701

8 GNU Objective-C features . 715

9 Binary Compatibility . 731

10 gcov—a Test Coverage Program . 735

11 Known Causes of Trouble with GCC . 745

12 Reporting Bugs . 761

13 How To Get Help with GCC . 763

14 Contributing to GCC Development . 765

Funding Free Software . 767

The GNU Project and GNU/Linux . 769

GNU General Public License . 771

GNU Free Documentation License . 783

Contributors to GCC . 791

Option Index . 807

Keyword Index . 827

iii

Table of Contents

Introduction . 1

1 Programming Languages Supported by GCC
. 3

2 Language Standards Supported by GCC 5
2.1 C language . 5
2.2 C++ language . 6
2.3 Objective-C and Objective-C++ languages . 7
2.4 Go language . 8
2.5 References for other languages . 8

3 GCC Command Options . 9
3.1 Option Summary . 9
3.2 Options Controlling the Kind of Output . 25
3.3 Compiling C++ Programs . 31
3.4 Options Controlling C Dialect . 31
3.5 Options Controlling C++ Dialect . 37
3.6 Options Controlling Objective-C and Objective-C++ Dialects . . 48
3.7 Options to Control Diagnostic Messages Formatting 52
3.8 Options to Request or Suppress Warnings . 53
3.9 Options for Debugging Your Program or GCC 78
3.10 Options That Control Optimization . 101
3.11 Options Controlling the Preprocessor . 155
3.12 Passing Options to the Assembler . 166
3.13 Options for Linking . 166
3.14 Options for Directory Search . 170
3.15 Specifying subprocesses and the switches to pass to them 172
3.16 Specifying Target Machine and Compiler Version 180
3.17 Hardware Models and Configurations . 180

3.17.1 AArch64 Options . 180
3.17.1.1 ‘-march’ and ‘-mcpu’ feature modifiers 182

3.17.2 Adapteva Epiphany Options . 182
3.17.3 ARC Options . 184
3.17.4 ARM Options . 190
3.17.5 AVR Options . 196

3.17.5.1 EIND and Devices with more than 128 Ki Bytes of Flash
. 199

3.17.5.2 Handling of the RAMPD, RAMPX, RAMPY and RAMPZ Special
Function Registers . 201

3.17.5.3 AVR Built-in Macros . 201
3.17.6 Blackfin Options . 203

iv Using the GNU Compiler Collection (GCC)

3.17.7 C6X Options . 206
3.17.8 CRIS Options . 207
3.17.9 CR16 Options . 209
3.17.10 Darwin Options . 209
3.17.11 DEC Alpha Options . 213
3.17.12 FR30 Options . 217
3.17.13 FRV Options . 217
3.17.14 GNU/Linux Options . 221
3.17.15 H8/300 Options . 222
3.17.16 HPPA Options . 222
3.17.17 Intel 386 and AMD x86-64 Options 225
3.17.18 i386 and x86-64 Windows Options . 242
3.17.19 IA-64 Options . 243
3.17.20 LM32 Options . 247
3.17.21 M32C Options . 247
3.17.22 M32R/D Options . 248
3.17.23 M680x0 Options . 249
3.17.24 MCore Options . 254
3.17.25 MeP Options . 255
3.17.26 MicroBlaze Options . 257
3.17.27 MIPS Options . 258
3.17.28 MMIX Options . 271
3.17.29 MN10300 Options . 272
3.17.30 Moxie Options . 273
3.17.31 MSP430 Options . 273
3.17.32 NDS32 Options . 274
3.17.33 Nios II Options . 275
3.17.34 PDP-11 Options . 279
3.17.35 picoChip Options . 280
3.17.36 PowerPC Options . 281
3.17.37 RL78 Options . 281
3.17.38 IBM RS/6000 and PowerPC Options 281
3.17.39 RX Options . 296
3.17.40 S/390 and zSeries Options . 298
3.17.41 Score Options . 302
3.17.42 SH Options . 302
3.17.43 Solaris 2 Options . 309
3.17.44 SPARC Options . 310
3.17.45 SPU Options . 315
3.17.46 Options for System V . 316
3.17.47 TILE-Gx Options . 317
3.17.48 TILEPro Options . 317
3.17.49 V850 Options . 317
3.17.50 VAX Options . 320
3.17.51 VMS Options . 320
3.17.52 VxWorks Options . 321
3.17.53 x86-64 Options . 321
3.17.54 Xstormy16 Options . 321

v

3.17.55 Xtensa Options . 321
3.17.56 zSeries Options . 323

3.18 Options for Code Generation Conventions 323
3.19 Environment Variables Affecting GCC . 333
3.20 Using Precompiled Headers . 336

4 C Implementation-defined behavior 339
4.1 Translation . 339
4.2 Environment . 339
4.3 Identifiers . 339
4.4 Characters . 340
4.5 Integers . 341
4.6 Floating point . 341
4.7 Arrays and pointers . 342
4.8 Hints . 343
4.9 Structures, unions, enumerations, and bit-fields 343
4.10 Qualifiers . 344
4.11 Declarators . 345
4.12 Statements . 345
4.13 Preprocessing directives . 345
4.14 Library functions . 346
4.15 Architecture . 346
4.16 Locale-specific behavior . 346

5 C++ Implementation-defined behavior 347
5.1 Conditionally-supported behavior . 347
5.2 Exception handling . 347

6 Extensions to the C Language Family 349
6.1 Statements and Declarations in Expressions 349
6.2 Locally Declared Labels . 350
6.3 Labels as Values . 351
6.4 Nested Functions . 352
6.5 Constructing Function Calls . 354
6.6 Referring to a Type with typeof . 356
6.7 Conditionals with Omitted Operands . 358
6.8 128-bit integers . 358
6.9 Double-Word Integers . 358
6.10 Complex Numbers . 358
6.11 Additional Floating Types . 359
6.12 Half-Precision Floating Point . 359
6.13 Decimal Floating Types . 360
6.14 Hex Floats . 361
6.15 Fixed-Point Types . 361
6.16 Named Address Spaces . 362

6.16.1 AVR Named Address Spaces . 362
6.16.2 M32C Named Address Spaces . 364

vi Using the GNU Compiler Collection (GCC)

6.16.3 RL78 Named Address Spaces . 364
6.16.4 SPU Named Address Spaces . 364

6.17 Arrays of Length Zero . 364
6.18 Structures With No Members . 366
6.19 Arrays of Variable Length . 366
6.20 Macros with a Variable Number of Arguments. 367
6.21 Slightly Looser Rules for Escaped Newlines 368
6.22 Non-Lvalue Arrays May Have Subscripts . 368
6.23 Arithmetic on void- and Function-Pointers 368
6.24 Non-Constant Initializers . 368
6.25 Compound Literals . 369
6.26 Designated Initializers . 370
6.27 Case Ranges . 371
6.28 Cast to a Union Type . 371
6.29 Mixed Declarations and Code . 372
6.30 Declaring Attributes of Functions . 372
6.31 Attribute Syntax . 405
6.32 Prototypes and Old-Style Function Definitions 408
6.33 C++ Style Comments . 409
6.34 Dollar Signs in Identifier Names . 409
6.35 The Character ESC in Constants . 409
6.36 Specifying Attributes of Variables . 409

6.36.1 AVR Variable Attributes . 414
6.36.2 Blackfin Variable Attributes . 414
6.36.3 M32R/D Variable Attributes . 415
6.36.4 MeP Variable Attributes . 415
6.36.5 i386 Variable Attributes . 416
6.36.6 PowerPC Variable Attributes . 417
6.36.7 SPU Variable Attributes . 418
6.36.8 Xstormy16 Variable Attributes . 418

6.37 Specifying Attributes of Types . 418
6.37.1 ARM Type Attributes . 422
6.37.2 MeP Type Attributes . 423
6.37.3 i386 Type Attributes . 423
6.37.4 PowerPC Type Attributes . 423
6.37.5 SPU Type Attributes . 423

6.38 Inquiring on Alignment of Types or Variables 424
6.39 An Inline Function is As Fast As a Macro 424
6.40 When is a Volatile Object Accessed? . 426
6.41 Assembler Instructions with C Expression Operands 427

6.41.1 Size of an asm . 433
6.41.2 i386 floating-point asm operands . 433

6.42 Constraints for asm Operands . 434
6.42.1 Simple Constraints . 434
6.42.2 Multiple Alternative Constraints . 437
6.42.3 Constraint Modifier Characters . 437
6.42.4 Constraints for Particular Machines . 438

6.43 Controlling Names Used in Assembler Code 465

vii

6.44 Variables in Specified Registers . 466
6.44.1 Defining Global Register Variables . 466
6.44.2 Specifying Registers for Local Variables 468

6.45 Alternate Keywords . 468
6.46 Incomplete enum Types . 469
6.47 Function Names as Strings . 469
6.48 Getting the Return or Frame Address of a Function 470
6.49 Using Vector Instructions through Built-in Functions 471
6.50 Offsetof . 473
6.51 Legacy sync Built-in Functions for Atomic Memory Access

. 474
6.52 Built-in functions for memory model aware atomic operations

. 475
6.53 x86 specific memory model extensions for transactional memory

. 480
6.54 Object Size Checking Built-in Functions . 480
6.55 Cilk Plus C/C++ language extension Built-in Functions. 482
6.56 Other Built-in Functions Provided by GCC 482
6.57 Built-in Functions Specific to Particular Target Machines 492

6.57.1 Alpha Built-in Functions . 492
6.57.2 Altera Nios II Built-in Functions . 493
6.57.3 ARC Built-in Functions . 495
6.57.4 ARC SIMD Built-in Functions . 497
6.57.5 ARM iWMMXt Built-in Functions . 500
6.57.6 ARM NEON Intrinsics . 503

6.57.6.1 Addition . 503
6.57.6.2 Multiplication . 507
6.57.6.3 Multiply-accumulate . 509
6.57.6.4 Multiply-subtract . 510
6.57.6.5 Fused-multiply-accumulate . 511
6.57.6.6 Fused-multiply-subtract . 511
6.57.6.7 Round to integral (to nearest, ties to even) 511
6.57.6.8 Round to integral (to nearest, ties away from zero)

. 511
6.57.6.9 Round to integral (towards +Inf) 511
6.57.6.10 Round to integral (towards -Inf) 512
6.57.6.11 Round to integral (towards 0) . 512
6.57.6.12 Subtraction . 512
6.57.6.13 Comparison (equal-to) . 515
6.57.6.14 Comparison (greater-than-or-equal-to) 516
6.57.6.15 Comparison (less-than-or-equal-to) 517
6.57.6.16 Comparison (greater-than) . 517
6.57.6.17 Comparison (less-than) . 518
6.57.6.18 Comparison (absolute greater-than-or-equal-to) . . . 519
6.57.6.19 Comparison (absolute less-than-or-equal-to) 519
6.57.6.20 Comparison (absolute greater-than) 519
6.57.6.21 Comparison (absolute less-than) 519
6.57.6.22 Test bits . 519

viii Using the GNU Compiler Collection (GCC)

6.57.6.23 Absolute difference . 520
6.57.6.24 Absolute difference and accumulate 521
6.57.6.25 Maximum . 522
6.57.6.26 Minimum . 523
6.57.6.27 Pairwise add . 523
6.57.6.28 Pairwise add, single opcode widen and accumulate

. 524
6.57.6.29 Folding maximum . 525
6.57.6.30 Folding minimum . 525
6.57.6.31 Reciprocal step . 526
6.57.6.32 Vector shift left . 526
6.57.6.33 Vector shift left by constant . 529
6.57.6.34 Vector shift right by constant . 531
6.57.6.35 Vector shift right by constant and accumulate 534
6.57.6.36 Vector shift right and insert . 536
6.57.6.37 Vector shift left and insert . 537
6.57.6.38 Absolute value . 538
6.57.6.39 Negation . 539
6.57.6.40 Bitwise not . 539
6.57.6.41 Count leading sign bits . 540
6.57.6.42 Count leading zeros . 540
6.57.6.43 Count number of set bits . 541
6.57.6.44 Reciprocal estimate . 541
6.57.6.45 Reciprocal square-root estimate 542
6.57.6.46 Get lanes from a vector . 542
6.57.6.47 Set lanes in a vector . 543
6.57.6.48 Create vector from literal bit pattern 544
6.57.6.49 Set all lanes to the same value . 544
6.57.6.50 Combining vectors . 547
6.57.6.51 Splitting vectors . 548
6.57.6.52 Conversions . 549
6.57.6.53 Move, single opcode narrowing 549
6.57.6.54 Move, single opcode long . 550
6.57.6.55 Table lookup . 550
6.57.6.56 Extended table lookup . 551
6.57.6.57 Multiply, lane . 552
6.57.6.58 Long multiply, lane . 552
6.57.6.59 Saturating doubling long multiply, lane 552
6.57.6.60 Saturating doubling multiply high, lane 553
6.57.6.61 Multiply-accumulate, lane . 553
6.57.6.62 Multiply-subtract, lane . 554
6.57.6.63 Vector multiply by scalar . 555
6.57.6.64 Vector long multiply by scalar . 555
6.57.6.65 Vector saturating doubling long multiply by scalar

. 555
6.57.6.66 Vector saturating doubling multiply high by scalar

. 555
6.57.6.67 Vector multiply-accumulate by scalar 556

ix

6.57.6.68 Vector multiply-subtract by scalar 557
6.57.6.69 Vector extract . 557
6.57.6.70 Reverse elements . 559
6.57.6.71 Bit selection . 560
6.57.6.72 Transpose elements . 562
6.57.6.73 Zip elements . 563
6.57.6.74 Unzip elements . 564
6.57.6.75 Element/structure loads, VLD1 variants 565
6.57.6.76 Element/structure stores, VST1 variants 568
6.57.6.77 Element/structure loads, VLD2 variants 571
6.57.6.78 Element/structure stores, VST2 variants 573
6.57.6.79 Element/structure loads, VLD3 variants 575
6.57.6.80 Element/structure stores, VST3 variants 577
6.57.6.81 Element/structure loads, VLD4 variants 579
6.57.6.82 Element/structure stores, VST4 variants 581
6.57.6.83 Logical operations (AND) . 583
6.57.6.84 Logical operations (OR) . 584
6.57.6.85 Logical operations (exclusive OR) 584
6.57.6.86 Logical operations (AND-NOT) 585
6.57.6.87 Logical operations (OR-NOT) . 586
6.57.6.88 Reinterpret casts . 587

6.57.7 ARM ACLE Intrinsics . 595
6.57.7.1 CRC32 intrinsics . 595

6.57.8 AVR Built-in Functions . 595
6.57.9 Blackfin Built-in Functions . 596
6.57.10 FR-V Built-in Functions . 597

6.57.10.1 Argument Types . 597
6.57.10.2 Directly-mapped Integer Functions 597
6.57.10.3 Directly-mapped Media Functions 598
6.57.10.4 Raw read/write Functions . 600
6.57.10.5 Other Built-in Functions . 600

6.57.11 X86 Built-in Functions . 600
6.57.12 X86 transaction memory intrinsics . 622
6.57.13 MIPS DSP Built-in Functions . 623
6.57.14 MIPS Paired-Single Support . 628
6.57.15 MIPS Loongson Built-in Functions . 628

6.57.15.1 Paired-Single Arithmetic . 630
6.57.15.2 Paired-Single Built-in Functions 631
6.57.15.3 MIPS-3D Built-in Functions . 632

6.57.16 Other MIPS Built-in Functions . 634
6.57.17 MSP430 Built-in Functions . 634
6.57.18 NDS32 Built-in Functions . 635
6.57.19 picoChip Built-in Functions . 635
6.57.20 PowerPC Built-in Functions . 636
6.57.21 PowerPC AltiVec Built-in Functions 636
6.57.22 PowerPC Hardware Transactional Memory Built-in

Functions . 678
6.57.22.1 PowerPC HTM Low Level Built-in Functions 678

x Using the GNU Compiler Collection (GCC)

6.57.22.2 PowerPC HTM High Level Inline Functions 680
6.57.23 RX Built-in Functions . 681
6.57.24 S/390 System z Built-in Functions . 683
6.57.25 SH Built-in Functions . 684
6.57.26 SPARC VIS Built-in Functions . 685
6.57.27 SPU Built-in Functions . 687
6.57.28 TI C6X Built-in Functions . 688
6.57.29 TILE-Gx Built-in Functions . 688
6.57.30 TILEPro Built-in Functions . 689

6.58 Format Checks Specific to Particular Target Machines 689
6.58.1 Solaris Format Checks . 689
6.58.2 Darwin Format Checks . 689

6.59 Pragmas Accepted by GCC . 690
6.59.1 ARM Pragmas . 690
6.59.2 M32C Pragmas . 690
6.59.3 MeP Pragmas . 690
6.59.4 RS/6000 and PowerPC Pragmas . 691
6.59.5 Darwin Pragmas . 691
6.59.6 Solaris Pragmas . 692
6.59.7 Symbol-Renaming Pragmas . 692
6.59.8 Structure-Packing Pragmas . 693
6.59.9 Weak Pragmas . 693
6.59.10 Diagnostic Pragmas . 694
6.59.11 Visibility Pragmas . 695
6.59.12 Push/Pop Macro Pragmas . 695
6.59.13 Function Specific Option Pragmas . 695
6.59.14 Loop-Specific Pragmas . 696

6.60 Unnamed struct/union fields within structs/unions 697
6.61 Thread-Local Storage . 697

6.61.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage 698
6.61.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage 699

6.62 Binary constants using the ‘0b’ prefix . 700

7 Extensions to the C++ Language 701
7.1 When is a Volatile C++ Object Accessed? 701
7.2 Restricting Pointer Aliasing . 701
7.3 Vague Linkage . 702
7.4 #pragma interface and implementation . 703
7.5 Where’s the Template? . 704
7.6 Extracting the function pointer from a bound pointer to member

function . 706
7.7 C++-Specific Variable, Function, and Type Attributes 707
7.8 Function Multiversioning . 708
7.9 Namespace Association . 709
7.10 Type Traits . 710
7.11 Java Exceptions . 712
7.12 Deprecated Features . 712
7.13 Backwards Compatibility . 713

xi

8 GNU Objective-C features 715
8.1 GNU Objective-C runtime API . 715

8.1.1 Modern GNU Objective-C runtime API 715
8.1.2 Traditional GNU Objective-C runtime API 716

8.2 +load: Executing code before main . 716
8.2.1 What you can and what you cannot do in +load 717

8.3 Type encoding . 718
8.3.1 Legacy type encoding . 720
8.3.2 @encode . 720
8.3.3 Method signatures . 721

8.4 Garbage Collection . 721
8.5 Constant string objects . 722
8.6 compatibility alias . 723
8.7 Exceptions . 723
8.8 Synchronization . 725
8.9 Fast enumeration . 725

8.9.1 Using fast enumeration . 725
8.9.2 c99-like fast enumeration syntax . 725
8.9.3 Fast enumeration details . 726
8.9.4 Fast enumeration protocol . 727

8.10 Messaging with the GNU Objective-C runtime 728
8.10.1 Dynamically registering methods . 728
8.10.2 Forwarding hook . 728

9 Binary Compatibility . 731

10 gcov—a Test Coverage Program 735
10.1 Introduction to gcov . 735
10.2 Invoking gcov . 735
10.3 Using gcov with GCC Optimization . 741
10.4 Brief description of gcov data files . 742
10.5 Data file relocation to support cross-profiling 743

11 Known Causes of Trouble with GCC 745
11.1 Actual Bugs We Haven’t Fixed Yet . 745
11.2 Interoperation . 745
11.3 Incompatibilities of GCC . 747
11.4 Fixed Header Files . 750
11.5 Standard Libraries . 750
11.6 Disappointments and Misunderstandings . 751
11.7 Common Misunderstandings with GNU C++ 752

11.7.1 Declare and Define Static Members . 752
11.7.2 Name lookup, templates, and accessing members of base

classes . 753
11.7.3 Temporaries May Vanish Before You Expect 754
11.7.4 Implicit Copy-Assignment for Virtual Bases 755

11.8 Certain Changes We Don’t Want to Make 756
11.9 Warning Messages and Error Messages . 759

xii Using the GNU Compiler Collection (GCC)

12 Reporting Bugs . 761
12.1 Have You Found a Bug? . 761
12.2 How and where to Report Bugs . 761

13 How To Get Help with GCC 763

14 Contributing to GCC Development 765

Funding Free Software . 767

The GNU Project and GNU/Linux 769

GNU General Public License 771

GNU Free Documentation License 783
ADDENDUM: How to use this License for your documents 790

Contributors to GCC . 791

Option Index . 807

Keyword Index . 827

Introduction 1

Introduction

This manual documents how to use the GNU compilers, as well as their features and incom-
patibilities, and how to report bugs. It corresponds to the compilers (GCC) version 4.9.0.
The internals of the GNU compilers, including how to port them to new targets and some
information about how to write front ends for new languages, are documented in a separate
manual. See Section “Introduction” in GNU Compiler Collection (GCC) Internals.

Chapter 1: Programming Languages Supported by GCC 3

1 Programming Languages Supported by GCC

GCC stands for “GNU Compiler Collection”. GCC is an integrated distribution of compil-
ers for several major programming languages. These languages currently include C, C++,
Objective-C, Objective-C++, Java, Fortran, Ada, and Go.

The abbreviation GCC has multiple meanings in common use. The current official mean-
ing is “GNU Compiler Collection”, which refers generically to the complete suite of tools.
The name historically stood for “GNU C Compiler”, and this usage is still common when
the emphasis is on compiling C programs. Finally, the name is also used when speaking
of the language-independent component of GCC: code shared among the compilers for all
supported languages.

The language-independent component of GCC includes the majority of the optimizers,
as well as the “back ends” that generate machine code for various processors.

The part of a compiler that is specific to a particular language is called the “front end”.
In addition to the front ends that are integrated components of GCC, there are several
other front ends that are maintained separately. These support languages such as Pascal,
Mercury, and COBOL. To use these, they must be built together with GCC proper.

Most of the compilers for languages other than C have their own names. The C++ compiler
is G++, the Ada compiler is GNAT, and so on. When we talk about compiling one of those
languages, we might refer to that compiler by its own name, or as GCC. Either is correct.

Historically, compilers for many languages, including C++ and Fortran, have been im-
plemented as “preprocessors” which emit another high level language such as C. None of
the compilers included in GCC are implemented this way; they all generate machine code
directly. This sort of preprocessor should not be confused with the C preprocessor, which
is an integral feature of the C, C++, Objective-C and Objective-C++ languages.

Chapter 2: Language Standards Supported by GCC 5

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with
some extensions.

2.1 C language

GCC supports three versions of the C standard, although support for the most recent version
is not yet complete.

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/IEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. This standard, in
both its forms, is commonly known as C89, or occasionally as C90, from the dates of
ratification. The ANSI standard, but not the ISO standard, also came with a Rationale
document. To select this standard in GCC, use one of the options ‘-ansi’, ‘-std=c90’ or
‘-std=iso9899:1990’; to obtain all the diagnostics required by the standard, you should
also specify ‘-pedantic’ (or ‘-pedantic-errors’ if you want them to be errors rather than
warnings). See Section 3.4 [Options Controlling C Dialect], page 31.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added
digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This
amendment is commonly known as AMD1; the amended standard is sometimes known as
C94 or C95. To select this standard in GCC, use the option ‘-std=iso9899:199409’ (with,
as for other standard versions, ‘-pedantic’ to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and
is commonly known as C99. GCC has substantially complete support for this standard
version; see http://gcc.gnu.org/c99status.html for details. To select this standard,
use ‘-std=c99’ or ‘-std=iso9899:1999’. (While in development, drafts of this standard
version were referred to as C9X.)

Errors in the 1999 ISO C standard were corrected in three Technical Corrigenda published
in 2001, 2004 and 2007. GCC does not support the uncorrected version.

A fourth version of the C standard, known as C11, was published in 2011 as ISO/IEC
9899:2011. GCC has substantially complete support for this standard, enabled with
‘-std=c11’ or ‘-std=iso9899:2011’. (While in development, drafts of this standard
version were referred to as C1X.)

By default, GCC provides some extensions to the C language that on rare occasions con-
flict with the C standard. See Chapter 6 [Extensions to the C Language Family], page 349.
Use of the ‘-std’ options listed above will disable these extensions where they conflict with
the C standard version selected. You may also select an extended version of the C language
explicitly with ‘-std=gnu90’ (for C90 with GNU extensions), ‘-std=gnu99’ (for C99 with
GNU extensions) or ‘-std=gnu11’ (for C11 with GNU extensions). The default, if no C lan-
guage dialect options are given, is ‘-std=gnu90’; this is intended to change to ‘-std=gnu11’
in some future release. Some features that are part of the C99 standard are accepted as

http://gcc.gnu.org/c99status.html

6 Using the GNU Compiler Collection (GCC)

extensions in C90 mode, and some features that are part of the C11 standard are accepted
as extensions in C90 and C99 modes.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library fa-
cilities; a conforming freestanding implementation is only required to provide certain library
facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMD1,
also those in <iso646.h>; since C99, also those in <stdbool.h> and <stdint.h>; and since
C11, also those in <stdalign.h> and <stdnoreturn.h>. In addition, complex types, added
in C99, are not required for freestanding implementations. The standard also defines two
environments for programs, a freestanding environment, required of all implementations and
which may not have library facilities beyond those required of freestanding implementations,
where the handling of program startup and termination are implementation-defined, and a
hosted environment, which is not required, in which all the library facilities are provided
and startup is through a function int main (void) or int main (int, char *[]). An OS
kernel would be a freestanding environment; a program using the facilities of an operating
system would normally be in a hosted implementation.

GCC aims towards being usable as a conforming freestanding implementation, or as the
compiler for a conforming hosted implementation. By default, it will act as the compiler for a
hosted implementation, defining __STDC_HOSTED__ as 1 and presuming that when the names
of ISO C functions are used, they have the semantics defined in the standard. To make it act
as a conforming freestanding implementation for a freestanding environment, use the option
‘-ffreestanding’; it will then define __STDC_HOSTED__ to 0 and not make assumptions
about the meanings of function names from the standard library, with exceptions noted
below. To build an OS kernel, you may well still need to make your own arrangements for
linking and startup. See Section 3.4 [Options Controlling C Dialect], page 31.

GCC does not provide the library facilities required only of hosted implementations, nor
yet all the facilities required by C99 of freestanding implementations on all platforms; to use
the facilities of a hosted environment, you will need to find them elsewhere (for example,
in the GNU C library). See Section 11.5 [Standard Libraries], page 750.

Most of the compiler support routines used by GCC are present in ‘libgcc’, but there
are a few exceptions. GCC requires the freestanding environment provide memcpy, memmove,
memset and memcmp. Finally, if __builtin_trap is used, and the target does not implement
the trap pattern, then GCC will emit a call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning
the history of C that is available online, see http://gcc.gnu.org/readings.html

2.2 C++ language

GCC supports the original ISO C++ standard (1998) and contains experimental support for
the second ISO C++ standard (2011).

The original ISO C++ standard was published as the ISO standard (ISO/IEC 14882:1998)
and amended by a Technical Corrigenda published in 2003 (ISO/IEC 14882:2003). These
standards are referred to as C++98 and C++03, respectively. GCC implements the majority
of C++98 (export is a notable exception) and most of the changes in C++03. To select
this standard in GCC, use one of the options ‘-ansi’, ‘-std=c++98’, or ‘-std=c++03’; to

http://gcc.gnu.org/readings.html

Chapter 2: Language Standards Supported by GCC 7

obtain all the diagnostics required by the standard, you should also specify ‘-pedantic’ (or
‘-pedantic-errors’ if you want them to be errors rather than warnings).

A revised ISO C++ standard was published in 2011 as ISO/IEC 14882:2011, and is re-
ferred to as C++11; before its publication it was commonly referred to as C++0x. C++11
contains several changes to the C++ language, most of which have been implemented in an
experimental C++11 mode in GCC. For information regarding the C++11 features available
in the experimental C++11 mode, see http://gcc.gnu.org/projects/cxx0x.html. To
select this standard in GCC, use the option ‘-std=c++11’; to obtain all the diagnostics
required by the standard, you should also specify ‘-pedantic’ (or ‘-pedantic-errors’ if
you want them to be errors rather than warnings).

More information about the C++ standards is available on the ISO C++ committee’s web
site at http://www.open-std.org/jtc1/sc22/wg21/.

By default, GCC provides some extensions to the C++ language; See Section 3.5 [C++
Dialect Options], page 37. Use of the ‘-std’ option listed above will disable these extensions.
You may also select an extended version of the C++ language explicitly with ‘-std=gnu++98’
(for C++98 with GNU extensions) or ‘-std=gnu++11’ (for C++11 with GNU extensions). The
default, if no C++ language dialect options are given, is ‘-std=gnu++98’.

2.3 Objective-C and Objective-C++ languages

GCC supports “traditional” Objective-C (also known as “Objective-C 1.0”) and contains
support for the Objective-C exception and synchronization syntax. It has also support for
a number of “Objective-C 2.0” language extensions, including properties, fast enumeration
(only for Objective-C), method attributes and the @optional and @required keywords in
protocols. GCC supports Objective-C++ and features available in Objective-C are also
available in Objective-C++.

GCC by default uses the GNU Objective-C runtime library, which is part of GCC and
is not the same as the Apple/NeXT Objective-C runtime library used on Apple systems.
There are a number of differences documented in this manual. The options ‘-fgnu-runtime’
and ‘-fnext-runtime’ allow you to switch between producing output that works with the
GNU Objective-C runtime library and output that works with the Apple/NeXT Objective-
C runtime library.

There is no formal written standard for Objective-C or Objective-C++. The authori-
tative manual on traditional Objective-C (1.0) is “Object-Oriented Programming and the
Objective-C Language”, available at a number of web sites:

• http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf is the
original NeXTstep document;

• http://objc.toodarkpark.net is the same document in another format;

• http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/
ObjectiveC/ has an updated version but make sure you search for “Object Oriented
Programming and the Objective-C Programming Language 1.0”, not documentation
on the newer “Objective-C 2.0” language

The Objective-C exception and synchronization syntax (that is, the keywords @try,
@throw, @catch, @finally and @synchronized) is supported by GCC and is enabled with

http://gcc.gnu.org/projects/cxx0x.html
http://www.open-std.org/jtc1/sc22/wg21/
http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf
http://objc.toodarkpark.net
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/

8 Using the GNU Compiler Collection (GCC)

the option ‘-fobjc-exceptions’. The syntax is briefly documented in this manual and in
the Objective-C 2.0 manuals from Apple.

The Objective-C 2.0 language extensions and features are automatically enabled; they
include properties (via the @property, @synthesize and @dynamic keywords), fast enumera-
tion (not available in Objective-C++), attributes for methods (such as deprecated, noreturn,
sentinel, format), the unused attribute for method arguments, the @package keyword for
instance variables and the @optional and @required keywords in protocols. You can disable
all these Objective-C 2.0 language extensions with the option ‘-fobjc-std=objc1’, which
causes the compiler to recognize the same Objective-C language syntax recognized by GCC
4.0, and to produce an error if one of the new features is used.

GCC has currently no support for non-fragile instance variables.
The authoritative manual on Objective-C 2.0 is available from Apple:
• http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/

ObjectiveC/

For more information concerning the history of Objective-C that is available online, see
http://gcc.gnu.org/readings.html

2.4 Go language

As of the GCC 4.7.1 release, GCC supports the Go 1 language standard, described at
http://golang.org/doc/go1.html.

2.5 References for other languages

See Section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See Section “Standards” in The GNU Fortran Compiler, for details of standards sup-
ported by GNU Fortran.

See Section “Compatibility with the Java Platform” in GNU gcj, for details of compati-
bility between gcj and the Java Platform.

http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://gcc.gnu.org/readings.html
http://golang.org/doc/go1.html

Chapter 3: GCC Command Options 9

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking.
The “overall options” allow you to stop this process at an intermediate stage. For example,
the ‘-c’ option says not to run the linker. Then the output consists of object files output
by the assembler.

Other options are passed on to one stage of processing. Some options control the prepro-
cessor and others the compiler itself. Yet other options control the assembler and linker;
most of these are not documented here, since you rarely need to use any of them.

Most of the command-line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

See Section 3.3 [Compiling C++ Programs], page 31, for a summary of special options for
compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-
letter names; therefore multiple single-letter options may not be grouped: ‘-dv’ is very
different from ‘-d -v’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify ‘-L’ more than once, the directories are searched in the order specified. Also,
the placement of the ‘-l’ option is significant.

Many options have long names starting with ‘-f’ or with ‘-W’—for example,
‘-fmove-loop-invariants’, ‘-Wformat’ and so on. Most of these have both positive and
negative forms; the negative form of ‘-ffoo’ is ‘-fno-foo’. This manual documents only
one of these two forms, whichever one is not the default.

See [Option Index], page 807, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

Overall Options
See Section 3.2 [Options Controlling the Kind of Output], page 25.

-c -S -E -o file -no-canonical-prefixes

-pipe -pass-exit-codes

-x language -v -### --help[=class[,...]] --target-help

--version -wrapper @file -fplugin=file -fplugin-arg-name=arg

-fdump-ada-spec[-slim] -fada-spec-parent=unit -fdump-go-spec=file

C Language Options
See Section 3.4 [Options Controlling C Dialect], page 31.

-ansi -std=standard -fgnu89-inline

-aux-info filename -fallow-parameterless-variadic-functions

-fno-asm -fno-builtin -fno-builtin-function

-fhosted -ffreestanding -fopenmp -fopenmp-simd -fms-extensions

-fplan9-extensions -trigraphs -traditional -traditional-cpp

10 Using the GNU Compiler Collection (GCC)

-fallow-single-precision -fcond-mismatch -flax-vector-conversions

-fsigned-bitfields -fsigned-char

-funsigned-bitfields -funsigned-char

C++ Language Options
See Section 3.5 [Options Controlling C++ Dialect], page 37.

-fabi-version=n -fno-access-control -fcheck-new

-fconstexpr-depth=n -ffriend-injection

-fno-elide-constructors

-fno-enforce-eh-specs

-ffor-scope -fno-for-scope -fno-gnu-keywords

-fno-implicit-templates

-fno-implicit-inline-templates

-fno-implement-inlines -fms-extensions

-fno-nonansi-builtins -fnothrow-opt -fno-operator-names

-fno-optional-diags -fpermissive

-fno-pretty-templates

-frepo -fno-rtti -fstats -ftemplate-backtrace-limit=n

-ftemplate-depth=n

-fno-threadsafe-statics -fuse-cxa-atexit -fno-weak -nostdinc++

-fvisibility-inlines-hidden

-fvtable-verify=std|preinit|none

-fvtv-counts -fvtv-debug

-fvisibility-ms-compat

-fext-numeric-literals

-Wabi -Wconversion-null -Wctor-dtor-privacy

-Wdelete-non-virtual-dtor -Wliteral-suffix -Wnarrowing

-Wnoexcept -Wnon-virtual-dtor -Wreorder

-Weffc++ -Wstrict-null-sentinel

-Wno-non-template-friend -Wold-style-cast

-Woverloaded-virtual -Wno-pmf-conversions

-Wsign-promo

Objective-C and Objective-C++ Language Options
See Section 3.6 [Options Controlling Objective-C and Objective-C++ Dialects],
page 48.

-fconstant-string-class=class-name

-fgnu-runtime -fnext-runtime

-fno-nil-receivers

-fobjc-abi-version=n

-fobjc-call-cxx-cdtors

-fobjc-direct-dispatch

-fobjc-exceptions

-fobjc-gc

-fobjc-nilcheck

-fobjc-std=objc1

-freplace-objc-classes

-fzero-link

-gen-decls

-Wassign-intercept

-Wno-protocol -Wselector

-Wstrict-selector-match

-Wundeclared-selector

Language Independent Options
See Section 3.7 [Options to Control Diagnostic Messages Formatting], page 52.

-fmessage-length=n

-fdiagnostics-show-location=[once|every-line]

Chapter 3: GCC Command Options 11

-fdiagnostics-color=[auto|never|always]
-fno-diagnostics-show-option -fno-diagnostics-show-caret

Warning Options
See Section 3.8 [Options to Request or Suppress Warnings], page 53.

-fsyntax-only -fmax-errors=n -Wpedantic

-pedantic-errors

-w -Wextra -Wall -Waddress -Waggregate-return

-Waggressive-loop-optimizations -Warray-bounds

-Wno-attributes -Wno-builtin-macro-redefined

-Wc++-compat -Wc++11-compat -Wcast-align -Wcast-qual

-Wchar-subscripts -Wclobbered -Wcomment -Wconditionally-supported

-Wconversion -Wcoverage-mismatch -Wdate-time -Wdelete-incomplete -Wno-cpp

-Wno-deprecated -Wno-deprecated-declarations -Wdisabled-optimization

-Wno-div-by-zero -Wdouble-promotion -Wempty-body -Wenum-compare

-Wno-endif-labels -Werror -Werror=*

-Wfatal-errors -Wfloat-equal -Wformat -Wformat=2

-Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral

-Wformat-security -Wformat-y2k

-Wframe-larger-than=len -Wno-free-nonheap-object -Wjump-misses-init

-Wignored-qualifiers

-Wimplicit -Wimplicit-function-declaration -Wimplicit-int

-Winit-self -Winline -Wmaybe-uninitialized

-Wno-int-to-pointer-cast -Wno-invalid-offsetof

-Winvalid-pch -Wlarger-than=len -Wunsafe-loop-optimizations

-Wlogical-op -Wlong-long

-Wmain -Wmaybe-uninitialized -Wmissing-braces -Wmissing-field-initializers

-Wmissing-include-dirs

-Wno-multichar -Wnonnull -Wno-overflow -Wopenmp-simd

-Woverlength-strings -Wpacked -Wpacked-bitfield-compat -Wpadded

-Wparentheses -Wpedantic-ms-format -Wno-pedantic-ms-format

-Wpointer-arith -Wno-pointer-to-int-cast

-Wredundant-decls -Wno-return-local-addr

-Wreturn-type -Wsequence-point -Wshadow

-Wsign-compare -Wsign-conversion -Wfloat-conversion

-Wsizeof-pointer-memaccess

-Wstack-protector -Wstack-usage=len -Wstrict-aliasing

-Wstrict-aliasing=n

-Wstrict-overflow -Wstrict-overflow=n

-Wsuggest-attribute=[pure|const|noreturn|format]
-Wmissing-format-attribute

-Wswitch -Wswitch-default -Wswitch-enum -Wsync-nand

-Wsystem-headers -Wtrampolines -Wtrigraphs -Wtype-limits -Wundef

-Wuninitialized -Wunknown-pragmas -Wno-pragmas

-Wunsuffixed-float-constants -Wunused -Wunused-function

-Wunused-label -Wunused-local-typedefs -Wunused-parameter

-Wno-unused-result -Wunused-value

-Wunused-variable

-Wunused-but-set-parameter -Wunused-but-set-variable

-Wuseless-cast -Wvariadic-macros -Wvector-operation-performance

-Wvla -Wvolatile-register-var -Wwrite-strings -Wzero-as-null-pointer-constant

C and Objective-C-only Warning Options
-Wbad-function-cast -Wmissing-declarations

-Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs

-Wold-style-declaration -Wold-style-definition

-Wstrict-prototypes -Wtraditional -Wtraditional-conversion

-Wdeclaration-after-statement -Wpointer-sign

12 Using the GNU Compiler Collection (GCC)

Debugging Options
See Section 3.9 [Options for Debugging Your Program or GCC], page 78.

-dletters -dumpspecs -dumpmachine -dumpversion

-fsanitize=style

-fdbg-cnt-list -fdbg-cnt=counter-value-list

-fdisable-ipa-pass_name

-fdisable-rtl-pass_name

-fdisable-rtl-pass-name=range-list

-fdisable-tree-pass_name

-fdisable-tree-pass-name=range-list

-fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links

-fdump-translation-unit[-n]
-fdump-class-hierarchy[-n]
-fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline

-fdump-passes

-fdump-statistics

-fdump-tree-all

-fdump-tree-original[-n]
-fdump-tree-optimized[-n]
-fdump-tree-cfg -fdump-tree-alias

-fdump-tree-ch

-fdump-tree-ssa[-n] -fdump-tree-pre[-n]
-fdump-tree-ccp[-n] -fdump-tree-dce[-n]
-fdump-tree-gimple[-raw]
-fdump-tree-dom[-n]
-fdump-tree-dse[-n]
-fdump-tree-phiprop[-n]
-fdump-tree-phiopt[-n]
-fdump-tree-forwprop[-n]
-fdump-tree-copyrename[-n]
-fdump-tree-nrv -fdump-tree-vect

-fdump-tree-sink

-fdump-tree-sra[-n]
-fdump-tree-forwprop[-n]
-fdump-tree-fre[-n]
-fdump-tree-vtable-verify

-fdump-tree-vrp[-n]
-fdump-tree-storeccp[-n]
-fdump-final-insns=file

-fcompare-debug[=opts] -fcompare-debug-second

-feliminate-dwarf2-dups -fno-eliminate-unused-debug-types

-feliminate-unused-debug-symbols -femit-class-debug-always

-fenable-kind-pass

-fenable-kind-pass=range-list

-fdebug-types-section -fmem-report-wpa

-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs

-fopt-info

-fopt-info-options[=file]
-frandom-seed=string -fsched-verbose=n

-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose

-fstack-usage -ftest-coverage -ftime-report -fvar-tracking

-fvar-tracking-assignments -fvar-tracking-assignments-toggle

-g -glevel -gtoggle -gcoff -gdwarf-version

-ggdb -grecord-gcc-switches -gno-record-gcc-switches

-gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf

-gvms -gxcoff -gxcoff+

-fno-merge-debug-strings -fno-dwarf2-cfi-asm

-fdebug-prefix-map=old=new

Chapter 3: GCC Command Options 13

-femit-struct-debug-baseonly -femit-struct-debug-reduced

-femit-struct-debug-detailed[=spec-list]
-p -pg -print-file-name=library -print-libgcc-file-name

-print-multi-directory -print-multi-lib -print-multi-os-directory

-print-prog-name=program -print-search-dirs -Q

-print-sysroot -print-sysroot-headers-suffix

-save-temps -save-temps=cwd -save-temps=obj -time[=file]

Optimization Options
See Section 3.10 [Options that Control Optimization], page 101.

-faggressive-loop-optimizations -falign-functions[=n]

-falign-jumps[=n]

-falign-labels[=n] -falign-loops[=n]

-fassociative-math -fauto-inc-dec -fbranch-probabilities

-fbranch-target-load-optimize -fbranch-target-load-optimize2

-fbtr-bb-exclusive -fcaller-saves

-fcheck-data-deps -fcombine-stack-adjustments -fconserve-stack

-fcompare-elim -fcprop-registers -fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules

-fcx-limited-range

-fdata-sections -fdce -fdelayed-branch

-fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively -

fdse

-fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects

-ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=style

-fforward-propagate -ffp-contract=style -ffunction-sections

-fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity

-fgcse-sm -fhoist-adjacent-loads -fif-conversion

-fif-conversion2 -findirect-inlining

-finline-functions -finline-functions-called-once -finline-limit=n

-finline-small-functions -fipa-cp -fipa-cp-clone

-fipa-pta -fipa-profile -fipa-pure-const -fipa-reference

-fira-algorithm=algorithm

-fira-region=region -fira-hoist-pressure

-fira-loop-pressure -fno-ira-share-save-slots

-fno-ira-share-spill-slots -fira-verbose=n

-fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute -

fivopts -fkeep-inline-functions -fkeep-static-consts -flive-range-shrinkage

-floop-block -floop-interchange -floop-strip-mine -floop-nest-optimize

-floop-parallelize-all -flto -flto-compression-level

-flto-partition=alg -flto-report -flto-report-wpa -fmerge-all-constants

-fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves

-fmove-loop-invariants -fno-branch-count-reg

-fno-defer-pop -fno-function-cse -fno-guess-branch-probability

-fno-inline -fno-math-errno -fno-peephole -fno-peephole2

-fno-sched-interblock -fno-sched-spec -fno-signed-zeros

-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss

-fomit-frame-pointer -foptimize-sibling-calls

-fpartial-inlining -fpeel-loops -fpredictive-commoning

-fprefetch-loop-arrays -fprofile-report

-fprofile-correction -fprofile-dir=path -fprofile-generate

-fprofile-generate=path

-fprofile-use -fprofile-use=path -fprofile-values -fprofile-reorder-functions

-freciprocal-math -free -frename-registers -freorder-blocks

-freorder-blocks-and-partition -freorder-functions

-frerun-cse-after-loop -freschedule-modulo-scheduled-loops

-frounding-math -fsched2-use-superblocks -fsched-pressure

-fsched-spec-load -fsched-spec-load-dangerous

14 Using the GNU Compiler Collection (GCC)

-fsched-stalled-insns-dep[=n] -fsched-stalled-insns[=n]

-fsched-group-heuristic -fsched-critical-path-heuristic

-fsched-spec-insn-heuristic -fsched-rank-heuristic

-fsched-last-insn-heuristic -fsched-dep-count-heuristic

-fschedule-insns -fschedule-insns2 -fsection-anchors

-fselective-scheduling -fselective-scheduling2

-fsel-sched-pipelining -fsel-sched-pipelining-outer-loops

-fshrink-wrap -fsignaling-nans -fsingle-precision-constant

-fsplit-ivs-in-unroller -fsplit-wide-types -fstack-protector

-fstack-protector-all -fstack-protector-strong -fstrict-aliasing

-fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp

-ftree-builtin-call-dce -ftree-ccp -ftree-ch

-ftree-coalesce-inline-vars -ftree-coalesce-vars -ftree-copy-prop

-ftree-copyrename -ftree-dce -ftree-dominator-opts -ftree-dse

-ftree-forwprop -ftree-fre -ftree-loop-if-convert

-ftree-loop-if-convert-stores -ftree-loop-im

-ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns

-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize

-ftree-loop-vectorize

-ftree-parallelize-loops=n -ftree-pre -ftree-partial-pre -ftree-pta

-ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra

-ftree-switch-conversion -ftree-tail-merge -ftree-ter

-ftree-vectorize -ftree-vrp

-funit-at-a-time -funroll-all-loops -funroll-loops

-funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops

-fvariable-expansion-in-unroller -fvect-cost-model -fvpt -fweb

-fwhole-program -fwpa -fuse-ld=linker -fuse-linker-plugin

--param name=value -O -O0 -O1 -O2 -O3 -Os -Ofast -Og

Preprocessor Options
See Section 3.11 [Options Controlling the Preprocessor], page 155.

-Aquestion=answer

-A-question[=answer]
-C -dD -dI -dM -dN

-Dmacro[=defn] -E -H

-idirafter dir

-include file -imacros file

-iprefix file -iwithprefix dir

-iwithprefixbefore dir -isystem dir

-imultilib dir -isysroot dir

-M -MM -MF -MG -MP -MQ -MT -nostdinc

-P -fdebug-cpp -ftrack-macro-expansion -fworking-directory

-remap -trigraphs -undef -Umacro

-Wp,option -Xpreprocessor option -no-integrated-cpp

Assembler Option
See Section 3.12 [Passing Options to the Assembler], page 166.

-Wa,option -Xassembler option

Linker Options
See Section 3.13 [Options for Linking], page 166.

object-file-name -llibrary

-nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic

-s -static -static-libgcc -static-libstdc++

-static-libasan -static-libtsan -static-liblsan -static-libubsan

-shared -shared-libgcc -symbolic

-T script -Wl,option -Xlinker option

-u symbol

Chapter 3: GCC Command Options 15

Directory Options
See Section 3.14 [Options for Directory Search], page 170.

-Bprefix -Idir -iplugindir=dir

-iquotedir -Ldir -specs=file -I-

--sysroot=dir --no-sysroot-suffix

Machine Dependent Options
See Section 3.17 [Hardware Models and Configurations], page 180.
AArch64 Options

-mabi=name -mbig-endian -mlittle-endian

-mgeneral-regs-only

-mcmodel=tiny -mcmodel=small -mcmodel=large

-mstrict-align

-momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer

-mtls-dialect=desc -mtls-dialect=traditional

-march=name -mcpu=name -mtune=name

Adapteva Epiphany Options
-mhalf-reg-file -mprefer-short-insn-regs

-mbranch-cost=num -mcmove -mnops=num -msoft-cmpsf

-msplit-lohi -mpost-inc -mpost-modify -mstack-offset=num

-mround-nearest -mlong-calls -mshort-calls -msmall16

-mfp-mode=mode -mvect-double -max-vect-align=num

-msplit-vecmove-early -m1reg-reg

ARC Options
-mbarrel-shifter

-mcpu=cpu -mA6 -mARC600 -mA7 -mARC700

-mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr

-mea -mno-mpy -mmul32x16 -mmul64

-mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap

-mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape

-mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof

-mepilogue-cfi -mlong-calls -mmedium-calls -msdata

-mucb-mcount -mvolatile-cache

-malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc

-mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi

-mexpand-adddi -mindexed-loads -mlra -mlra-priority-none

-mlra-priority-compact mlra-priority-noncompact -mno-millicode

-mmixed-code -mq-class -mRcq -mRcw -msize-level=level

-mtune=cpu -mmultcost=num -munalign-prob-threshold=probability

ARM Options
-mapcs-frame -mno-apcs-frame

-mabi=name

-mapcs-stack-check -mno-apcs-stack-check

-mapcs-float -mno-apcs-float

-mapcs-reentrant -mno-apcs-reentrant

-msched-prolog -mno-sched-prolog

-mlittle-endian -mbig-endian -mwords-little-endian

-mfloat-abi=name

-mfp16-format=name -mthumb-interwork -mno-thumb-interwork

-mcpu=name -march=name -mfpu=name

-mstructure-size-boundary=n

-mabort-on-noreturn

-mlong-calls -mno-long-calls

-msingle-pic-base -mno-single-pic-base

-mpic-register=reg

16 Using the GNU Compiler Collection (GCC)

-mnop-fun-dllimport

-mpoke-function-name

-mthumb -marm

-mtpcs-frame -mtpcs-leaf-frame

-mcaller-super-interworking -mcallee-super-interworking

-mtp=name -mtls-dialect=dialect

-mword-relocations

-mfix-cortex-m3-ldrd

-munaligned-access

-mneon-for-64bits

-mslow-flash-data

-mrestrict-it

AVR Options
-mmcu=mcu -maccumulate-args -mbranch-cost=cost

-mcall-prologues -mint8 -mno-interrupts -mrelax

-mstrict-X -mtiny-stack -Waddr-space-convert

Blackfin Options
-mcpu=cpu[-sirevision]
-msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer

-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly

-mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library

-mno-id-shared-library -mshared-library-id=n

-mleaf-id-shared-library -mno-leaf-id-shared-library

-msep-data -mno-sep-data -mlong-calls -mno-long-calls

-mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram

-micplb

C6X Options
-mbig-endian -mlittle-endian -march=cpu

-msim -msdata=sdata-type

CRIS Options
-mcpu=cpu -march=cpu -mtune=cpu

-mmax-stack-frame=n -melinux-stacksize=n

-metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects

-mstack-align -mdata-align -mconst-align

-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt

-melf -maout -melinux -mlinux -sim -sim2

-mmul-bug-workaround -mno-mul-bug-workaround

CR16 Options
-mmac

-mcr16cplus -mcr16c

-msim -mint32 -mbit-ops -mdata-model=model

Darwin Options
-all_load -allowable_client -arch -arch_errors_fatal

-arch_only -bind_at_load -bundle -bundle_loader

-client_name -compatibility_version -current_version

-dead_strip

-dependency-file -dylib_file -dylinker_install_name

-dynamic -dynamiclib -exported_symbols_list

-filelist -flat_namespace -force_cpusubtype_ALL

-force_flat_namespace -headerpad_max_install_names

-iframework

-image_base -init -install_name -keep_private_externs

-multi_module -multiply_defined -multiply_defined_unused

-noall_load -no_dead_strip_inits_and_terms

Chapter 3: GCC Command Options 17

-nofixprebinding -nomultidefs -noprebind -noseglinkedit

-pagezero_size -prebind -prebind_all_twolevel_modules

-private_bundle -read_only_relocs -sectalign

-sectobjectsymbols -whyload -seg1addr

-sectcreate -sectobjectsymbols -sectorder

-segaddr -segs_read_only_addr -segs_read_write_addr

-seg_addr_table -seg_addr_table_filename -seglinkedit

-segprot -segs_read_only_addr -segs_read_write_addr

-single_module -static -sub_library -sub_umbrella

-twolevel_namespace -umbrella -undefined

-unexported_symbols_list -weak_reference_mismatches

-whatsloaded -F -gused -gfull -mmacosx-version-min=version

-mkernel -mone-byte-bool

DEC Alpha Options
-mno-fp-regs -msoft-float

-mieee -mieee-with-inexact -mieee-conformant

-mfp-trap-mode=mode -mfp-rounding-mode=mode

-mtrap-precision=mode -mbuild-constants

-mcpu=cpu-type -mtune=cpu-type

-mbwx -mmax -mfix -mcix

-mfloat-vax -mfloat-ieee

-mexplicit-relocs -msmall-data -mlarge-data

-msmall-text -mlarge-text

-mmemory-latency=time

FR30 Options
-msmall-model -mno-lsim

FRV Options
-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64

-mhard-float -msoft-float

-malloc-cc -mfixed-cc -mdword -mno-dword

-mdouble -mno-double

-mmedia -mno-media -mmuladd -mno-muladd

-mfdpic -minline-plt -mgprel-ro -multilib-library-pic

-mlinked-fp -mlong-calls -malign-labels

-mlibrary-pic -macc-4 -macc-8

-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move

-moptimize-membar -mno-optimize-membar

-mscc -mno-scc -mcond-exec -mno-cond-exec

-mvliw-branch -mno-vliw-branch

-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec

-mno-nested-cond-exec -mtomcat-stats

-mTLS -mtls

-mcpu=cpu

GNU/Linux Options
-mglibc -muclibc -mbionic -mandroid

-tno-android-cc -tno-android-ld

H8/300 Options
-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300

HPPA Options
-march=architecture-type

-mdisable-fpregs -mdisable-indexing

-mfast-indirect-calls -mgas -mgnu-ld -mhp-ld

-mfixed-range=register-range

-mjump-in-delay -mlinker-opt -mlong-calls

18 Using the GNU Compiler Collection (GCC)

-mlong-load-store -mno-disable-fpregs

-mno-disable-indexing -mno-fast-indirect-calls -mno-gas

-mno-jump-in-delay -mno-long-load-store

-mno-portable-runtime -mno-soft-float

-mno-space-regs -msoft-float -mpa-risc-1-0

-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime

-mschedule=cpu-type -mspace-regs -msio -mwsio

-munix=unix-std -nolibdld -static -threads

i386 and x86-64 Options
-mtune=cpu-type -march=cpu-type

-mtune-ctrl=feature-list -mdump-tune-features -mno-default

-mfpmath=unit

-masm=dialect -mno-fancy-math-387

-mno-fp-ret-in-387 -msoft-float

-mno-wide-multiply -mrtd -malign-double

-mpreferred-stack-boundary=num

-mincoming-stack-boundary=num

-mcld -mcx16 -msahf -mmovbe -mcrc32

-mrecip -mrecip=opt

-mvzeroupper -mprefer-avx128

-mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx

-mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -msha

-maes -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mprefetchwt1

-msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt

-mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mthreads

-mno-align-stringops -minline-all-stringops

-minline-stringops-dynamically -mstringop-strategy=alg

-mmemcpy-strategy=strategy -mmemset-strategy=strategy -mpush-args -maccumulate-

outgoing-args -m128bit-long-double

-m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128

-mregparm=num -msseregparm

-mveclibabi=type -mvect8-ret-in-mem

-mpc32 -mpc64 -mpc80 -mstackrealign

-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs

-mcmodel=code-model -mabi=name -maddress-mode=mode

-m32 -m64 -mx32 -m16 -mlarge-data-threshold=num

-msse2avx -mfentry -m8bit-idiv

-mavx256-split-unaligned-load -mavx256-split-unaligned-store

-mstack-protector-guard=guard

i386 and x86-64 Windows Options
-mconsole -mcygwin -mno-cygwin -mdll

-mnop-fun-dllimport -mthread

-municode -mwin32 -mwindows -fno-set-stack-executable

IA-64 Options
-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic

-mvolatile-asm-stop -mregister-names -msdata -mno-sdata

-mconstant-gp -mauto-pic -mfused-madd

-minline-float-divide-min-latency

-minline-float-divide-max-throughput

-mno-inline-float-divide

-minline-int-divide-min-latency

-minline-int-divide-max-throughput

-mno-inline-int-divide

-minline-sqrt-min-latency -minline-sqrt-max-throughput

-mno-inline-sqrt

-mdwarf2-asm -mearly-stop-bits

Chapter 3: GCC Command Options 19

-mfixed-range=register-range -mtls-size=tls-size

-mtune=cpu-type -milp32 -mlp64

-msched-br-data-spec -msched-ar-data-spec -msched-control-spec

-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec

-msched-spec-ldc -msched-spec-control-ldc

-msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns

-msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path

-msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost

-msched-max-memory-insns-hard-limit -msched-max-memory-insns=max-insns

LM32 Options
-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled

-msign-extend-enabled -muser-enabled

M32R/D Options
-m32r2 -m32rx -m32r

-mdebug

-malign-loops -mno-align-loops

-missue-rate=number

-mbranch-cost=number

-mmodel=code-size-model-type

-msdata=sdata-type

-mno-flush-func -mflush-func=name

-mno-flush-trap -mflush-trap=number

-G num

M32C Options
-mcpu=cpu -msim -memregs=number

M680x0 Options
-march=arch -mcpu=cpu -mtune=tune -m68000 -m68020 -m68020-40 -m68020-60 -

m68030 -m68040

-m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407

-mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020

-mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort

-mno-short -mhard-float -m68881 -msoft-float -mpcrel

-malign-int -mstrict-align -msep-data -mno-sep-data

-mshared-library-id=n -mid-shared-library -mno-id-shared-library

-mxgot -mno-xgot

MCore Options
-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates

-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields

-m4byte-functions -mno-4byte-functions -mcallgraph-data

-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim

-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment

MeP Options
-mabsdiff -mall-opts -maverage -mbased=n -mbitops

-mc=n -mclip -mconfig=name -mcop -mcop32 -mcop64 -mivc2

-mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax

-mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf

-mtiny=n

MicroBlaze Options
-msoft-float -mhard-float -msmall-divides -mcpu=cpu

-mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift

-mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss

-mxl-multiply-high -mxl-float-convert -mxl-float-sqrt

-mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-app-model

20 Using the GNU Compiler Collection (GCC)

MIPS Options
-EL -EB -march=arch -mtune=arch

-mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2

-mips64 -mips64r2

-mips16 -mno-mips16 -mflip-mips16

-minterlink-compressed -mno-interlink-compressed

-minterlink-mips16 -mno-interlink-mips16

-mabi=abi -mabicalls -mno-abicalls

-mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot

-mgp32 -mgp64 -mfp32 -mfp64 -mhard-float -msoft-float

-mno-float -msingle-float -mdouble-float

-mabs=mode -mnan=encoding

-mdsp -mno-dsp -mdspr2 -mno-dspr2

-mmcu -mmno-mcu

-meva -mno-eva

-mvirt -mno-virt

-mmicromips -mno-micromips

-mfpu=fpu-type

-msmartmips -mno-smartmips

-mpaired-single -mno-paired-single -mdmx -mno-mdmx

-mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc

-mlong64 -mlong32 -msym32 -mno-sym32

-Gnum -mlocal-sdata -mno-local-sdata

-mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt

-membedded-data -mno-embedded-data

-muninit-const-in-rodata -mno-uninit-const-in-rodata

-mcode-readable=setting

-msplit-addresses -mno-split-addresses

-mexplicit-relocs -mno-explicit-relocs

-mcheck-zero-division -mno-check-zero-division

-mdivide-traps -mdivide-breaks

-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls

-mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp

-mfix-24k -mno-fix-24k

-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400

-mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000

-mfix-vr4120 -mno-fix-vr4120

-mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1

-mflush-func=func -mno-flush-func

-mbranch-cost=num -mbranch-likely -mno-branch-likely

-mfp-exceptions -mno-fp-exceptions

-mvr4130-align -mno-vr4130-align -msynci -mno-synci

-mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address

MMIX Options
-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu

-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols

-melf -mbranch-predict -mno-branch-predict -mbase-addresses

-mno-base-addresses -msingle-exit -mno-single-exit

MN10300 Options
-mmult-bug -mno-mult-bug

-mno-am33 -mam33 -mam33-2 -mam34

-mtune=cpu-type

-mreturn-pointer-on-d0

-mno-crt0 -mrelax -mliw -msetlb

Moxie Options
-meb -mel -mno-crt0

Chapter 3: GCC Command Options 21

MSP430 Options
-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax

NDS32 Options
-mbig-endian -mlittle-endian

-mreduced-regs -mfull-regs

-mcmov -mno-cmov

-mperf-ext -mno-perf-ext

-mv3push -mno-v3push

-m16bit -mno-16bit

-mgp-direct -mno-gp-direct

-misr-vector-size=num

-mcache-block-size=num

-march=arch

-mforce-fp-as-gp -mforbid-fp-as-gp

-mex9 -mctor-dtor -mrelax

Nios II Options
-G num -mgpopt -mno-gpopt -mel -meb

-mno-bypass-cache -mbypass-cache

-mno-cache-volatile -mcache-volatile

-mno-fast-sw-div -mfast-sw-div

-mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div

-mcustom-insn=N -mno-custom-insn

-mcustom-fpu-cfg=name

-mhal -msmallc -msys-crt0=name -msys-lib=name

PDP-11 Options
-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10

-mbcopy -mbcopy-builtin -mint32 -mno-int16

-mint16 -mno-int32 -mfloat32 -mno-float64

-mfloat64 -mno-float32 -mabshi -mno-abshi

-mbranch-expensive -mbranch-cheap

-munix-asm -mdec-asm

picoChip Options
-mae=ae_type -mvliw-lookahead=N

-msymbol-as-address -mno-inefficient-warnings

PowerPC Options See RS/6000 and PowerPC Options.
RL78 Options

-msim -mmul=none -mmul=g13 -mmul=rl78

RS/6000 and PowerPC Options
-mcpu=cpu-type

-mtune=cpu-type

-mcmodel=code-model

-mpowerpc64

-maltivec -mno-altivec

-mpowerpc-gpopt -mno-powerpc-gpopt

-mpowerpc-gfxopt -mno-powerpc-gfxopt

-mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd

-mfprnd -mno-fprnd

-mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp

-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc

-m64 -m32 -mxl-compat -mno-xl-compat -mpe

-malign-power -malign-natural

-msoft-float -mhard-float -mmultiple -mno-multiple

-msingle-float -mdouble-float -msimple-fpu

22 Using the GNU Compiler Collection (GCC)

-mstring -mno-string -mupdate -mno-update

-mavoid-indexed-addresses -mno-avoid-indexed-addresses

-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align

-mstrict-align -mno-strict-align -mrelocatable

-mno-relocatable -mrelocatable-lib -mno-relocatable-lib

-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian

-mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base

-mprioritize-restricted-insns=priority

-msched-costly-dep=dependence_type

-minsert-sched-nops=scheme

-mcall-sysv -mcall-netbsd

-maix-struct-return -msvr4-struct-return

-mabi=abi-type -msecure-plt -mbss-plt

-mblock-move-inline-limit=num

-misel -mno-isel

-misel=yes -misel=no

-mspe -mno-spe

-mspe=yes -mspe=no

-mpaired

-mgen-cell-microcode -mwarn-cell-microcode

-mvrsave -mno-vrsave

-mmulhw -mno-mulhw

-mdlmzb -mno-dlmzb

-mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double

-mprototype -mno-prototype

-msim -mmvme -mads -myellowknife -memb -msdata

-msdata=opt -mvxworks -G num -pthread

-mrecip -mrecip=opt -mno-recip -mrecip-precision

-mno-recip-precision

-mveclibabi=type -mfriz -mno-friz

-mpointers-to-nested-functions -mno-pointers-to-nested-functions

-msave-toc-indirect -mno-save-toc-indirect

-mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector

-mcrypto -mno-crypto -mdirect-move -mno-direct-move

-mquad-memory -mno-quad-memory

-mquad-memory-atomic -mno-quad-memory-atomic

-mcompat-align-parm -mno-compat-align-parm

RX Options
-m64bit-doubles -m32bit-doubles -fpu -nofpu

-mcpu=

-mbig-endian-data -mlittle-endian-data

-msmall-data

-msim -mno-sim

-mas100-syntax -mno-as100-syntax

-mrelax

-mmax-constant-size=

-mint-register=

-mpid

-mno-warn-multiple-fast-interrupts

-msave-acc-in-interrupts

S/390 and zSeries Options
-mtune=cpu-type -march=cpu-type

-mhard-float -msoft-float -mhard-dfp -mno-hard-dfp

-mlong-double-64 -mlong-double-128

-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack

-msmall-exec -mno-small-exec -mmvcle -mno-mvcle

-m64 -m31 -mdebug -mno-debug -mesa -mzarch

Chapter 3: GCC Command Options 23

-mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd

-mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard

-mhotpatch[=halfwords] -mno-hotpatch

Score Options
-meb -mel

-mnhwloop

-muls

-mmac

-mscore5 -mscore5u -mscore7 -mscore7d

SH Options
-m1 -m2 -m2e

-m2a-nofpu -m2a-single-only -m2a-single -m2a

-m3 -m3e

-m4-nofpu -m4-single-only -m4-single -m4

-m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al

-m5-64media -m5-64media-nofpu

-m5-32media -m5-32media-nofpu

-m5-compact -m5-compact-nofpu

-mb -ml -mdalign -mrelax

-mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave

-mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct

-mspace -mprefergot -musermode -multcost=number -mdiv=strategy

-mdivsi3_libfunc=name -mfixed-range=register-range

-mindexed-addressing -mgettrcost=number -mpt-fixed

-maccumulate-outgoing-args -minvalid-symbols

-matomic-model=atomic-model

-mbranch-cost=num -mzdcbranch -mno-zdcbranch

-mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra

-mpretend-cmove -mtas

Solaris 2 Options
-mimpure-text -mno-impure-text

-pthreads -pthread

SPARC Options
-mcpu=cpu-type

-mtune=cpu-type

-mcmodel=code-model

-mmemory-model=mem-model

-m32 -m64 -mapp-regs -mno-app-regs

-mfaster-structs -mno-faster-structs -mflat -mno-flat

-mfpu -mno-fpu -mhard-float -msoft-float

-mhard-quad-float -msoft-quad-float

-mstack-bias -mno-stack-bias

-munaligned-doubles -mno-unaligned-doubles

-mv8plus -mno-v8plus -mvis -mno-vis

-mvis2 -mno-vis2 -mvis3 -mno-vis3

-mcbcond -mno-cbcond

-mfmaf -mno-fmaf -mpopc -mno-popc

-mfix-at697f -mfix-ut699

SPU Options
-mwarn-reloc -merror-reloc

-msafe-dma -munsafe-dma

-mbranch-hints

-msmall-mem -mlarge-mem -mstdmain

-mfixed-range=register-range

-mea32 -mea64

24 Using the GNU Compiler Collection (GCC)

-maddress-space-conversion -mno-address-space-conversion

-mcache-size=cache-size

-matomic-updates -mno-atomic-updates

System V Options
-Qy -Qn -YP,paths -Ym,dir

TILE-Gx Options
-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian

-mcmodel=code-model

TILEPro Options
-mcpu=cpu -m32

V850 Options
-mlong-calls -mno-long-calls -mep -mno-ep

-mprolog-function -mno-prolog-function -mspace

-mtda=n -msda=n -mzda=n

-mapp-regs -mno-app-regs

-mdisable-callt -mno-disable-callt

-mv850e2v3 -mv850e2 -mv850e1 -mv850es

-mv850e -mv850 -mv850e3v5

-mloop

-mrelax

-mlong-jumps

-msoft-float

-mhard-float

-mgcc-abi

-mrh850-abi

-mbig-switch

VAX Options
-mg -mgnu -munix

VMS Options
-mvms-return-codes -mdebug-main=prefix -mmalloc64

-mpointer-size=size

VxWorks Options
-mrtp -non-static -Bstatic -Bdynamic

-Xbind-lazy -Xbind-now

x86-64 Options See i386 and x86-64 Options.

Xstormy16 Options
-msim

Xtensa Options
-mconst16 -mno-const16

-mfused-madd -mno-fused-madd

-mforce-no-pic

-mserialize-volatile -mno-serialize-volatile

-mtext-section-literals -mno-text-section-literals

-mtarget-align -mno-target-align

-mlongcalls -mno-longcalls

zSeries Options See S/390 and zSeries Options.

Code Generation Options
See Section 3.18 [Options for Code Generation Conventions], page 323.

Chapter 3: GCC Command Options 25

-fcall-saved-reg -fcall-used-reg

-ffixed-reg -fexceptions

-fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables

-fasynchronous-unwind-tables

-fno-gnu-unique

-finhibit-size-directive -finstrument-functions

-finstrument-functions-exclude-function-list=sym,sym,...

-finstrument-functions-exclude-file-list=file,file,...

-fno-common -fno-ident

-fpcc-struct-return -fpic -fPIC -fpie -fPIE

-fno-jump-tables

-frecord-gcc-switches

-freg-struct-return -fshort-enums

-fshort-double -fshort-wchar

-fverbose-asm -fpack-struct[=n] -fstack-check

-fstack-limit-register=reg -fstack-limit-symbol=sym

-fno-stack-limit -fsplit-stack

-fleading-underscore -ftls-model=model

-fstack-reuse=reuse_level

-ftrapv -fwrapv -fbounds-check

-fvisibility -fstrict-volatile-bitfields -fsync-libcalls

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. GCC is capable of preprocessing and compiling several
files either into several assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all the object files (those
newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:

file.c C source code that must be preprocessed.

file.i C source code that should not be preprocessed.

file.ii C++ source code that should not be preprocessed.

file.m Objective-C source code. Note that you must link with the ‘libobjc’ library
to make an Objective-C program work.

file.mi Objective-C source code that should not be preprocessed.

file.mm
file.M Objective-C++ source code. Note that you must link with the ‘libobjc’ library

to make an Objective-C++ program work. Note that ‘.M’ refers to a literal
capital M.

file.mii Objective-C++ source code that should not be preprocessed.

file.h C, C++, Objective-C or Objective-C++ header file to be turned into a precom-
piled header (default), or C, C++ header file to be turned into an Ada spec (via
the ‘-fdump-ada-spec’ switch).

26 Using the GNU Compiler Collection (GCC)

file.cc
file.cp
file.cxx
file.cpp
file.CPP
file.c++
file.C C++ source code that must be preprocessed. Note that in ‘.cxx’, the last two

letters must both be literally ‘x’. Likewise, ‘.C’ refers to a literal capital C.

file.mm
file.M Objective-C++ source code that must be preprocessed.

file.mii Objective-C++ source code that should not be preprocessed.

file.hh
file.H
file.hp
file.hxx
file.hpp
file.HPP
file.h++
file.tcc C++ header file to be turned into a precompiled header or Ada spec.

file.f
file.for
file.ftn Fixed form Fortran source code that should not be preprocessed.

file.F
file.FOR
file.fpp
file.FPP
file.FTN Fixed form Fortran source code that must be preprocessed (with the traditional

preprocessor).

file.f90
file.f95
file.f03
file.f08 Free form Fortran source code that should not be preprocessed.

file.F90
file.F95
file.F03
file.F08 Free form Fortran source code that must be preprocessed (with the traditional

preprocessor).

file.go Go source code.

file.ads Ada source code file that contains a library unit declaration (a declaration of a
package, subprogram, or generic, or a generic instantiation), or a library unit
renaming declaration (a package, generic, or subprogram renaming declaration).
Such files are also called specs.

Chapter 3: GCC Command Options 27

file.adb Ada source code file containing a library unit body (a subprogram or package
body). Such files are also called bodies.

file.s Assembler code.

file.S
file.sx Assembler code that must be preprocessed.

other An object file to be fed straight into linking. Any file name with no recognized
suffix is treated this way.

You can specify the input language explicitly with the ‘-x’ option:

-x language

Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next ‘-x’ option. Possible values for language
are:

c c-header cpp-output

c++ c++-header c++-cpp-output

objective-c objective-c-header objective-c-cpp-output

objective-c++ objective-c++-header objective-c++-cpp-output

assembler assembler-with-cpp

ada

f77 f77-cpp-input f95 f95-cpp-input

go

java

-x none Turn off any specification of a language, so that subsequent files are handled
according to their file name suffixes (as they are if ‘-x’ has not been used at
all).

-pass-exit-codes
Normally the gcc program exits with the code of 1 if any phase of the compiler
returns a non-success return code. If you specify ‘-pass-exit-codes’, the gcc
program instead returns with the numerically highest error produced by any
phase returning an error indication. The C, C++, and Fortran front ends return
4 if an internal compiler error is encountered.

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes)
to tell gcc where to start, and one of the options ‘-c’, ‘-S’, or ‘-E’ to say where gcc is to
stop. Note that some combinations (for example, ‘-x cpp-output -E’) instruct gcc to do
nothing at all.

-c Compile or assemble the source files, but do not link. The linking stage simply
is not done. The ultimate output is in the form of an object file for each source
file.
By default, the object file name for a source file is made by replacing the suffix
‘.c’, ‘.i’, ‘.s’, etc., with ‘.o’.
Unrecognized input files, not requiring compilation or assembly, are ignored.

-S Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file specified.

28 Using the GNU Compiler Collection (GCC)

By default, the assembler file name for a source file is made by replacing the
suffix ‘.c’, ‘.i’, etc., with ‘.s’.
Input files that don’t require compilation are ignored.

-E Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.
Input files that don’t require preprocessing are ignored.

-o file Place output in file file. This applies to whatever sort of output is being pro-
duced, whether it be an executable file, an object file, an assembler file or
preprocessed C code.
If ‘-o’ is not specified, the default is to put an executable file in ‘a.out’, the
object file for ‘source.suffix’ in ‘source.o’, its assembler file in ‘source.s’, a
precompiled header file in ‘source.suffix.gch’, and all preprocessed C source
on standard output.

-v Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

-### Like ‘-v’ except the commands are not executed and arguments are quoted
unless they contain only alphanumeric characters or ./-_. This is useful for
shell scripts to capture the driver-generated command lines.

-pipe Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

--help Print (on the standard output) a description of the command-line options under-
stood by gcc. If the ‘-v’ option is also specified then ‘--help’ is also passed on
to the various processes invoked by gcc, so that they can display the command-
line options they accept. If the ‘-Wextra’ option has also been specified (prior to
the ‘--help’ option), then command-line options that have no documentation
associated with them are also displayed.

--target-help
Print (on the standard output) a description of target-specific command-line
options for each tool. For some targets extra target-specific information may
also be printed.

--help={class|[^]qualifier}[,...]
Print (on the standard output) a description of the command-line options un-
derstood by the compiler that fit into all specified classes and qualifiers. These
are the supported classes:

‘optimizers’
Display all of the optimization options supported by the compiler.

‘warnings’
Display all of the options controlling warning messages produced
by the compiler.

Chapter 3: GCC Command Options 29

‘target’ Display target-specific options. Unlike the ‘--target-help’ option
however, target-specific options of the linker and assembler are not
displayed. This is because those tools do not currently support the
extended ‘--help=’ syntax.

‘params’ Display the values recognized by the ‘--param’ option.

language Display the options supported for language, where language is the
name of one of the languages supported in this version of GCC.

‘common’ Display the options that are common to all languages.

These are the supported qualifiers:

‘undocumented’
Display only those options that are undocumented.

‘joined’ Display options taking an argument that appears after an equal sign
in the same continuous piece of text, such as: ‘--help=target’.

‘separate’
Display options taking an argument that appears as a separate word
following the original option, such as: ‘-o output-file’.

Thus for example to display all the undocumented target-specific switches sup-
ported by the compiler, use:

--help=target,undocumented

The sense of a qualifier can be inverted by prefixing it with the ‘^’ character,
so for example to display all binary warning options (i.e., ones that are either
on or off and that do not take an argument) that have a description, use:

--help=warnings,^joined,^undocumented

The argument to ‘--help=’ should not consist solely of inverted qualifiers.
Combining several classes is possible, although this usually restricts the output
so much that there is nothing to display. One case where it does work, however,
is when one of the classes is target. For example, to display all the target-specific
optimization options, use:

--help=target,optimizers

The ‘--help=’ option can be repeated on the command line. Each successive
use displays its requested class of options, skipping those that have already been
displayed.
If the ‘-Q’ option appears on the command line before the ‘--help=’ option, then
the descriptive text displayed by ‘--help=’ is changed. Instead of describing
the displayed options, an indication is given as to whether the option is enabled,
disabled or set to a specific value (assuming that the compiler knows this at the
point where the ‘--help=’ option is used).
Here is a truncated example from the ARM port of gcc:

% gcc -Q -mabi=2 --help=target -c

The following options are target specific:

-mabi= 2

-mabort-on-noreturn [disabled]

-mapcs [disabled]

30 Using the GNU Compiler Collection (GCC)

The output is sensitive to the effects of previous command-line options, so for
example it is possible to find out which optimizations are enabled at ‘-O2’ by
using:

-Q -O2 --help=optimizers

Alternatively you can discover which binary optimizations are enabled by ‘-O3’
by using:

gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts

gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts

diff /tmp/O2-opts /tmp/O3-opts | grep enabled

-no-canonical-prefixes
Do not expand any symbolic links, resolve references to ‘/../’ or ‘/./’, or make
the path absolute when generating a relative prefix.

--version
Display the version number and copyrights of the invoked GCC.

-wrapper Invoke all subcommands under a wrapper program. The name of the wrapper
program and its parameters are passed as a comma separated list.

gcc -c t.c -wrapper gdb,--args

This invokes all subprograms of gcc under ‘gdb --args’, thus the invocation of
cc1 is ‘gdb --args cc1 ...’.

-fplugin=name.so
Load the plugin code in file name.so, assumed to be a shared object to
be dlopen’d by the compiler. The base name of the shared object file
is used to identify the plugin for the purposes of argument parsing (See
‘-fplugin-arg-name-key=value’ below). Each plugin should define the
callback functions specified in the Plugins API.

-fplugin-arg-name-key=value
Define an argument called key with a value of value for the plugin called name.

-fdump-ada-spec[-slim]
For C and C++ source and include files, generate corresponding Ada specs. See
Section “Generating Ada Bindings for C and C++ headers” in GNAT User’s
Guide, which provides detailed documentation on this feature.

-fada-spec-parent=unit
In conjunction with ‘-fdump-ada-spec[-slim]’ above, generate Ada specs as
child units of parent unit.

-fdump-go-spec=file
For input files in any language, generate corresponding Go declarations in file.
This generates Go const, type, var, and func declarations which may be
a useful way to start writing a Go interface to code written in some other
language.

@file Read command-line options from file. The options read are inserted in place
of the original @file option. If file does not exist, or cannot be read, then the
option will be treated literally, and not removed.

Chapter 3: GCC Command Options 31

Options in file are separated by whitespace. A whitespace character may be
included in an option by surrounding the entire option in either single or double
quotes. Any character (including a backslash) may be included by prefixing the
character to be included with a backslash. The file may itself contain additional
@file options; any such options will be processed recursively.

3.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes ‘.C’, ‘.cc’, ‘.cpp’, ‘.CPP’, ‘.c++’,
‘.cp’, or ‘.cxx’; C++ header files often use ‘.hh’, ‘.hpp’, ‘.H’, or (for shared template code)
‘.tcc’; and preprocessed C++ files use the suffix ‘.ii’. GCC recognizes files with these
names and compiles them as C++ programs even if you call the compiler the same way as
for compiling C programs (usually with the name gcc).

However, the use of gcc does not add the C++ library. g++ is a program that calls GCC
and automatically specifies linking against the C++ library. It treats ‘.c’, ‘.h’ and ‘.i’ files
as C++ source files instead of C source files unless ‘-x’ is used. This program is also useful
when precompiling a C header file with a ‘.h’ extension for use in C++ compilations. On
many systems, g++ is also installed with the name c++.

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options
meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect], page 31, for explanations of options
for languages related to C. See Section 3.5 [Options Controlling C++ Dialect], page 37, for
explanations of options that are meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++,
Objective-C and Objective-C++) that the compiler accepts:

-ansi In C mode, this is equivalent to ‘-std=c90’. In C++ mode, it is equivalent to
‘-std=c++98’.

This turns off certain features of GCC that are incompatible with ISO C90
(when compiling C code), or of standard C++ (when compiling C++ code), such
as the asm and typeof keywords, and predefined macros such as unix and vax
that identify the type of system you are using. It also enables the undesirable
and rarely used ISO trigraph feature. For the C compiler, it disables recognition
of C++ style ‘//’ comments as well as the inline keyword.

The alternate keywords __asm__, __extension__, __inline__ and __typeof_
_ continue to work despite ‘-ansi’. You would not want to use them in an ISO
C program, of course, but it is useful to put them in header files that might be
included in compilations done with ‘-ansi’. Alternate predefined macros such
as __unix__ and __vax__ are also available, with or without ‘-ansi’.

The ‘-ansi’ option does not cause non-ISO programs to be rejected
gratuitously. For that, ‘-Wpedantic’ is required in addition to ‘-ansi’. See
Section 3.8 [Warning Options], page 53.

32 Using the GNU Compiler Collection (GCC)

The macro __STRICT_ANSI__ is predefined when the ‘-ansi’ option is used.
Some header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ISO standard doesn’t call for; this
is to avoid interfering with any programs that might use these names for other
things.
Functions that are normally built in but do not have semantics defined by ISO
C (such as alloca and ffs) are not built-in functions when ‘-ansi’ is used. See
Section 6.56 [Other built-in functions provided by GCC], page 482, for details
of the functions affected.

-std= Determine the language standard. See Chapter 2 [Language Standards Sup-
ported by GCC], page 5, for details of these standard versions. This option is
currently only supported when compiling C or C++.
The compiler can accept several base standards, such as ‘c90’ or ‘c++98’, and
GNU dialects of those standards, such as ‘gnu90’ or ‘gnu++98’. When a base
standard is specified, the compiler accepts all programs following that stan-
dard plus those using GNU extensions that do not contradict it. For example,
‘-std=c90’ turns off certain features of GCC that are incompatible with ISO
C90, such as the asm and typeof keywords, but not other GNU extensions that
do not have a meaning in ISO C90, such as omitting the middle term of a ?:
expression. On the other hand, when a GNU dialect of a standard is specified,
all features supported by the compiler are enabled, even when those features
change the meaning of the base standard. As a result, some strict-conforming
programs may be rejected. The particular standard is used by ‘-Wpedantic’ to
identify which features are GNU extensions given that version of the standard.
For example ‘-std=gnu90 -Wpedantic’ warns about C++ style ‘//’ comments,
while ‘-std=gnu99 -Wpedantic’ does not.
A value for this option must be provided; possible values are

‘c90’
‘c89’
‘iso9899:1990’

Support all ISO C90 programs (certain GNU extensions that con-
flict with ISO C90 are disabled). Same as ‘-ansi’ for C code.

‘iso9899:199409’
ISO C90 as modified in amendment 1.

‘c99’
‘c9x’
‘iso9899:1999’
‘iso9899:199x’

ISO C99. This standard is substantially completely sup-
ported, modulo bugs, extended identifiers (supported except
for corner cases when ‘-fextended-identifiers’ is used)
and floating-point issues (mainly but not entirely relating
to optional C99 features from Annexes F and G). See
http://gcc.gnu.org/c99status.html for more information.
The names ‘c9x’ and ‘iso9899:199x’ are deprecated.

http://gcc.gnu.org/c99status.html

Chapter 3: GCC Command Options 33

‘c11’
‘c1x’
‘iso9899:2011’

ISO C11, the 2011 revision of the ISO C standard. This
standard is substantially completely supported, modulo bugs,
extended identifiers (supported except for corner cases when
‘-fextended-identifiers’ is used), floating-point issues (mainly
but not entirely relating to optional C11 features from Annexes F
and G) and the optional Annexes K (Bounds-checking interfaces)
and L (Analyzability). The name ‘c1x’ is deprecated.

‘gnu90’
‘gnu89’ GNU dialect of ISO C90 (including some C99 features). This is the

default for C code.

‘gnu99’
‘gnu9x’ GNU dialect of ISO C99. The name ‘gnu9x’ is deprecated.

‘gnu11’
‘gnu1x’ GNU dialect of ISO C11. This is intended to become the default

in a future release of GCC. The name ‘gnu1x’ is deprecated.

‘c++98’
‘c++03’ The 1998 ISO C++ standard plus the 2003 technical corrigendum

and some additional defect reports. Same as ‘-ansi’ for C++ code.

‘gnu++98’
‘gnu++03’ GNU dialect of ‘-std=c++98’. This is the default for C++ code.

‘c++11’
‘c++0x’ The 2011 ISO C++ standard plus amendments. The name ‘c++0x’

is deprecated.

‘gnu++11’
‘gnu++0x’ GNU dialect of ‘-std=c++11’. The name ‘gnu++0x’ is deprecated.

‘c++1y’ The next revision of the ISO C++ standard, tentatively planned
for 2014. Support is highly experimental, and will almost certainly
change in incompatible ways in future releases.

‘gnu++1y’ GNU dialect of ‘-std=c++1y’. Support is highly experimental, and
will almost certainly change in incompatible ways in future releases.

-fgnu89-inline
The option ‘-fgnu89-inline’ tells GCC to use the traditional GNU semantics
for inline functions when in C99 mode. See Section 6.39 [An Inline Function
is As Fast As a Macro], page 424. This option is accepted and ignored by
GCC versions 4.1.3 up to but not including 4.3. In GCC versions 4.3 and later
it changes the behavior of GCC in C99 mode. Using this option is roughly
equivalent to adding the gnu_inline function attribute to all inline functions
(see Section 6.30 [Function Attributes], page 372).
The option ‘-fno-gnu89-inline’ explicitly tells GCC to use the C99 semantics
for inline when in C99 or gnu99 mode (i.e., it specifies the default behavior).

34 Using the GNU Compiler Collection (GCC)

This option was first supported in GCC 4.3. This option is not supported in
‘-std=c90’ or ‘-std=gnu90’ mode.
The preprocessor macros __GNUC_GNU_INLINE__ and __GNUC_STDC_INLINE__
may be used to check which semantics are in effect for inline functions. See
Section “Common Predefined Macros” in The C Preprocessor.

-aux-info filename

Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.
Besides declarations, the file indicates, in comments, the origin of each declara-
tion (source file and line), whether the declaration was implicit, prototyped or
unprototyped (‘I’, ‘N’ for new or ‘O’ for old, respectively, in the first character
after the line number and the colon), and whether it came from a declaration
or a definition (‘C’ or ‘F’, respectively, in the following character). In the case
of function definitions, a K&R-style list of arguments followed by their decla-
rations is also provided, inside comments, after the declaration.

-fallow-parameterless-variadic-functions
Accept variadic functions without named parameters.
Although it is possible to define such a function, this is not very useful as it
is not possible to read the arguments. This is only supported for C as this
construct is allowed by C++.

-fno-asm Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__ and
__typeof__ instead. ‘-ansi’ implies ‘-fno-asm’.
In C++, this switch only affects the typeof keyword, since asm and inline
are standard keywords. You may want to use the ‘-fno-gnu-keywords’ flag
instead, which has the same effect. In C99 mode (‘-std=c99’ or ‘-std=gnu99’),
this switch only affects the asm and typeof keywords, since inline is a standard
keyword in ISO C99.

-fno-builtin
-fno-builtin-function

Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 6.56 [Other built-in functions provided by GCC], page 482, for
details of the functions affected, including those which are not built-in functions
when ‘-ansi’ or ‘-std’ options for strict ISO C conformance are used because
they do not have an ISO standard meaning.
GCC normally generates special code to handle certain built-in functions more
efficiently; for instance, calls to alloca may become single instructions which
adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function
calls no longer appear as such, you cannot set a breakpoint on those calls,
nor can you change the behavior of the functions by linking with a different
library. In addition, when a function is recognized as a built-in function, GCC
may use information about that function to warn about problems with calls to

Chapter 3: GCC Command Options 35

that function, or to generate more efficient code, even if the resulting code still
contains calls to that function. For example, warnings are given with ‘-Wformat’
for bad calls to printf when printf is built in and strlen is known not to
modify global memory.
With the ‘-fno-builtin-function’ option only the built-in function function
is disabled. function must not begin with ‘__builtin_’. If a function is named
that is not built-in in this version of GCC, this option is ignored. There is
no corresponding ‘-fbuiltin-function’ option; if you wish to enable built-in
functions selectively when using ‘-fno-builtin’ or ‘-ffreestanding’, you may
define macros such as:

#define abs(n) __builtin_abs ((n))

#define strcpy(d, s) __builtin_strcpy ((d), (s))

-fhosted

Assert that compilation targets a hosted environment. This implies
‘-fbuiltin’. A hosted environment is one in which the entire standard library
is available, and in which main has a return type of int. Examples are nearly
everything except a kernel. This is equivalent to ‘-fno-freestanding’.

-ffreestanding
Assert that compilation targets a freestanding environment. This implies
‘-fno-builtin’. A freestanding environment is one in which the standard
library may not exist, and program startup may not necessarily be at
main. The most obvious example is an OS kernel. This is equivalent to
‘-fno-hosted’.
See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
freestanding and hosted environments.

-fopenmp Enable handling of OpenMP directives #pragma omp in C/C++ and !$omp
in Fortran. When ‘-fopenmp’ is specified, the compiler generates parallel
code according to the OpenMP Application Program Interface v4.0
http://www.openmp.org/. This option implies ‘-pthread’, and thus is only
supported on targets that have support for ‘-pthread’. ‘-fopenmp’ implies
‘-fopenmp-simd’.

-fopenmp-simd
Enable handling of OpenMP’s SIMD directives with #pragma omp in C/C++
and !$omp in Fortran. Other OpenMP directives are ignored.

-fcilkplus
Enable the usage of Cilk Plus language extension features for C/C++. When the
option ‘-fcilkplus’ is specified, enable the usage of the Cilk Plus Language
extension features for C/C++. The present implementation follows ABI version
1.2. This is an experimental feature that is only partially complete, and whose
interface may change in future versions of GCC as the official specification
changes. Currently, all features but _Cilk_for have been implemented.

-fgnu-tm When the option ‘-fgnu-tm’ is specified, the compiler generates code for the
Linux variant of Intel’s current Transactional Memory ABI specification doc-
ument (Revision 1.1, May 6 2009). This is an experimental feature whose

http://www.openmp.org/

36 Using the GNU Compiler Collection (GCC)

interface may change in future versions of GCC, as the official specification
changes. Please note that not all architectures are supported for this feature.
For more information on GCC’s support for transactional memory, See Section
“The GNU Transactional Memory Library” in GNU Transactional Memory
Library .
Note that the transactional memory feature is not supported with non-call
exceptions (‘-fnon-call-exceptions’).

-fms-extensions
Accept some non-standard constructs used in Microsoft header files.
In C++ code, this allows member names in structures to be similar to previous
types declarations.

typedef int UOW;

struct ABC {

UOW UOW;

};

Some cases of unnamed fields in structures and unions are only accepted
with this option. See Section 6.60 [Unnamed struct/union fields within
structs/unions], page 697, for details.
Note that this option is off for all targets but i?86 and x86 64 targets using
ms-abi.

-fplan9-extensions
Accept some non-standard constructs used in Plan 9 code.
This enables ‘-fms-extensions’, permits passing pointers to structures with
anonymous fields to functions that expect pointers to elements of the type of
the field, and permits referring to anonymous fields declared using a typedef.
See Section 6.60 [Unnamed struct/union fields within structs/unions], page 697,
for details. This is only supported for C, not C++.

-trigraphs
Support ISO C trigraphs. The ‘-ansi’ option (and ‘-std’ options for strict ISO
C conformance) implies ‘-trigraphs’.

-traditional
-traditional-cpp

Formerly, these options caused GCC to attempt to emulate a pre-standard C
compiler. They are now only supported with the ‘-E’ switch. The preprocessor
continues to support a pre-standard mode. See the GNU CPP manual for
details.

-fcond-mismatch
Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void. This option is not supported
for C++.

-flax-vector-conversions
Allow implicit conversions between vectors with differing numbers of elements
and/or incompatible element types. This option should not be used for new
code.

Chapter 3: GCC Command Options 37

-funsigned-char
Let the type char be unsigned, like unsigned char.
Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.
Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.
The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fsigned-char
Let the type char be signed, like signed char.
Note that this is equivalent to ‘-fno-unsigned-char’, which is the negative
form of ‘-funsigned-char’. Likewise, the option ‘-fno-signed-char’ is equiv-
alent to ‘-funsigned-char’.

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields

These options control whether a bit-field is signed or unsigned, when the dec-
laration does not use either signed or unsigned. By default, such a bit-field is
signed, because this is consistent: the basic integer types such as int are signed
types.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs.
You can also use most of the GNU compiler options regardless of what language your
program is in. For example, you might compile a file firstClass.C like this:

g++ -g -frepo -O -c firstClass.C

In this example, only ‘-frepo’ is an option meant only for C++ programs; you can use the
other options with any language supported by GCC.

Here is a list of options that are only for compiling C++ programs:

-fabi-version=n
Use version n of the C++ ABI. The default is version 2.
Version 0 refers to the version conforming most closely to the C++ ABI spec-
ification. Therefore, the ABI obtained using version 0 will change in different
versions of G++ as ABI bugs are fixed.
Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
Version 2 is the version of the C++ ABI that first appeared in G++ 3.4.
Version 3 corrects an error in mangling a constant address as a template argu-
ment.

38 Using the GNU Compiler Collection (GCC)

Version 4, which first appeared in G++ 4.5, implements a standard mangling
for vector types.
Version 5, which first appeared in G++ 4.6, corrects the mangling of attribute
const/volatile on function pointer types, decltype of a plain decl, and use of a
function parameter in the declaration of another parameter.
Version 6, which first appeared in G++ 4.7, corrects the promotion behav-
ior of C++11 scoped enums and the mangling of template argument packs,
const/static cast, prefix ++ and –, and a class scope function used as a tem-
plate argument.
See also ‘-Wabi’.

-fno-access-control
Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

-fcheck-new
Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. This check is normally unnecessary because
the C++ standard specifies that operator new only returns 0 if it is declared
‘throw()’, in which case the compiler always checks the return value even with-
out this option. In all other cases, when operator new has a non-empty ex-
ception specification, memory exhaustion is signalled by throwing std::bad_
alloc. See also ‘new (nothrow)’.

-fconstexpr-depth=n
Set the maximum nested evaluation depth for C++11 constexpr functions to
n. A limit is needed to detect endless recursion during constant expression
evaluation. The minimum specified by the standard is 512.

-fdeduce-init-list
Enable deduction of a template type parameter as std::initializer_list
from a brace-enclosed initializer list, i.e.

template <class T> auto forward(T t) -> decltype (realfn (t))

{

return realfn (t);

}

void f()

{

forward({1,2}); // call forward<std::initializer_list<int>>

}

This deduction was implemented as a possible extension to the originally pro-
posed semantics for the C++11 standard, but was not part of the final standard,
so it is disabled by default. This option is deprecated, and may be removed in
a future version of G++.

-ffriend-injection
Inject friend functions into the enclosing namespace, so that they are visible
outside the scope of the class in which they are declared. Friend functions were
documented to work this way in the old Annotated C++ Reference Manual, and

Chapter 3: GCC Command Options 39

versions of G++ before 4.1 always worked that way. However, in ISO C++ a
friend function that is not declared in an enclosing scope can only be found
using argument dependent lookup. This option causes friends to be injected as
they were in earlier releases.

This option is for compatibility, and may be removed in a future release of G++.

-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary that
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces G++ to call the copy constructor in all
cases.

-fno-enforce-eh-specs
Don’t generate code to check for violation of exception specifications at run
time. This option violates the C++ standard, but may be useful for reducing
code size in production builds, much like defining ‘NDEBUG’. This does not give
user code permission to throw exceptions in violation of the exception specifi-
cations; the compiler still optimizes based on the specifications, so throwing an
unexpected exception results in undefined behavior at run time.

-fextern-tls-init
-fno-extern-tls-init

The C++11 and OpenMP standards allow ‘thread_local’ and ‘threadprivate’
variables to have dynamic (runtime) initialization. To support this, any use of
such a variable goes through a wrapper function that performs any necessary
initialization. When the use and definition of the variable are in the same
translation unit, this overhead can be optimized away, but when the use is in a
different translation unit there is significant overhead even if the variable doesn’t
actually need dynamic initialization. If the programmer can be sure that no
use of the variable in a non-defining TU needs to trigger dynamic initialization
(either because the variable is statically initialized, or a use of the variable in
the defining TU will be executed before any uses in another TU), they can avoid
this overhead with the ‘-fno-extern-tls-init’ option.

On targets that support symbol aliases, the default is ‘-fextern-tls-init’.
On targets that do not support symbol aliases, the default is
‘-fno-extern-tls-init’.

-ffor-scope
-fno-for-scope

If ‘-ffor-scope’ is specified, the scope of variables declared in a for-init-
statement is limited to the ‘for’ loop itself, as specified by the C++ standard.
If ‘-fno-for-scope’ is specified, the scope of variables declared in a for-init-
statement extends to the end of the enclosing scope, as was the case in old
versions of G++, and other (traditional) implementations of C++.

If neither flag is given, the default is to follow the standard, but to allow and give
a warning for old-style code that would otherwise be invalid, or have different
behavior.

40 Using the GNU Compiler Collection (GCC)

-fno-gnu-keywords
Do not recognize typeof as a keyword, so that code can use this word as
an identifier. You can use the keyword __typeof__ instead. ‘-ansi’ implies
‘-fno-gnu-keywords’.

-fno-implicit-templates
Never emit code for non-inline templates that are instantiated implicitly (i.e.
by use); only emit code for explicit instantiations. See Section 7.5 [Template
Instantiation], page 704, for more information.

-fno-implicit-inline-templates
Don’t emit code for implicit instantiations of inline templates, either. The
default is to handle inlines differently so that compiles with and without opti-
mization need the same set of explicit instantiations.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
‘#pragma implementation’. This causes linker errors if these functions are not
inlined everywhere they are called.

-fms-extensions
Disable Wpedantic warnings about constructs used in MFC, such as implicit
int and getting a pointer to member function via non-standard syntax.

-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO
C. These include ffs, alloca, _exit, index, bzero, conjf, and other related
functions.

-fnothrow-opt
Treat a throw() exception specification as if it were a noexcept specification to
reduce or eliminate the text size overhead relative to a function with no excep-
tion specification. If the function has local variables of types with non-trivial
destructors, the exception specification actually makes the function smaller be-
cause the EH cleanups for those variables can be optimized away. The semantic
effect is that an exception thrown out of a function with such an exception spec-
ification results in a call to terminate rather than unexpected.

-fno-operator-names
Do not treat the operator name keywords and, bitand, bitor, compl, not, or
and xor as synonyms as keywords.

-fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to issue.
Currently, the only such diagnostic issued by G++ is the one for a name having
multiple meanings within a class.

-fpermissive
Downgrade some diagnostics about nonconformant code from errors to warn-
ings. Thus, using ‘-fpermissive’ allows some nonconforming code to compile.

Chapter 3: GCC Command Options 41

-fno-pretty-templates
When an error message refers to a specialization of a function template, the com-
piler normally prints the signature of the template followed by the template ar-
guments and any typedefs or typenames in the signature (e.g. void f(T) [with
T = int] rather than void f(int)) so that it’s clear which template is involved.
When an error message refers to a specialization of a class template, the com-
piler omits any template arguments that match the default template arguments
for that template. If either of these behaviors make it harder to understand
the error message rather than easier, you can use ‘-fno-pretty-templates’ to
disable them.

-frepo Enable automatic template instantiation at link time. This option also im-
plies ‘-fno-implicit-templates’. See Section 7.5 [Template Instantiation],
page 704, for more information.

-fno-rtti
Disable generation of information about every class with virtual functions
for use by the C++ run-time type identification features (‘dynamic_cast’
and ‘typeid’). If you don’t use those parts of the language, you can save
some space by using this flag. Note that exception handling uses the same
information, but G++ generates it as needed. The ‘dynamic_cast’ operator
can still be used for casts that do not require run-time type information, i.e.
casts to void * or to unambiguous base classes.

-fstats Emit statistics about front-end processing at the end of the compilation. This
information is generally only useful to the G++ development team.

-fstrict-enums
Allow the compiler to optimize using the assumption that a value of enumerated
type can only be one of the values of the enumeration (as defined in the C++
standard; basically, a value that can be represented in the minimum number
of bits needed to represent all the enumerators). This assumption may not be
valid if the program uses a cast to convert an arbitrary integer value to the
enumerated type.

-ftemplate-backtrace-limit=n
Set the maximum number of template instantiation notes for a single warning
or error to n. The default value is 10.

-ftemplate-depth=n
Set the maximum instantiation depth for template classes to n. A limit on
the template instantiation depth is needed to detect endless recursions during
template class instantiation. ANSI/ISO C++ conforming programs must not
rely on a maximum depth greater than 17 (changed to 1024 in C++11). The
default value is 900, as the compiler can run out of stack space before hitting
1024 in some situations.

-fno-threadsafe-statics
Do not emit the extra code to use the routines specified in the C++ ABI for
thread-safe initialization of local statics. You can use this option to reduce code
size slightly in code that doesn’t need to be thread-safe.

42 Using the GNU Compiler Collection (GCC)

-fuse-cxa-atexit
Register destructors for objects with static storage duration with the __cxa_
atexit function rather than the atexit function. This option is required for
fully standards-compliant handling of static destructors, but only works if your
C library supports __cxa_atexit.

-fno-use-cxa-get-exception-ptr
Don’t use the __cxa_get_exception_ptr runtime routine. This causes
std::uncaught_exception to be incorrect, but is necessary if the runtime
routine is not available.

-fvisibility-inlines-hidden
This switch declares that the user does not attempt to compare pointers to
inline functions or methods where the addresses of the two functions are taken
in different shared objects.
The effect of this is that GCC may, effectively, mark inline methods with __
attribute__ ((visibility ("hidden"))) so that they do not appear in the
export table of a DSO and do not require a PLT indirection when used within
the DSO. Enabling this option can have a dramatic effect on load and link
times of a DSO as it massively reduces the size of the dynamic export table
when the library makes heavy use of templates.
The behavior of this switch is not quite the same as marking the methods as
hidden directly, because it does not affect static variables local to the function
or cause the compiler to deduce that the function is defined in only one shared
object.
You may mark a method as having a visibility explicitly to negate the effect of
the switch for that method. For example, if you do want to compare pointers
to a particular inline method, you might mark it as having default visibility.
Marking the enclosing class with explicit visibility has no effect.
Explicitly instantiated inline methods are unaffected by this option as their link-
age might otherwise cross a shared library boundary. See Section 7.5 [Template
Instantiation], page 704.

-fvisibility-ms-compat
This flag attempts to use visibility settings to make GCC’s C++ linkage model
compatible with that of Microsoft Visual Studio.
The flag makes these changes to GCC’s linkage model:
1. It sets the default visibility to hidden, like ‘-fvisibility=hidden’.
2. Types, but not their members, are not hidden by default.
3. The One Definition Rule is relaxed for types without explicit visibility

specifications that are defined in more than one shared object: those dec-
larations are permitted if they are permitted when this option is not used.

In new code it is better to use ‘-fvisibility=hidden’ and export those classes
that are intended to be externally visible. Unfortunately it is possible for code
to rely, perhaps accidentally, on the Visual Studio behavior.
Among the consequences of these changes are that static data members of
the same type with the same name but defined in different shared objects are

Chapter 3: GCC Command Options 43

different, so changing one does not change the other; and that pointers to
function members defined in different shared objects may not compare equal.
When this flag is given, it is a violation of the ODR to define types with the
same name differently.

-fvtable-verify=std|preinit|none
Turn on (or off, if using ‘-fvtable-verify=none’) the security feature that
verifies at runtime, for every virtual call that is made, that the vtable pointer
through which the call is made is valid for the type of the object, and has
not been corrupted or overwritten. If an invalid vtable pointer is detected (at
runtime), an error is reported and execution of the program is immediately
halted.
This option causes runtime data structures to be built, at program start up, for
verifying the vtable pointers. The options std and preinit control the timing
of when these data structures are built. In both cases the data structures
are built before execution reaches ’main’. The ‘-fvtable-verify=std’ causes
these data structure to be built after the shared libraries have been loaded and
initialized. ‘-fvtable-verify=preinit’ causes them to be built before the
shared libraries have been loaded and initialized.
If this option appears multiple times in the compiler line, with different values
specified, ’none’ will take highest priority over both ’std’ and ’preinit’; ’preinit’
will take priority over ’std’.

-fvtv-debug
Causes debug versions of the runtime functions for the vtable verification
feature to be called. This assumes the ‘-fvtable-verify=std’ or
‘-fvtable-verify=preinit’ has been used. This flag will also cause the
compiler to keep track of which vtable pointers it found for each class, and
record that information in the file “vtv set ptr data.log”, in the dump file
directory on the user’s machine.
Note: This feature APPENDS data to the log file. If you want a fresh log file,
be sure to delete any existing one.

-fvtv-counts
This is a debugging flag. When used in conjunction with
‘-fvtable-verify=std’ or ‘-fvtable-verify=preinit’, this causes
the compiler to keep track of the total number of virtual calls it encountered
and the number of verifications it inserted. It also counts the number of
calls to certain runtime library functions that it inserts. This information,
for each compilation unit, is written to a file named “vtv count data.log”,
in the dump file directory on the user’s machine. It also counts the size
of the vtable pointer sets for each class, and writes this information to
“vtv class set sizes.log” in the same directory.
Note: This feature APPENDS data to the log files. To get a fresh log files, be
sure to delete any existing ones.

-fno-weak
Do not use weak symbol support, even if it is provided by the linker. By
default, G++ uses weak symbols if they are available. This option exists only

44 Using the GNU Compiler Collection (GCC)

for testing, and should not be used by end-users; it results in inferior code and
has no benefits. This option may be removed in a future release of G++.

-nostdinc++
Do not search for header files in the standard directories specific to C++, but do
still search the other standard directories. (This option is used when building
the C++ library.)

In addition, these optimization, warning, and code generation options have meanings only
for C++ programs:

-Wabi (C, Objective-C, C++ and Objective-C++ only)
Warn when G++ generates code that is probably not compatible with the
vendor-neutral C++ ABI. Although an effort has been made to warn about
all such cases, there are probably some cases that are not warned about, even
though G++ is generating incompatible code. There may also be cases where
warnings are emitted even though the code that is generated is compatible.
You should rewrite your code to avoid these warnings if you are concerned about
the fact that code generated by G++ may not be binary compatible with code
generated by other compilers.
The known incompatibilities in ‘-fabi-version=2’ (the default) include:
• A template with a non-type template parameter of reference type is man-

gled incorrectly:
extern int N;

template <int &> struct S {};

void n (S<N>) {2}

This is fixed in ‘-fabi-version=3’.
• SIMD vector types declared using __attribute ((vector_size)) are

mangled in a non-standard way that does not allow for overloading of
functions taking vectors of different sizes.
The mangling is changed in ‘-fabi-version=4’.

The known incompatibilities in ‘-fabi-version=1’ include:
• Incorrect handling of tail-padding for bit-fields. G++ may attempt to pack

data into the same byte as a base class. For example:
struct A { virtual void f(); int f1 : 1; };

struct B : public A { int f2 : 1; };

In this case, G++ places B::f2 into the same byte as A::f1; other compilers
do not. You can avoid this problem by explicitly padding A so that its size
is a multiple of the byte size on your platform; that causes G++ and other
compilers to lay out B identically.

• Incorrect handling of tail-padding for virtual bases. G++ does not use tail
padding when laying out virtual bases. For example:

struct A { virtual void f(); char c1; };

struct B { B(); char c2; };

struct C : public A, public virtual B {};

In this case, G++ does not place B into the tail-padding for A; other compil-
ers do. You can avoid this problem by explicitly padding A so that its size

Chapter 3: GCC Command Options 45

is a multiple of its alignment (ignoring virtual base classes); that causes
G++ and other compilers to lay out C identically.

• Incorrect handling of bit-fields with declared widths greater than that of
their underlying types, when the bit-fields appear in a union. For example:

union U { int i : 4096; };

Assuming that an int does not have 4096 bits, G++ makes the union too
small by the number of bits in an int.

• Empty classes can be placed at incorrect offsets. For example:
struct A {};

struct B {

A a;

virtual void f ();

};

struct C : public B, public A {};

G++ places the A base class of C at a nonzero offset; it should be placed at
offset zero. G++ mistakenly believes that the A data member of B is already
at offset zero.

• Names of template functions whose types involve typename or template
template parameters can be mangled incorrectly.

template <typename Q>

void f(typename Q::X) {}

template <template <typename> class Q>

void f(typename Q<int>::X) {}

Instantiations of these templates may be mangled incorrectly.

It also warns about psABI-related changes. The known psABI changes at this
point include:
• For SysV/x86-64, unions with long double members are passed in memory

as specified in psABI. For example:
union U {

long double ld;

int i;

};

union U is always passed in memory.

-Wctor-dtor-privacy (C++ and Objective-C++ only)
Warn when a class seems unusable because all the constructors or destructors
in that class are private, and it has neither friends nor public static member
functions. Also warn if there are no non-private methods, and there’s at least
one private member function that isn’t a constructor or destructor.

-Wdelete-non-virtual-dtor (C++ and Objective-C++ only)
Warn when ‘delete’ is used to destroy an instance of a class that has virtual
functions and non-virtual destructor. It is unsafe to delete an instance of a
derived class through a pointer to a base class if the base class does not have a
virtual destructor. This warning is enabled by ‘-Wall’.

46 Using the GNU Compiler Collection (GCC)

-Wliteral-suffix (C++ and Objective-C++ only)
Warn when a string or character literal is followed by a ud-suffix which does not
begin with an underscore. As a conforming extension, GCC treats such suffixes
as separate preprocessing tokens in order to maintain backwards compatibility
with code that uses formatting macros from <inttypes.h>. For example:

#define __STDC_FORMAT_MACROS

#include <inttypes.h>

#include <stdio.h>

int main() {

int64_t i64 = 123;

printf("My int64: %"PRId64"\n", i64);

}

In this case, PRId64 is treated as a separate preprocessing token.
This warning is enabled by default.

-Wnarrowing (C++ and Objective-C++ only)
Warn when a narrowing conversion prohibited by C++11 occurs within ‘{ }’,
e.g.

int i = { 2.2 }; // error: narrowing from double to int

This flag is included in ‘-Wall’ and ‘-Wc++11-compat’.
With ‘-std=c++11’, ‘-Wno-narrowing’ suppresses the diagnostic required by
the standard. Note that this does not affect the meaning of well-formed code;
narrowing conversions are still considered ill-formed in SFINAE context.

-Wnoexcept (C++ and Objective-C++ only)
Warn when a noexcept-expression evaluates to false because of a call to a func-
tion that does not have a non-throwing exception specification (i.e. ‘throw()’
or ‘noexcept’) but is known by the compiler to never throw an exception.

-Wnon-virtual-dtor (C++ and Objective-C++ only)
Warn when a class has virtual functions and an accessible non-virtual destructor
itself or in an accessible polymorphic base class, in which case it is possible but
unsafe to delete an instance of a derived class through a pointer to the class itself
or base class. This warning is automatically enabled if ‘-Weffc++’ is specified.

-Wreorder (C++ and Objective-C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:

struct A {

int i;

int j;

A(): j (0), i (1) { }

};

The compiler rearranges the member initializers for ‘i’ and ‘j’ to match the
declaration order of the members, emitting a warning to that effect. This
warning is enabled by ‘-Wall’.

-fext-numeric-literals (C++ and Objective-C++ only)
Accept imaginary, fixed-point, or machine-defined literal number suffixes as
GNU extensions. When this option is turned off these suffixes are treated

Chapter 3: GCC Command Options 47

as C++11 user-defined literal numeric suffixes. This is on by default for all
pre-C++11 dialects and all GNU dialects: ‘-std=c++98’, ‘-std=gnu++98’,
‘-std=gnu++11’, ‘-std=gnu++1y’. This option is off by default for ISO C++11
onwards (‘-std=c++11’, ...).

The following ‘-W...’ options are not affected by ‘-Wall’.

-Weffc++ (C++ and Objective-C++ only)
Warn about violations of the following style guidelines from Scott Meyers’ Ef-
fective C++ series of books:
• Define a copy constructor and an assignment operator for classes with

dynamically-allocated memory.
• Prefer initialization to assignment in constructors.
• Have operator= return a reference to *this.
• Don’t try to return a reference when you must return an object.
• Distinguish between prefix and postfix forms of increment and decrement

operators.
• Never overload &&, ||, or ,.

This option also enables ‘-Wnon-virtual-dtor’, which is also one of the effec-
tive C++ recommendations. However, the check is extended to warn about the
lack of virtual destructor in accessible non-polymorphic bases classes too.
When selecting this option, be aware that the standard library headers do not
obey all of these guidelines; use ‘grep -v’ to filter out those warnings.

-Wstrict-null-sentinel (C++ and Objective-C++ only)
Warn about the use of an uncasted NULL as sentinel. When compiling only with
GCC this is a valid sentinel, as NULL is defined to __null. Although it is a null
pointer constant rather than a null pointer, it is guaranteed to be of the same
size as a pointer. But this use is not portable across different compilers.

-Wno-non-template-friend (C++ and Objective-C++ only)
Disable warnings when non-templatized friend functions are declared within a
template. Since the advent of explicit template specification support in G++,
if the name of the friend is an unqualified-id (i.e., ‘friend foo(int)’), the
C++ language specification demands that the friend declare or define an ordi-
nary, nontemplate function. (Section 14.5.3). Before G++ implemented explicit
specification, unqualified-ids could be interpreted as a particular specialization
of a templatized function. Because this non-conforming behavior is no longer
the default behavior for G++, ‘-Wnon-template-friend’ allows the compiler to
check existing code for potential trouble spots and is on by default. This new
compiler behavior can be turned off with ‘-Wno-non-template-friend’, which
keeps the conformant compiler code but disables the helpful warning.

-Wold-style-cast (C++ and Objective-C++ only)
Warn if an old-style (C-style) cast to a non-void type is used within
a C++ program. The new-style casts (‘dynamic_cast’, ‘static_cast’,
‘reinterpret_cast’, and ‘const_cast’) are less vulnerable to unintended
effects and much easier to search for.

48 Using the GNU Compiler Collection (GCC)

-Woverloaded-virtual (C++ and Objective-C++ only)
Warn when a function declaration hides virtual functions from a base class. For
example, in:

struct A {

virtual void f();

};

struct B: public A {

void f(int);

};

the A class version of f is hidden in B, and code like:
B* b;

b->f();

fails to compile.

-Wno-pmf-conversions (C++ and Objective-C++ only)
Disable the diagnostic for converting a bound pointer to member function to a
plain pointer.

-Wsign-promo (C++ and Objective-C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumer-
ated type to a signed type, over a conversion to an unsigned type of the same
size. Previous versions of G++ tried to preserve unsignedness, but the standard
mandates the current behavior.

3.6 Options Controlling Objective-C and Objective-C++
Dialects

(NOTE: This manual does not describe the Objective-C and Objective-C++ languages them-
selves. See Chapter 2 [Language Standards Supported by GCC], page 5, for references.)

This section describes the command-line options that are only meaningful for Objective-
C and Objective-C++ programs. You can also use most of the language-independent GNU
compiler options. For example, you might compile a file some_class.m like this:

gcc -g -fgnu-runtime -O -c some_class.m

In this example, ‘-fgnu-runtime’ is an option meant only for Objective-C and Objective-
C++ programs; you can use the other options with any language supported by GCC.

Note that since Objective-C is an extension of the C language, Objective-C compila-
tions may also use options specific to the C front-end (e.g., ‘-Wtraditional’). Similarly,
Objective-C++ compilations may use C++-specific options (e.g., ‘-Wabi’).

Here is a list of options that are only for compiling Objective-C and Objective-C++
programs:

-fconstant-string-class=class-name
Use class-name as the name of the class to instantiate for each literal string
specified with the syntax @"...". The default class name is NXConstantString
if the GNU runtime is being used, and NSConstantString if the NeXT runtime
is being used (see below). The ‘-fconstant-cfstrings’ option, if also present,
overrides the ‘-fconstant-string-class’ setting and cause @"..." literals to
be laid out as constant CoreFoundation strings.

Chapter 3: GCC Command Options 49

-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime.
This is the default for most types of systems.

-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for
NeXT-based systems, including Darwin and Mac OS X. The macro __NEXT_
RUNTIME__ is predefined if (and only if) this option is used.

-fno-nil-receivers
Assume that all Objective-C message dispatches ([receiver message:arg]) in
this translation unit ensure that the receiver is not nil. This allows for more
efficient entry points in the runtime to be used. This option is only available in
conjunction with the NeXT runtime and ABI version 0 or 1.

-fobjc-abi-version=n
Use version n of the Objective-C ABI for the selected runtime. This option is
currently supported only for the NeXT runtime. In that case, Version 0 is the
traditional (32-bit) ABI without support for properties and other Objective-
C 2.0 additions. Version 1 is the traditional (32-bit) ABI with support for
properties and other Objective-C 2.0 additions. Version 2 is the modern (64-bit)
ABI. If nothing is specified, the default is Version 0 on 32-bit target machines,
and Version 2 on 64-bit target machines.

-fobjc-call-cxx-cdtors
For each Objective-C class, check if any of its instance variables is a C++ ob-
ject with a non-trivial default constructor. If so, synthesize a special - (id)
.cxx_construct instance method which runs non-trivial default constructors
on any such instance variables, in order, and then return self. Similarly, check
if any instance variable is a C++ object with a non-trivial destructor, and if
so, synthesize a special - (void) .cxx_destruct method which runs all such
default destructors, in reverse order.

The - (id) .cxx_construct and - (void) .cxx_destruct methods thusly
generated only operate on instance variables declared in the current
Objective-C class, and not those inherited from superclasses. It is the
responsibility of the Objective-C runtime to invoke all such methods in an
object’s inheritance hierarchy. The - (id) .cxx_construct methods are
invoked by the runtime immediately after a new object instance is allocated;
the - (void) .cxx_destruct methods are invoked immediately before the
runtime deallocates an object instance.

As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has sup-
port for invoking the - (id) .cxx_construct and - (void) .cxx_destruct
methods.

-fobjc-direct-dispatch
Allow fast jumps to the message dispatcher. On Darwin this is accomplished
via the comm page.

50 Using the GNU Compiler Collection (GCC)

-fobjc-exceptions
Enable syntactic support for structured exception handling in Objective-C, sim-
ilar to what is offered by C++ and Java. This option is required to use the
Objective-C keywords @try, @throw, @catch, @finally and @synchronized.
This option is available with both the GNU runtime and the NeXT runtime
(but not available in conjunction with the NeXT runtime on Mac OS X 10.2
and earlier).

-fobjc-gc
Enable garbage collection (GC) in Objective-C and Objective-C++ programs.
This option is only available with the NeXT runtime; the GNU runtime has a
different garbage collection implementation that does not require special com-
piler flags.

-fobjc-nilcheck
For the NeXT runtime with version 2 of the ABI, check for a nil receiver in
method invocations before doing the actual method call. This is the default
and can be disabled using ‘-fno-objc-nilcheck’. Class methods and super
calls are never checked for nil in this way no matter what this flag is set to.
Currently this flag does nothing when the GNU runtime, or an older version of
the NeXT runtime ABI, is used.

-fobjc-std=objc1
Conform to the language syntax of Objective-C 1.0, the language recognized by
GCC 4.0. This only affects the Objective-C additions to the C/C++ language;
it does not affect conformance to C/C++ standards, which is controlled by
the separate C/C++ dialect option flags. When this option is used with the
Objective-C or Objective-C++ compiler, any Objective-C syntax that is not
recognized by GCC 4.0 is rejected. This is useful if you need to make sure that
your Objective-C code can be compiled with older versions of GCC.

-freplace-objc-classes
Emit a special marker instructing ld(1) not to statically link in the resulting
object file, and allow dyld(1) to load it in at run time instead. This is used
in conjunction with the Fix-and-Continue debugging mode, where the object
file in question may be recompiled and dynamically reloaded in the course of
program execution, without the need to restart the program itself. Currently,
Fix-and-Continue functionality is only available in conjunction with the NeXT
runtime on Mac OS X 10.3 and later.

-fzero-link
When compiling for the NeXT runtime, the compiler ordinarily replaces calls to
objc_getClass("...") (when the name of the class is known at compile time)
with static class references that get initialized at load time, which improves run-
time performance. Specifying the ‘-fzero-link’ flag suppresses this behavior
and causes calls to objc_getClass("...") to be retained. This is useful in
Zero-Link debugging mode, since it allows for individual class implementations
to be modified during program execution. The GNU runtime currently always
retains calls to objc_get_class("...") regardless of command-line options.

Chapter 3: GCC Command Options 51

-gen-decls
Dump interface declarations for all classes seen in the source file to a file named
‘sourcename.decl’.

-Wassign-intercept (Objective-C and Objective-C++ only)
Warn whenever an Objective-C assignment is being intercepted by the garbage
collector.

-Wno-protocol (Objective-C and Objective-C++ only)
If a class is declared to implement a protocol, a warning is issued for every
method in the protocol that is not implemented by the class. The default
behavior is to issue a warning for every method not explicitly implemented in the
class, even if a method implementation is inherited from the superclass. If you
use the ‘-Wno-protocol’ option, then methods inherited from the superclass
are considered to be implemented, and no warning is issued for them.

-Wselector (Objective-C and Objective-C++ only)
Warn if multiple methods of different types for the same selector are found
during compilation. The check is performed on the list of methods in the
final stage of compilation. Additionally, a check is performed for each selector
appearing in a @selector(...) expression, and a corresponding method for
that selector has been found during compilation. Because these checks scan the
method table only at the end of compilation, these warnings are not produced
if the final stage of compilation is not reached, for example because an error
is found during compilation, or because the ‘-fsyntax-only’ option is being
used.

-Wstrict-selector-match (Objective-C and Objective-C++ only)
Warn if multiple methods with differing argument and/or return types are found
for a given selector when attempting to send a message using this selector to
a receiver of type id or Class. When this flag is off (which is the default
behavior), the compiler omits such warnings if any differences found are confined
to types that share the same size and alignment.

-Wundeclared-selector (Objective-C and Objective-C++ only)
Warn if a @selector(...) expression referring to an undeclared selector is
found. A selector is considered undeclared if no method with that name has
been declared before the @selector(...) expression, either explicitly in an
@interface or @protocol declaration, or implicitly in an @implementation
section. This option always performs its checks as soon as a @selector(...)
expression is found, while ‘-Wselector’ only performs its checks in the final
stage of compilation. This also enforces the coding style convention that meth-
ods and selectors must be declared before being used.

-print-objc-runtime-info
Generate C header describing the largest structure that is passed by value, if
any.

52 Using the GNU Compiler Collection (GCC)

3.7 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output device’s
aspect (e.g. its width, . . .). You can use the options described below to control the for-
matting algorithm for diagnostic messages, e.g. how many characters per line, how often
source location information should be reported. Note that some language front ends may
not honor these options.

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. The
default is 72 characters for g++ and 0 for the rest of the front ends supported by
GCC. If n is zero, then no line-wrapping is done; each error message appears
on a single line.

-fdiagnostics-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages re-
porter to emit source location information once; that is, in case the message
is too long to fit on a single physical line and has to be wrapped, the source
location won’t be emitted (as prefix) again, over and over, in subsequent con-
tinuation lines. This is the default behavior.

-fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit the same source location information (as prefix) for physical
lines that result from the process of breaking a message which is too long to fit
on a single line.

-fdiagnostics-color[=WHEN]
-fno-diagnostics-color

Use color in diagnostics. WHEN is ‘never’, ‘always’, or ‘auto’. The
default is ‘never’ if GCC_COLORS environment variable isn’t present in the
environment, and ‘auto’ otherwise. ‘auto’ means to use color only when
the standard error is a terminal. The forms ‘-fdiagnostics-color’ and
‘-fno-diagnostics-color’ are aliases for ‘-fdiagnostics-color=always’
and ‘-fdiagnostics-color=never’, respectively.
The colors are defined by the environment variable GCC_COLORS. Its value is
a colon-separated list of capabilities and Select Graphic Rendition (SGR) sub-
strings. SGR commands are interpreted by the terminal or terminal emulator.
(See the section in the documentation of your text terminal for permitted values
and their meanings as character attributes.) These substring values are integers
in decimal representation and can be concatenated with semicolons. Common
values to concatenate include ‘1’ for bold, ‘4’ for underline, ‘5’ for blink, ‘7’ for
inverse, ‘39’ for default foreground color, ‘30’ to ‘37’ for foreground colors, ‘90’
to ‘97’ for 16-color mode foreground colors, ‘38;5;0’ to ‘38;5;255’ for 88-color
and 256-color modes foreground colors, ‘49’ for default background color, ‘40’
to ‘47’ for background colors, ‘100’ to ‘107’ for 16-color mode background col-
ors, and ‘48;5;0’ to ‘48;5;255’ for 88-color and 256-color modes background
colors.
The default GCC_COLORS is ‘error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01’
where ‘01;31’ is bold red, ‘01;35’ is bold magenta, ‘01;36’ is bold cyan,

Chapter 3: GCC Command Options 53

‘01;32’ is bold green and ‘01’ is bold. Setting GCC_COLORS to the empty string
disables colors. Supported capabilities are as follows.

error= SGR substring for error: markers.

warning= SGR substring for warning: markers.

note= SGR substring for note: markers.

caret= SGR substring for caret line.

locus= SGR substring for location information, ‘file:line’ or
‘file:line:column’ etc.

quote= SGR substring for information printed within quotes.

-fno-diagnostics-show-option
By default, each diagnostic emitted includes text indicating the command-line
option that directly controls the diagnostic (if such an option is known to the
diagnostic machinery). Specifying the ‘-fno-diagnostics-show-option’ flag
suppresses that behavior.

-fno-diagnostics-show-caret
By default, each diagnostic emitted includes the original source line and a caret
’^’ indicating the column. This option suppresses this information.

3.8 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions that are not inherently erro-
neous but that are risky or suggest there may have been an error.

The following language-independent options do not enable specific warnings but control
the kinds of diagnostics produced by GCC.

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-fmax-errors=n
Limits the maximum number of error messages to n, at which point GCC bails
out rather than attempting to continue processing the source code. If n is 0
(the default), there is no limit on the number of error messages produced. If
‘-Wfatal-errors’ is also specified, then ‘-Wfatal-errors’ takes precedence
over this option.

-w Inhibit all warning messages.

-Werror Make all warnings into errors.

-Werror= Make the specified warning into an error. The specifier for a warning is
appended; for example ‘-Werror=switch’ turns the warnings controlled by
‘-Wswitch’ into errors. This switch takes a negative form, to be used to negate
‘-Werror’ for specific warnings; for example ‘-Wno-error=switch’ makes
‘-Wswitch’ warnings not be errors, even when ‘-Werror’ is in effect.
The warning message for each controllable warning includes the option that
controls the warning. That option can then be used with ‘-Werror=’ and

54 Using the GNU Compiler Collection (GCC)

‘-Wno-error=’ as described above. (Printing of the option in the warning mes-
sage can be disabled using the ‘-fno-diagnostics-show-option’ flag.)
Note that specifying ‘-Werror=’foo automatically implies ‘-W’foo. However,
‘-Wno-error=’foo does not imply anything.

-Wfatal-errors
This option causes the compiler to abort compilation on the first error occurred
rather than trying to keep going and printing further error messages.

You can request many specific warnings with options beginning with ‘-W’, for example
‘-Wimplicit’ to request warnings on implicit declarations. Each of these specific warn-
ing options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘-Wno-implicit’. This manual lists only one of the two forms, whichever is not the default.
For further language-specific options also refer to Section 3.5 [C++ Dialect Options], page 37
and Section 3.6 [Objective-C and Objective-C++ Dialect Options], page 48.

When an unrecognized warning option is requested (e.g., ‘-Wunknown-warning’),
GCC emits a diagnostic stating that the option is not recognized. However, if the
‘-Wno-’ form is used, the behavior is slightly different: no diagnostic is produced for
‘-Wno-unknown-warning’ unless other diagnostics are being produced. This allows the
use of new ‘-Wno-’ options with old compilers, but if something goes wrong, the compiler
warns that an unrecognized option is present.

-Wpedantic
-pedantic

Issue all the warnings demanded by strict ISO C and ISO C++; reject all pro-
grams that use forbidden extensions, and some other programs that do not
follow ISO C and ISO C++. For ISO C, follows the version of the ISO C stan-
dard specified by any ‘-std’ option used.
Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few require ‘-ansi’ or a ‘-std’ option specifying
the required version of ISO C). However, without this option, certain GNU
extensions and traditional C and C++ features are supported as well. With this
option, they are rejected.
‘-Wpedantic’ does not cause warning messages for use of the alternate keywords
whose names begin and end with ‘__’. Pedantic warnings are also disabled in
the expression that follows __extension__. However, only system header files
should use these escape routes; application programs should avoid them. See
Section 6.45 [Alternate Keywords], page 468.
Some users try to use ‘-Wpedantic’ to check programs for strict ISO C con-
formance. They soon find that it does not do quite what they want: it finds
some non-ISO practices, but not all—only those for which ISO C requires a
diagnostic, and some others for which diagnostics have been added.
A feature to report any failure to conform to ISO C might be useful in some
instances, but would require considerable additional work and would be quite
different from ‘-Wpedantic’. We don’t have plans to support such a feature in
the near future.
Where the standard specified with ‘-std’ represents a GNU extended dialect
of C, such as ‘gnu90’ or ‘gnu99’, there is a corresponding base standard, the

Chapter 3: GCC Command Options 55

version of ISO C on which the GNU extended dialect is based. Warnings from
‘-Wpedantic’ are given where they are required by the base standard. (It
does not make sense for such warnings to be given only for features not in the
specified GNU C dialect, since by definition the GNU dialects of C include
all features the compiler supports with the given option, and there would be
nothing to warn about.)

-pedantic-errors
Like ‘-Wpedantic’, except that errors are produced rather than warnings.

-Wall This enables all the warnings about constructions that some users consider
questionable, and that are easy to avoid (or modify to prevent the warning),
even in conjunction with macros. This also enables some language-specific
warnings described in Section 3.5 [C++ Dialect Options], page 37 and Section 3.6
[Objective-C and Objective-C++ Dialect Options], page 48.
‘-Wall’ turns on the following warning flags:

-Waddress

-Warray-bounds (only with ‘-O2’)
-Wc++11-compat

-Wchar-subscripts

-Wenum-compare (in C/ObjC; this is on by default in C++)
-Wimplicit-int (C and Objective-C only)
-Wimplicit-function-declaration (C and Objective-C only)
-Wcomment

-Wformat

-Wmain (only for C/ObjC and unless ‘-ffreestanding’)
-Wmaybe-uninitialized

-Wmissing-braces (only for C/ObjC)
-Wnonnull

-Wopenmp-simd

-Wparentheses

-Wpointer-sign

-Wreorder

-Wreturn-type

-Wsequence-point

-Wsign-compare (only in C++)
-Wstrict-aliasing

-Wstrict-overflow=1

-Wswitch

-Wtrigraphs

-Wuninitialized

-Wunknown-pragmas

-Wunused-function

-Wunused-label

-Wunused-value

-Wunused-variable

-Wvolatile-register-var

Note that some warning flags are not implied by ‘-Wall’. Some of them warn
about constructions that users generally do not consider questionable, but which
occasionally you might wish to check for; others warn about constructions that
are necessary or hard to avoid in some cases, and there is no simple way to mod-
ify the code to suppress the warning. Some of them are enabled by ‘-Wextra’
but many of them must be enabled individually.

56 Using the GNU Compiler Collection (GCC)

-Wextra This enables some extra warning flags that are not enabled by ‘-Wall’. (This
option used to be called ‘-W’. The older name is still supported, but the newer
name is more descriptive.)

-Wclobbered

-Wempty-body

-Wignored-qualifiers

-Wmissing-field-initializers

-Wmissing-parameter-type (C only)
-Wold-style-declaration (C only)
-Woverride-init

-Wsign-compare

-Wtype-limits

-Wuninitialized

-Wunused-parameter (only with ‘-Wunused’ or ‘-Wall’)
-Wunused-but-set-parameter (only with ‘-Wunused’ or ‘-Wall’)

The option ‘-Wextra’ also prints warning messages for the following cases:
• A pointer is compared against integer zero with ‘<’, ‘<=’, ‘>’, or ‘>=’.
• (C++ only) An enumerator and a non-enumerator both appear in a condi-

tional expression.
• (C++ only) Ambiguous virtual bases.
• (C++ only) Subscripting an array that has been declared ‘register’.
• (C++ only) Taking the address of a variable that has been declared

‘register’.
• (C++ only) A base class is not initialized in a derived class’s copy construc-

tor.

-Wchar-subscripts
Warn if an array subscript has type char. This is a common cause of error,
as programmers often forget that this type is signed on some machines. This
warning is enabled by ‘-Wall’.

-Wcomment
Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a Backslash-Newline appears in a ‘//’ comment. This warning is
enabled by ‘-Wall’.

-Wno-coverage-mismatch
Warn if feedback profiles do not match when using the ‘-fprofile-use’ option.
If a source file is changed between compiling with ‘-fprofile-gen’ and with
‘-fprofile-use’, the files with the profile feedback can fail to match the source
file and GCC cannot use the profile feedback information. By default, this
warning is enabled and is treated as an error. ‘-Wno-coverage-mismatch’ can
be used to disable the warning or ‘-Wno-error=coverage-mismatch’ can be
used to disable the error. Disabling the error for this warning can result in
poorly optimized code and is useful only in the case of very minor changes such
as bug fixes to an existing code-base. Completely disabling the warning is not
recommended.

-Wno-cpp (C, Objective-C, C++, Objective-C++ and Fortran only)

Chapter 3: GCC Command Options 57

Suppress warning messages emitted by #warning directives.

-Wdouble-promotion (C, C++, Objective-C and Objective-C++ only)
Give a warning when a value of type float is implicitly promoted to double.
CPUs with a 32-bit “single-precision” floating-point unit implement float in
hardware, but emulate double in software. On such a machine, doing compu-
tations using double values is much more expensive because of the overhead
required for software emulation.
It is easy to accidentally do computations with double because floating-point
literals are implicitly of type double. For example, in:

float area(float radius)

{

return 3.14159 * radius * radius;

}

the compiler performs the entire computation with double because the floating-
point literal is a double.

-Wformat
-Wformat=n

Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified, and that the conversions
specified in the format string make sense. This includes standard functions, and
others specified by format attributes (see Section 6.30 [Function Attributes],
page 372), in the printf, scanf, strftime and strfmon (an X/Open exten-
sion, not in the C standard) families (or other target-specific families). Which
functions are checked without format attributes having been specified depends
on the standard version selected, and such checks of functions without the at-
tribute specified are disabled by ‘-ffreestanding’ or ‘-fno-builtin’.
The formats are checked against the format features supported by GNU libc
version 2.2. These include all ISO C90 and C99 features, as well as features
from the Single Unix Specification and some BSD and GNU extensions. Other
library implementations may not support all these features; GCC does not sup-
port warning about features that go beyond a particular library’s limitations.
However, if ‘-Wpedantic’ is used with ‘-Wformat’, warnings are given about
format features not in the selected standard version (but not for strfmon for-
mats, since those are not in any version of the C standard). See Section 3.4
[Options Controlling C Dialect], page 31.

-Wformat=1
-Wformat Option ‘-Wformat’ is equivalent to ‘-Wformat=1’, and

‘-Wno-format’ is equivalent to ‘-Wformat=0’. Since ‘-Wformat’
also checks for null format arguments for several functions,
‘-Wformat’ also implies ‘-Wnonnull’. Some aspects of this
level of format checking can be disabled by the options:
‘-Wno-format-contains-nul’, ‘-Wno-format-extra-args’, and
‘-Wno-format-zero-length’. ‘-Wformat’ is enabled by ‘-Wall’.

-Wno-format-contains-nul
If ‘-Wformat’ is specified, do not warn about format strings that
contain NUL bytes.

58 Using the GNU Compiler Collection (GCC)

-Wno-format-extra-args
If ‘-Wformat’ is specified, do not warn about excess arguments to
a printf or scanf format function. The C standard specifies that
such arguments are ignored.
Where the unused arguments lie between used arguments that are
specified with ‘$’ operand number specifications, normally warnings
are still given, since the implementation could not know what type
to pass to va_arg to skip the unused arguments. However, in the
case of scanf formats, this option suppresses the warning if the un-
used arguments are all pointers, since the Single Unix Specification
says that such unused arguments are allowed.

-Wno-format-zero-length
If ‘-Wformat’ is specified, do not warn about zero-length formats.
The C standard specifies that zero-length formats are allowed.

-Wformat=2
Enable ‘-Wformat’ plus additional format checks. Currently equiv-
alent to ‘-Wformat -Wformat-nonliteral -Wformat-security
-Wformat-y2k’.

-Wformat-nonliteral
If ‘-Wformat’ is specified, also warn if the format string is not a
string literal and so cannot be checked, unless the format function
takes its format arguments as a va_list.

-Wformat-security
If ‘-Wformat’ is specified, also warn about uses of format functions
that represent possible security problems. At present, this warns
about calls to printf and scanf functions where the format string
is not a string literal and there are no format arguments, as in
printf (foo);. This may be a security hole if the format string
came from untrusted input and contains ‘%n’. (This is currently
a subset of what ‘-Wformat-nonliteral’ warns about, but in fu-
ture warnings may be added to ‘-Wformat-security’ that are not
included in ‘-Wformat-nonliteral’.)

-Wformat-y2k
If ‘-Wformat’ is specified, also warn about strftime formats that
may yield only a two-digit year.

-Wnonnull
Warn about passing a null pointer for arguments marked as requiring a non-null
value by the nonnull function attribute.
‘-Wnonnull’ is included in ‘-Wall’ and ‘-Wformat’. It can be disabled with the
‘-Wno-nonnull’ option.

-Winit-self (C, C++, Objective-C and Objective-C++ only)
Warn about uninitialized variables that are initialized with themselves. Note
this option can only be used with the ‘-Wuninitialized’ option.

Chapter 3: GCC Command Options 59

For example, GCC warns about i being uninitialized in the following snippet
only when ‘-Winit-self’ has been specified:

int f()

{

int i = i;

return i;

}

This warning is enabled by ‘-Wall’ in C++.

-Wimplicit-int (C and Objective-C only)
Warn when a declaration does not specify a type. This warning is enabled by
‘-Wall’.

-Wimplicit-function-declaration (C and Objective-C only)
Give a warning whenever a function is used before being declared. In C99 mode
(‘-std=c99’ or ‘-std=gnu99’), this warning is enabled by default and it is made
into an error by ‘-pedantic-errors’. This warning is also enabled by ‘-Wall’.

-Wimplicit (C and Objective-C only)
Same as ‘-Wimplicit-int’ and ‘-Wimplicit-function-declaration’. This
warning is enabled by ‘-Wall’.

-Wignored-qualifiers (C and C++ only)
Warn if the return type of a function has a type qualifier such as const. For
ISO C such a type qualifier has no effect, since the value returned by a function
is not an lvalue. For C++, the warning is only emitted for scalar types or void.
ISO C prohibits qualified void return types on function definitions, so such
return types always receive a warning even without this option.
This warning is also enabled by ‘-Wextra’.

-Wmain Warn if the type of ‘main’ is suspicious. ‘main’ should be a function with
external linkage, returning int, taking either zero arguments, two, or three
arguments of appropriate types. This warning is enabled by default in C++ and
is enabled by either ‘-Wall’ or ‘-Wpedantic’.

-Wmissing-braces
Warn if an aggregate or union initializer is not fully bracketed. In the following
example, the initializer for ‘a’ is not fully bracketed, but that for ‘b’ is fully
bracketed. This warning is enabled by ‘-Wall’ in C.

int a[2][2] = { 0, 1, 2, 3 };

int b[2][2] = { { 0, 1 }, { 2, 3 } };

This warning is enabled by ‘-Wall’.

-Wmissing-include-dirs (C, C++, Objective-C and Objective-C++ only)
Warn if a user-supplied include directory does not exist.

-Wparentheses
Warn if parentheses are omitted in certain contexts, such as when there is an
assignment in a context where a truth value is expected, or when operators are
nested whose precedence people often get confused about.
Also warn if a comparison like ‘x<=y<=z’ appears; this is equivalent to ‘(x<=y
? 1 : 0) <= z’, which is a different interpretation from that of ordinary math-
ematical notation.

60 Using the GNU Compiler Collection (GCC)

Also warn about constructions where there may be confusion to which if state-
ment an else branch belongs. Here is an example of such a case:

{

if (a)

if (b)

foo ();

else

bar ();

}

In C/C++, every else branch belongs to the innermost possible if statement,
which in this example is if (b). This is often not what the programmer ex-
pected, as illustrated in the above example by indentation the programmer
chose. When there is the potential for this confusion, GCC issues a warn-
ing when this flag is specified. To eliminate the warning, add explicit braces
around the innermost if statement so there is no way the else can belong to
the enclosing if. The resulting code looks like this:

{

if (a)

{

if (b)

foo ();

else

bar ();

}

}

Also warn for dangerous uses of the GNU extension to ?: with omitted middle
operand. When the condition in the ?: operator is a boolean expression, the
omitted value is always 1. Often programmers expect it to be a value computed
inside the conditional expression instead.

This warning is enabled by ‘-Wall’.

-Wsequence-point
Warn about code that may have undefined semantics because of violations of
sequence point rules in the C and C++ standards.

The C and C++ standards define the order in which expressions in a C/C++
program are evaluated in terms of sequence points, which represent a partial
ordering between the execution of parts of the program: those executed before
the sequence point, and those executed after it. These occur after the evalua-
tion of a full expression (one which is not part of a larger expression), after the
evaluation of the first operand of a &&, ||, ? : or , (comma) operator, before a
function is called (but after the evaluation of its arguments and the expression
denoting the called function), and in certain other places. Other than as ex-
pressed by the sequence point rules, the order of evaluation of subexpressions
of an expression is not specified. All these rules describe only a partial order
rather than a total order, since, for example, if two functions are called within
one expression with no sequence point between them, the order in which the
functions are called is not specified. However, the standards committee have
ruled that function calls do not overlap.

Chapter 3: GCC Command Options 61

It is not specified when between sequence points modifications to the values of
objects take effect. Programs whose behavior depends on this have undefined
behavior; the C and C++ standards specify that “Between the previous and
next sequence point an object shall have its stored value modified at most once
by the evaluation of an expression. Furthermore, the prior value shall be read
only to determine the value to be stored.”. If a program breaks these rules, the
results on any particular implementation are entirely unpredictable.

Examples of code with undefined behavior are a = a++;, a[n] = b[n++] and
a[i++] = i;. Some more complicated cases are not diagnosed by this option,
and it may give an occasional false positive result, but in general it has been
found fairly effective at detecting this sort of problem in programs.

The standard is worded confusingly, therefore there is some debate over the
precise meaning of the sequence point rules in subtle cases. Links to discussions
of the problem, including proposed formal definitions, may be found on the GCC
readings page, at http://gcc.gnu.org/readings.html.

This warning is enabled by ‘-Wall’ for C and C++.

-Wno-return-local-addr
Do not warn about returning a pointer (or in C++, a reference) to a variable
that goes out of scope after the function returns.

-Wreturn-type
Warn whenever a function is defined with a return type that defaults to int.
Also warn about any return statement with no return value in a function whose
return type is not void (falling off the end of the function body is considered
returning without a value), and about a return statement with an expression
in a function whose return type is void.

For C++, a function without return type always produces a diagnostic message,
even when ‘-Wno-return-type’ is specified. The only exceptions are ‘main’ and
functions defined in system headers.

This warning is enabled by ‘-Wall’.

-Wswitch Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. (The presence
of a default label prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used (even if there is a default
label). This warning is enabled by ‘-Wall’.

-Wswitch-default
Warn whenever a switch statement does not have a default case.

-Wswitch-enum
Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. case labels
outside the enumeration range also provoke warnings when this option is used.
The only difference between ‘-Wswitch’ and this option is that this option gives
a warning about an omitted enumeration code even if there is a default label.

http://gcc.gnu.org/readings.html

62 Using the GNU Compiler Collection (GCC)

-Wsync-nand (C and C++ only)
Warn when __sync_fetch_and_nand and __sync_nand_and_fetch built-in
functions are used. These functions changed semantics in GCC 4.4.

-Wtrigraphs
Warn if any trigraphs are encountered that might change the meaning of the
program (trigraphs within comments are not warned about). This warning is
enabled by ‘-Wall’.

-Wunused-but-set-parameter
Warn whenever a function parameter is assigned to, but otherwise unused (aside
from its declaration).
To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes], page 409).
This warning is also enabled by ‘-Wunused’ together with ‘-Wextra’.

-Wunused-but-set-variable
Warn whenever a local variable is assigned to, but otherwise unused (aside from
its declaration). This warning is enabled by ‘-Wall’.
To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes], page 409).
This warning is also enabled by ‘-Wunused’, which is enabled by ‘-Wall’.

-Wunused-function
Warn whenever a static function is declared but not defined or a non-inline
static function is unused. This warning is enabled by ‘-Wall’.

-Wunused-label
Warn whenever a label is declared but not used. This warning is enabled by
‘-Wall’.
To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes], page 409).

-Wunused-local-typedefs (C, Objective-C, C++ and Objective-C++ only)
Warn when a typedef locally defined in a function is not used. This warning is
enabled by ‘-Wall’.

-Wunused-parameter
Warn whenever a function parameter is unused aside from its declaration.
To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes], page 409).

-Wno-unused-result
Do not warn if a caller of a function marked with attribute warn_unused_
result (see Section 6.30 [Function Attributes], page 372) does not use its return
value. The default is ‘-Wunused-result’.

-Wunused-variable
Warn whenever a local variable or non-constant static variable is unused aside
from its declaration. This warning is enabled by ‘-Wall’.

Chapter 3: GCC Command Options 63

To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes], page 409).

-Wunused-value
Warn whenever a statement computes a result that is explicitly not used. To
suppress this warning cast the unused expression to ‘void’. This includes an
expression-statement or the left-hand side of a comma expression that contains
no side effects. For example, an expression such as ‘x[i,j]’ causes a warning,
while ‘x[(void)i,j]’ does not.

This warning is enabled by ‘-Wall’.

-Wunused All the above ‘-Wunused’ options combined.

In order to get a warning about an unused function parameter, you must either
specify ‘-Wextra -Wunused’ (note that ‘-Wall’ implies ‘-Wunused’), or sepa-
rately specify ‘-Wunused-parameter’.

-Wuninitialized
Warn if an automatic variable is used without first being initialized or if a
variable may be clobbered by a setjmp call. In C++, warn if a non-static
reference or non-static ‘const’ member appears in a class without constructors.

If you want to warn about code that uses the uninitialized value of the variable
in its own initializer, use the ‘-Winit-self’ option.

These warnings occur for individual uninitialized or clobbered elements of struc-
ture, union or array variables as well as for variables that are uninitialized or
clobbered as a whole. They do not occur for variables or elements declared
volatile. Because these warnings depend on optimization, the exact variables
or elements for which there are warnings depends on the precise optimization
options and version of GCC used.

Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data flow analysis before the warnings are printed.

-Wmaybe-uninitialized
For an automatic variable, if there exists a path from the function entry to a
use of the variable that is initialized, but there exist some other paths for which
the variable is not initialized, the compiler emits a warning if it cannot prove
the uninitialized paths are not executed at run time. These warnings are made
optional because GCC is not smart enough to see all the reasons why the code
might be correct in spite of appearing to have an error. Here is one example of
how this can happen:

64 Using the GNU Compiler Collection (GCC)

{

int x;

switch (y)

{

case 1: x = 1;

break;

case 2: x = 4;

break;

case 3: x = 5;

}

foo (x);

}

If the value of y is always 1, 2 or 3, then x is always initialized, but GCC doesn’t
know this. To suppress the warning, you need to provide a default case with
assert(0) or similar code.
This option also warns when a non-volatile automatic variable might be changed
by a call to longjmp. These warnings as well are possible only in optimizing
compilation.
The compiler sees only the calls to setjmp. It cannot know where longjmp will
be called; in fact, a signal handler could call it at any point in the code. As a
result, you may get a warning even when there is in fact no problem because
longjmp cannot in fact be called at the place that would cause a problem.
Some spurious warnings can be avoided if you declare all the functions you
use that never return as noreturn. See Section 6.30 [Function Attributes],
page 372.
This warning is enabled by ‘-Wall’ or ‘-Wextra’.

-Wunknown-pragmas
Warn when a #pragma directive is encountered that is not understood by GCC.
If this command-line option is used, warnings are even issued for unknown
pragmas in system header files. This is not the case if the warnings are only
enabled by the ‘-Wall’ command-line option.

-Wno-pragmas
Do not warn about misuses of pragmas, such as incorrect parameters, invalid
syntax, or conflicts between pragmas. See also ‘-Wunknown-pragmas’.

-Wstrict-aliasing
This option is only active when ‘-fstrict-aliasing’ is active. It warns about
code that might break the strict aliasing rules that the compiler is using for
optimization. The warning does not catch all cases, but does attempt to
catch the more common pitfalls. It is included in ‘-Wall’. It is equivalent
to ‘-Wstrict-aliasing=3’

-Wstrict-aliasing=n
This option is only active when ‘-fstrict-aliasing’ is active. It warns about
code that might break the strict aliasing rules that the compiler is using for op-
timization. Higher levels correspond to higher accuracy (fewer false positives).
Higher levels also correspond to more effort, similar to the way ‘-O’ works.
‘-Wstrict-aliasing’ is equivalent to ‘-Wstrict-aliasing=3’.

Chapter 3: GCC Command Options 65

Level 1: Most aggressive, quick, least accurate. Possibly useful when higher
levels do not warn but ‘-fstrict-aliasing’ still breaks the code, as it has very
few false negatives. However, it has many false positives. Warns for all pointer
conversions between possibly incompatible types, even if never dereferenced.
Runs in the front end only.

Level 2: Aggressive, quick, not too precise. May still have many false positives
(not as many as level 1 though), and few false negatives (but possibly more
than level 1). Unlike level 1, it only warns when an address is taken. Warns
about incomplete types. Runs in the front end only.

Level 3 (default for ‘-Wstrict-aliasing’): Should have very few false positives
and few false negatives. Slightly slower than levels 1 or 2 when optimization
is enabled. Takes care of the common pun+dereference pattern in the front
end: *(int*)&some_float. If optimization is enabled, it also runs in the back
end, where it deals with multiple statement cases using flow-sensitive points-to
information. Only warns when the converted pointer is dereferenced. Does not
warn about incomplete types.

-Wstrict-overflow
-Wstrict-overflow=n

This option is only active when ‘-fstrict-overflow’ is active. It warns about
cases where the compiler optimizes based on the assumption that signed over-
flow does not occur. Note that it does not warn about all cases where the code
might overflow: it only warns about cases where the compiler implements some
optimization. Thus this warning depends on the optimization level.

An optimization that assumes that signed overflow does not occur is perfectly
safe if the values of the variables involved are such that overflow never does, in
fact, occur. Therefore this warning can easily give a false positive: a warning
about code that is not actually a problem. To help focus on important issues,
several warning levels are defined. No warnings are issued for the use of unde-
fined signed overflow when estimating how many iterations a loop requires, in
particular when determining whether a loop will be executed at all.

-Wstrict-overflow=1
Warn about cases that are both questionable and easy to avoid. For
example, with ‘-fstrict-overflow’, the compiler simplifies x + 1
> x to 1. This level of ‘-Wstrict-overflow’ is enabled by ‘-Wall’;
higher levels are not, and must be explicitly requested.

-Wstrict-overflow=2
Also warn about other cases where a comparison is simplified to
a constant. For example: abs (x) >= 0. This can only be simpli-
fied when ‘-fstrict-overflow’ is in effect, because abs (INT_MIN)
overflows to INT_MIN, which is less than zero. ‘-Wstrict-overflow’
(with no level) is the same as ‘-Wstrict-overflow=2’.

-Wstrict-overflow=3
Also warn about other cases where a comparison is simplified. For
example: x + 1 > 1 is simplified to x > 0.

66 Using the GNU Compiler Collection (GCC)

-Wstrict-overflow=4
Also warn about other simplifications not covered by the above
cases. For example: (x * 10) / 5 is simplified to x * 2.

-Wstrict-overflow=5
Also warn about cases where the compiler reduces the magnitude
of a constant involved in a comparison. For example: x + 2 > y is
simplified to x + 1 >= y. This is reported only at the highest warn-
ing level because this simplification applies to many comparisons,
so this warning level gives a very large number of false positives.

-Wsuggest-attribute=[pure|const|noreturn|format]
Warn for cases where adding an attribute may be beneficial. The attributes
currently supported are listed below.

-Wsuggest-attribute=pure
-Wsuggest-attribute=const
-Wsuggest-attribute=noreturn

Warn about functions that might be candidates for attributes pure,
const or noreturn. The compiler only warns for functions visible
in other compilation units or (in the case of pure and const) if it
cannot prove that the function returns normally. A function returns
normally if it doesn’t contain an infinite loop or return abnormally
by throwing, calling abort() or trapping. This analysis requires
option ‘-fipa-pure-const’, which is enabled by default at ‘-O’
and higher. Higher optimization levels improve the accuracy of the
analysis.

-Wsuggest-attribute=format
-Wmissing-format-attribute

Warn about function pointers that might be candidates for format
attributes. Note these are only possible candidates, not absolute
ones. GCC guesses that function pointers with format attributes
that are used in assignment, initialization, parameter passing or
return statements should have a corresponding format attribute
in the resulting type. I.e. the left-hand side of the assignment or
initialization, the type of the parameter variable, or the return type
of the containing function respectively should also have a format
attribute to avoid the warning.
GCC also warns about function definitions that might be candi-
dates for format attributes. Again, these are only possible candi-
dates. GCC guesses that format attributes might be appropriate
for any function that calls a function like vprintf or vscanf, but
this might not always be the case, and some functions for which
format attributes are appropriate may not be detected.

-Warray-bounds
This option is only active when ‘-ftree-vrp’ is active (default for ‘-O2’ and
above). It warns about subscripts to arrays that are always out of bounds. This
warning is enabled by ‘-Wall’.

Chapter 3: GCC Command Options 67

-Wno-div-by-zero
Do not warn about compile-time integer division by zero. Floating-point divi-
sion by zero is not warned about, as it can be a legitimate way of obtaining
infinities and NaNs.

-Wsystem-headers
Print warning messages for constructs found in system header files. Warnings
from system headers are normally suppressed, on the assumption that they
usually do not indicate real problems and would only make the compiler output
harder to read. Using this command-line option tells GCC to emit warnings
from system headers as if they occurred in user code. However, note that using
‘-Wall’ in conjunction with this option does not warn about unknown pragmas
in system headers—for that, ‘-Wunknown-pragmas’ must also be used.

-Wtrampolines
Warn about trampolines generated for pointers to nested functions.
A trampoline is a small piece of data or code that is created at run time on
the stack when the address of a nested function is taken, and is used to call
the nested function indirectly. For some targets, it is made up of data only and
thus requires no special treatment. But, for most targets, it is made up of code
and thus requires the stack to be made executable in order for the program to
work properly.

-Wfloat-equal
Warn if floating-point values are used in equality comparisons.
The idea behind this is that sometimes it is convenient (for the programmer)
to consider floating-point values as approximations to infinitely precise real
numbers. If you are doing this, then you need to compute (by analyzing the
code, or in some other way) the maximum or likely maximum error that the
computation introduces, and allow for it when performing comparisons (and
when producing output, but that’s a different problem). In particular, instead
of testing for equality, you should check to see whether the two values have
ranges that overlap; and this is done with the relational operators, so equality
comparisons are probably mistaken.

-Wtraditional (C and Objective-C only)
Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and/or problematic constructs that should be avoided.
• Macro parameters that appear within string literals in the macro body. In

traditional C macro replacement takes place within string literals, but in
ISO C it does not.

• In traditional C, some preprocessor directives did not exist. Traditional
preprocessors only considered a line to be a directive if the ‘#’ appeared in
column 1 on the line. Therefore ‘-Wtraditional’ warns about directives
that traditional C understands but ignores because the ‘#’ does not appear
as the first character on the line. It also suggests you hide directives like
‘#pragma’ not understood by traditional C by indenting them. Some tra-

68 Using the GNU Compiler Collection (GCC)

ditional implementations do not recognize ‘#elif’, so this option suggests
avoiding it altogether.

• A function-like macro that appears without arguments.
• The unary plus operator.
• The ‘U’ integer constant suffix, or the ‘F’ or ‘L’ floating-point constant

suffixes. (Traditional C does support the ‘L’ suffix on integer constants.)
Note, these suffixes appear in macros defined in the system headers of most
modern systems, e.g. the ‘_MIN’/‘_MAX’ macros in <limits.h>. Use of these
macros in user code might normally lead to spurious warnings, however
GCC’s integrated preprocessor has enough context to avoid warning in
these cases.

• A function declared external in one block and then used after the end of
the block.

• A switch statement has an operand of type long.
• A non-static function declaration follows a static one. This construct

is not accepted by some traditional C compilers.
• The ISO type of an integer constant has a different width or signedness

from its traditional type. This warning is only issued if the base of the
constant is ten. I.e. hexadecimal or octal values, which typically represent
bit patterns, are not warned about.

• Usage of ISO string concatenation is detected.
• Initialization of automatic aggregates.
• Identifier conflicts with labels. Traditional C lacks a separate namespace

for labels.
• Initialization of unions. If the initializer is zero, the warning is omitted.

This is done under the assumption that the zero initializer in user code
appears conditioned on e.g. __STDC__ to avoid missing initializer warnings
and relies on default initialization to zero in the traditional C case.

• Conversions by prototypes between fixed/floating-point values and vice
versa. The absence of these prototypes when compiling with traditional
C causes serious problems. This is a subset of the possible conversion
warnings; for the full set use ‘-Wtraditional-conversion’.

• Use of ISO C style function definitions. This warning intentionally is not
issued for prototype declarations or variadic functions because these ISO
C features appear in your code when using libiberty’s traditional C com-
patibility macros, PARAMS and VPARAMS. This warning is also bypassed for
nested functions because that feature is already a GCC extension and thus
not relevant to traditional C compatibility.

-Wtraditional-conversion (C and Objective-C only)
Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions changing
the width or signedness of a fixed-point argument except when the same as the
default promotion.

Chapter 3: GCC Command Options 69

-Wdeclaration-after-statement (C and Objective-C only)
Warn when a declaration is found after a statement in a block. This construct,
known from C++, was introduced with ISO C99 and is by default allowed in
GCC. It is not supported by ISO C90 and was not supported by GCC versions
before GCC 3.0. See Section 6.29 [Mixed Declarations], page 372.

-Wundef Warn if an undefined identifier is evaluated in an ‘#if’ directive.

-Wno-endif-labels
Do not warn whenever an ‘#else’ or an ‘#endif’ are followed by text.

-Wshadow Warn whenever a local variable or type declaration shadows another variable,
parameter, type, or class member (in C++), or whenever a built-in function is
shadowed. Note that in C++, the compiler warns if a local variable shadows an
explicit typedef, but not if it shadows a struct/class/enum.

-Wlarger-than=len
Warn whenever an object of larger than len bytes is defined.

-Wframe-larger-than=len
Warn if the size of a function frame is larger than len bytes. The computation
done to determine the stack frame size is approximate and not conservative.
The actual requirements may be somewhat greater than len even if you do not
get a warning. In addition, any space allocated via alloca, variable-length
arrays, or related constructs is not included by the compiler when determining
whether or not to issue a warning.

-Wno-free-nonheap-object
Do not warn when attempting to free an object that was not allocated on the
heap.

-Wstack-usage=len
Warn if the stack usage of a function might be larger than len bytes. The
computation done to determine the stack usage is conservative. Any space
allocated via alloca, variable-length arrays, or related constructs is included
by the compiler when determining whether or not to issue a warning.
The message is in keeping with the output of ‘-fstack-usage’.
• If the stack usage is fully static but exceeds the specified amount, it’s:

warning: stack usage is 1120 bytes

• If the stack usage is (partly) dynamic but bounded, it’s:
warning: stack usage might be 1648 bytes

• If the stack usage is (partly) dynamic and not bounded, it’s:
warning: stack usage might be unbounded

-Wunsafe-loop-optimizations
Warn if the loop cannot be optimized because the compiler cannot assume any-
thing on the bounds of the loop indices. With ‘-funsafe-loop-optimizations’
warn if the compiler makes such assumptions.

-Wno-pedantic-ms-format (MinGW targets only)
When used in combination with ‘-Wformat’ and ‘-pedantic’ without GNU
extensions, this option disables the warnings about non-ISO printf / scanf

70 Using the GNU Compiler Collection (GCC)

format width specifiers I32, I64, and I used on Windows targets, which depend
on the MS runtime.

-Wpointer-arith
Warn about anything that depends on the “size of” a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void
* pointers and pointers to functions. In C++, warn also when an arithmetic
operation involves NULL. This warning is also enabled by ‘-Wpedantic’.

-Wtype-limits
Warn if a comparison is always true or always false due to the limited range of
the data type, but do not warn for constant expressions. For example, warn if
an unsigned variable is compared against zero with ‘<’ or ‘>=’. This warning is
also enabled by ‘-Wextra’.

-Wbad-function-cast (C and Objective-C only)
Warn whenever a function call is cast to a non-matching type. For example,
warn if int malloc() is cast to anything *.

-Wc++-compat (C and Objective-C only)
Warn about ISO C constructs that are outside of the common subset of ISO C
and ISO C++, e.g. request for implicit conversion from void * to a pointer to
non-void type.

-Wc++11-compat (C++ and Objective-C++ only)
Warn about C++ constructs whose meaning differs between ISO C++ 1998 and
ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords in ISO C++
2011. This warning turns on ‘-Wnarrowing’ and is enabled by ‘-Wall’.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.
Also warn when making a cast that introduces a type qualifier in an unsafe way.
For example, casting char ** to const char ** is unsafe, as in this example:

/* p is char ** value. */

const char **q = (const char **) p;

/* Assignment of readonly string to const char * is OK. */

*q = "string";

/* Now char** pointer points to read-only memory. */

**p = ’b’;

-Wcast-align
Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * on machines
where integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings
When compiling C, give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer produces a warning.
These warnings help you find at compile time code that can try to write into
a string constant, but only if you have been very careful about using const in
declarations and prototypes. Otherwise, it is just a nuisance. This is why we
did not make ‘-Wall’ request these warnings.

Chapter 3: GCC Command Options 71

When compiling C++, warn about the deprecated conversion from string literals
to char *. This warning is enabled by default for C++ programs.

-Wclobbered
Warn for variables that might be changed by ‘longjmp’ or ‘vfork’. This warning
is also enabled by ‘-Wextra’.

-Wconditionally-supported (C++ and Objective-C++ only)
Warn for conditionally-supported (C++11 [intro.defs]) constructs.

-Wconversion
Warn for implicit conversions that may alter a value. This includes conversions
between real and integer, like abs (x) when x is double; conversions between
signed and unsigned, like unsigned ui = -1; and conversions to smaller types,
like sqrtf (M_PI). Do not warn for explicit casts like abs ((int) x) and ui
= (unsigned) -1, or if the value is not changed by the conversion like in abs
(2.0). Warnings about conversions between signed and unsigned integers can
be disabled by using ‘-Wno-sign-conversion’.

For C++, also warn for confusing overload resolution for user-defined conver-
sions; and conversions that never use a type conversion operator: conversions
to void, the same type, a base class or a reference to them. Warnings about
conversions between signed and unsigned integers are disabled by default in
C++ unless ‘-Wsign-conversion’ is explicitly enabled.

-Wno-conversion-null (C++ and Objective-C++ only)
Do not warn for conversions between NULL and non-pointer types.
‘-Wconversion-null’ is enabled by default.

-Wzero-as-null-pointer-constant (C++ and Objective-C++ only)
Warn when a literal ’0’ is used as null pointer constant. This can be useful to
facilitate the conversion to nullptr in C++11.

-Wdate-time
Warn when macros __TIME__, __DATE__ or __TIMESTAMP__ are encountered as
they might prevent bit-wise-identical reproducible compilations.

-Wdelete-incomplete (C++ and Objective-C++ only)
Warn when deleting a pointer to incomplete type, which may cause undefined
behavior at runtime. This warning is enabled by default.

-Wuseless-cast (C++ and Objective-C++ only)
Warn when an expression is casted to its own type.

-Wempty-body
Warn if an empty body occurs in an ‘if’, ‘else’ or ‘do while’ statement. This
warning is also enabled by ‘-Wextra’.

-Wenum-compare
Warn about a comparison between values of different enumerated types. In
C++ enumeral mismatches in conditional expressions are also diagnosed and
the warning is enabled by default. In C this warning is enabled by ‘-Wall’.

72 Using the GNU Compiler Collection (GCC)

-Wjump-misses-init (C, Objective-C only)
Warn if a goto statement or a switch statement jumps forward across the
initialization of a variable, or jumps backward to a label after the variable has
been initialized. This only warns about variables that are initialized when they
are declared. This warning is only supported for C and Objective-C; in C++
this sort of branch is an error in any case.
‘-Wjump-misses-init’ is included in ‘-Wc++-compat’. It can be disabled with
the ‘-Wno-jump-misses-init’ option.

-Wsign-compare
Warn when a comparison between signed and unsigned values could produce an
incorrect result when the signed value is converted to unsigned. This warning
is also enabled by ‘-Wextra’; to get the other warnings of ‘-Wextra’ without
this warning, use ‘-Wextra -Wno-sign-compare’.

-Wsign-conversion
Warn for implicit conversions that may change the sign of an integer value, like
assigning a signed integer expression to an unsigned integer variable. An explicit
cast silences the warning. In C, this option is enabled also by ‘-Wconversion’.

-Wfloat-conversion
Warn for implicit conversions that reduce the precision of a real value. This
includes conversions from real to integer, and from higher precision real to lower
precision real values. This option is also enabled by ‘-Wconversion’.

-Wsizeof-pointer-memaccess
Warn for suspicious length parameters to certain string and memory built-in
functions if the argument uses sizeof. This warning warns e.g. about memset
(ptr, 0, sizeof (ptr)); if ptr is not an array, but a pointer, and suggests a
possible fix, or about memcpy (&foo, ptr, sizeof (&foo));. This warning is
enabled by ‘-Wall’.

-Waddress
Warn about suspicious uses of memory addresses. These include using the
address of a function in a conditional expression, such as void func(void);
if (func), and comparisons against the memory address of a string literal,
such as if (x == "abc"). Such uses typically indicate a programmer error: the
address of a function always evaluates to true, so their use in a conditional
usually indicate that the programmer forgot the parentheses in a function call;
and comparisons against string literals result in unspecified behavior and are
not portable in C, so they usually indicate that the programmer intended to
use strcmp. This warning is enabled by ‘-Wall’.

-Wlogical-op
Warn about suspicious uses of logical operators in expressions. This includes
using logical operators in contexts where a bit-wise operator is likely to be
expected.

-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In
languages where you can return an array, this also elicits a warning.)

Chapter 3: GCC Command Options 73

-Wno-aggressive-loop-optimizations
Warn if in a loop with constant number of iterations the compiler detects un-
defined behavior in some statement during one or more of the iterations.

-Wno-attributes
Do not warn if an unexpected __attribute__ is used, such as unrecognized
attributes, function attributes applied to variables, etc. This does not stop
errors for incorrect use of supported attributes.

-Wno-builtin-macro-redefined
Do not warn if certain built-in macros are redefined. This suppresses warn-
ings for redefinition of __TIMESTAMP__, __TIME__, __DATE__, __FILE__, and
__BASE_FILE__.

-Wstrict-prototypes (C and Objective-C only)
Warn if a function is declared or defined without specifying the argument types.
(An old-style function definition is permitted without a warning if preceded by
a declaration that specifies the argument types.)

-Wold-style-declaration (C and Objective-C only)
Warn for obsolescent usages, according to the C Standard, in a declaration. For
example, warn if storage-class specifiers like static are not the first things in
a declaration. This warning is also enabled by ‘-Wextra’.

-Wold-style-definition (C and Objective-C only)
Warn if an old-style function definition is used. A warning is given even if there
is a previous prototype.

-Wmissing-parameter-type (C and Objective-C only)
A function parameter is declared without a type specifier in K&R-style func-
tions:

void foo(bar) { }

This warning is also enabled by ‘-Wextra’.

-Wmissing-prototypes (C and Objective-C only)
Warn if a global function is defined without a previous prototype declaration.
This warning is issued even if the definition itself provides a prototype. Use
this option to detect global functions that do not have a matching proto-
type declaration in a header file. This option is not valid for C++ because
all function declarations provide prototypes and a non-matching declaration
will declare an overload rather than conflict with an earlier declaration. Use
‘-Wmissing-declarations’ to detect missing declarations in C++.

-Wmissing-declarations
Warn if a global function is defined without a previous declaration. Do so even if
the definition itself provides a prototype. Use this option to detect global func-
tions that are not declared in header files. In C, no warnings are issued for func-
tions with previous non-prototype declarations; use ‘-Wmissing-prototype’ to
detect missing prototypes. In C++, no warnings are issued for function tem-
plates, or for inline functions, or for functions in anonymous namespaces.

74 Using the GNU Compiler Collection (GCC)

-Wmissing-field-initializers
Warn if a structure’s initializer has some fields missing. For example, the fol-
lowing code causes such a warning, because x.h is implicitly zero:

struct s { int f, g, h; };

struct s x = { 3, 4 };

This option does not warn about designated initializers, so the following mod-
ification does not trigger a warning:

struct s { int f, g, h; };

struct s x = { .f = 3, .g = 4 };

This warning is included in ‘-Wextra’. To get other ‘-Wextra’ warnings without
this one, use ‘-Wextra -Wno-missing-field-initializers’.

-Wno-multichar
Do not warn if a multicharacter constant (‘’FOOF’’) is used. Usually they
indicate a typo in the user’s code, as they have implementation-defined values,
and should not be used in portable code.

-Wnormalized=<none|id|nfc|nfkc>
In ISO C and ISO C++, two identifiers are different if they are different sequences
of characters. However, sometimes when characters outside the basic ASCII
character set are used, you can have two different character sequences that
look the same. To avoid confusion, the ISO 10646 standard sets out some
normalization rules which when applied ensure that two sequences that look the
same are turned into the same sequence. GCC can warn you if you are using
identifiers that have not been normalized; this option controls that warning.
There are four levels of warning supported by GCC. The default is
‘-Wnormalized=nfc’, which warns about any identifier that is not in the ISO
10646 “C” normalized form, NFC. NFC is the recommended form for most
uses.
Unfortunately, there are some characters allowed in identifiers by ISO C and
ISO C++ that, when turned into NFC, are not allowed in identifiers. That is,
there’s no way to use these symbols in portable ISO C or C++ and have all
your identifiers in NFC. ‘-Wnormalized=id’ suppresses the warning for these
characters. It is hoped that future versions of the standards involved will correct
this, which is why this option is not the default.
You can switch the warning off for all characters by writing
‘-Wnormalized=none’. You should only do this if you are using some
other normalization scheme (like “D”), because otherwise you can easily create
bugs that are literally impossible to see.
Some characters in ISO 10646 have distinct meanings but look identical in some
fonts or display methodologies, especially once formatting has been applied. For
instance \u207F, “SUPERSCRIPT LATIN SMALL LETTER N”, displays just
like a regular n that has been placed in a superscript. ISO 10646 defines the
NFKC normalization scheme to convert all these into a standard form as well,
and GCC warns if your code is not in NFKC if you use ‘-Wnormalized=nfkc’.
This warning is comparable to warning about every identifier that contains the
letter O because it might be confused with the digit 0, and so is not the default,

Chapter 3: GCC Command Options 75

but may be useful as a local coding convention if the programming environment
cannot be fixed to display these characters distinctly.

-Wno-deprecated
Do not warn about usage of deprecated features. See Section 7.12 [Deprecated
Features], page 712.

-Wno-deprecated-declarations
Do not warn about uses of functions (see Section 6.30 [Function Attributes],
page 372), variables (see Section 6.36 [Variable Attributes], page 409), and types
(see Section 6.37 [Type Attributes], page 418) marked as deprecated by using
the deprecated attribute.

-Wno-overflow
Do not warn about compile-time overflow in constant expressions.

-Wopenmp-simd
Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus simd
directive set by user. The ‘-fsimd-cost-model=unlimited’ can be used to
relax the cost model.

-Woverride-init (C and Objective-C only)
Warn if an initialized field without side effects is overridden when using desig-
nated initializers (see Section 6.26 [Designated Initializers], page 370).
This warning is included in ‘-Wextra’. To get other ‘-Wextra’ warnings without
this one, use ‘-Wextra -Wno-override-init’.

-Wpacked Warn if a structure is given the packed attribute, but the packed attribute has no
effect on the layout or size of the structure. Such structures may be mis-aligned
for little benefit. For instance, in this code, the variable f.x in struct bar is
misaligned even though struct bar does not itself have the packed attribute:

struct foo {

int x;

char a, b, c, d;

} __attribute__((packed));

struct bar {

char z;

struct foo f;

};

-Wpacked-bitfield-compat
The 4.1, 4.2 and 4.3 series of GCC ignore the packed attribute on bit-fields
of type char. This has been fixed in GCC 4.4 but the change can lead to
differences in the structure layout. GCC informs you when the offset of such a
field has changed in GCC 4.4. For example there is no longer a 4-bit padding
between field a and b in this structure:

struct foo

{

char a:4;

char b:8;

} __attribute__ ((packed));

This warning is enabled by default. Use ‘-Wno-packed-bitfield-compat’ to
disable this warning.

76 Using the GNU Compiler Collection (GCC)

-Wpadded Warn if padding is included in a structure, either to align an element of the
structure or to align the whole structure. Sometimes when this happens it is
possible to rearrange the fields of the structure to reduce the padding and so
make the structure smaller.

-Wredundant-decls
Warn if anything is declared more than once in the same scope, even in cases
where multiple declaration is valid and changes nothing.

-Wnested-externs (C and Objective-C only)
Warn if an extern declaration is encountered within a function.

-Wno-inherited-variadic-ctor
Suppress warnings about use of C++11 inheriting constructors when the base
class inherited from has a C variadic constructor; the warning is on by default
because the ellipsis is not inherited.

-Winline Warn if a function that is declared as inline cannot be inlined. Even with this
option, the compiler does not warn about failures to inline functions declared
in system headers.

The compiler uses a variety of heuristics to determine whether or not to inline a
function. For example, the compiler takes into account the size of the function
being inlined and the amount of inlining that has already been done in the cur-
rent function. Therefore, seemingly insignificant changes in the source program
can cause the warnings produced by ‘-Winline’ to appear or disappear.

-Wno-invalid-offsetof (C++ and Objective-C++ only)
Suppress warnings from applying the ‘offsetof’ macro to a non-POD type.
According to the 1998 ISO C++ standard, applying ‘offsetof’ to a non-POD
type is undefined. In existing C++ implementations, however, ‘offsetof’ typi-
cally gives meaningful results even when applied to certain kinds of non-POD
types (such as a simple ‘struct’ that fails to be a POD type only by virtue of
having a constructor). This flag is for users who are aware that they are writ-
ing nonportable code and who have deliberately chosen to ignore the warning
about it.

The restrictions on ‘offsetof’ may be relaxed in a future version of the C++
standard.

-Wno-int-to-pointer-cast
Suppress warnings from casts to pointer type of an integer of a different
size. In C++, casting to a pointer type of smaller size is an error.
‘Wint-to-pointer-cast’ is enabled by default.

-Wno-pointer-to-int-cast (C and Objective-C only)
Suppress warnings from casts from a pointer to an integer type of a different
size.

-Winvalid-pch
Warn if a precompiled header (see Section 3.20 [Precompiled Headers],
page 336) is found in the search path but can’t be used.

Chapter 3: GCC Command Options 77

-Wlong-long
Warn if ‘long long’ type is used. This is enabled by either ‘-Wpedantic’ or
‘-Wtraditional’ in ISO C90 and C++98 modes. To inhibit the warning mes-
sages, use ‘-Wno-long-long’.

-Wvariadic-macros
Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU
alternate syntax when in pedantic ISO C99 mode. This is default. To inhibit
the warning messages, use ‘-Wno-variadic-macros’.

-Wvarargs
Warn upon questionable usage of the macros used to handle variable argu-
ments like ‘va_start’. This is default. To inhibit the warning messages, use
‘-Wno-varargs’.

-Wvector-operation-performance
Warn if vector operation is not implemented via SIMD capabilities of the ar-
chitecture. Mainly useful for the performance tuning. Vector operation can be
implemented piecewise, which means that the scalar operation is performed
on every vector element; in parallel, which means that the vector operation
is implemented using scalars of wider type, which normally is more performance
efficient; and as a single scalar, which means that vector fits into a scalar
type.

-Wno-virtual-move-assign
Suppress warnings about inheriting from a virtual base with a non-trivial C++11
move assignment operator. This is dangerous because if the virtual base is
reachable along more than one path, it will be moved multiple times, which can
mean both objects end up in the moved-from state. If the move assignment
operator is written to avoid moving from a moved-from object, this warning
can be disabled.

-Wvla Warn if variable length array is used in the code. ‘-Wno-vla’ prevents the
‘-Wpedantic’ warning of the variable length array.

-Wvolatile-register-var
Warn if a register variable is declared volatile. The volatile modifier does not
inhibit all optimizations that may eliminate reads and/or writes to register
variables. This warning is enabled by ‘-Wall’.

-Wdisabled-optimization
Warn if a requested optimization pass is disabled. This warning does not gen-
erally indicate that there is anything wrong with your code; it merely indicates
that GCC’s optimizers are unable to handle the code effectively. Often, the
problem is that your code is too big or too complex; GCC refuses to optimize
programs when the optimization itself is likely to take inordinate amounts of
time.

-Wpointer-sign (C and Objective-C only)
Warn for pointer argument passing or assignment with different signedness.
This option is only supported for C and Objective-C. It is implied by ‘-Wall’
and by ‘-Wpedantic’, which can be disabled with ‘-Wno-pointer-sign’.

78 Using the GNU Compiler Collection (GCC)

-Wstack-protector
This option is only active when ‘-fstack-protector’ is active. It warns about
functions that are not protected against stack smashing.

-Woverlength-strings
Warn about string constants that are longer than the “minimum maximum”
length specified in the C standard. Modern compilers generally allow string
constants that are much longer than the standard’s minimum limit, but very
portable programs should avoid using longer strings.
The limit applies after string constant concatenation, and does not count the
trailing NUL. In C90, the limit was 509 characters; in C99, it was raised to
4095. C++98 does not specify a normative minimum maximum, so we do not
diagnose overlength strings in C++.
This option is implied by ‘-Wpedantic’, and can be disabled with
‘-Wno-overlength-strings’.

-Wunsuffixed-float-constants (C and Objective-C only)
Issue a warning for any floating constant that does not have a suffix. When
used together with ‘-Wsystem-headers’ it warns about such constants in system
header files. This can be useful when preparing code to use with the FLOAT_
CONST_DECIMAL64 pragma from the decimal floating-point extension to C99.

3.9 Options for Debugging Your Program or GCC

GCC has various special options that are used for debugging either your program or GCC:

-g Produce debugging information in the operating system’s native format (stabs,
COFF, XCOFF, or DWARF 2). GDB can work with this debugging informa-
tion.
On most systems that use stabs format, ‘-g’ enables use of extra debugging
information that only GDB can use; this extra information makes debugging
work better in GDB but probably makes other debuggers crash or refuse to read
the program. If you want to control for certain whether to generate the extra
information, use ‘-gstabs+’, ‘-gstabs’, ‘-gxcoff+’, ‘-gxcoff’, or ‘-gvms’ (see
below).
GCC allows you to use ‘-g’ with ‘-O’. The shortcuts taken by optimized code
may occasionally produce surprising results: some variables you declared may
not exist at all; flow of control may briefly move where you did not expect it;
some statements may not be executed because they compute constant results
or their values are already at hand; some statements may execute in different
places because they have been moved out of loops.
Nevertheless it proves possible to debug optimized output. This makes it rea-
sonable to use the optimizer for programs that might have bugs.
The following options are useful when GCC is generated with the capability for
more than one debugging format.

-gsplit-dwarf
Separate as much dwarf debugging information as possible into a separate out-
put file with the extension .dwo. This option allows the build system to avoid

Chapter 3: GCC Command Options 79

linking files with debug information. To be useful, this option requires a de-
bugger capable of reading .dwo files.

-ggdb Produce debugging information for use by GDB. This means to use the most
expressive format available (DWARF 2, stabs, or the native format if neither
of those are supported), including GDB extensions if at all possible.

-gpubnames
Generate dwarf .debug pubnames and .debug pubtypes sections.

-ggnu-pubnames
Generate .debug pubnames and .debug pubtypes sections in a format suitable
for conversion into a GDB index. This option is only useful with a linker that
can produce GDB index version 7.

-gstabs Produce debugging information in stabs format (if that is supported), without
GDB extensions. This is the format used by DBX on most BSD systems.
On MIPS, Alpha and System V Release 4 systems this option produces stabs
debugging output that is not understood by DBX or SDB. On System V Release
4 systems this option requires the GNU assembler.

-feliminate-unused-debug-symbols
Produce debugging information in stabs format (if that is supported), for only
symbols that are actually used.

-femit-class-debug-always
Instead of emitting debugging information for a C++ class in only one object file,
emit it in all object files using the class. This option should be used only with
debuggers that are unable to handle the way GCC normally emits debugging
information for classes because using this option increases the size of debugging
information by as much as a factor of two.

-fdebug-types-section
When using DWARF Version 4 or higher, type DIEs can be put into their own
.debug_types section instead of making them part of the .debug_info section.
It is more efficient to put them in a separate comdat sections since the linker
can then remove duplicates. But not all DWARF consumers support .debug_
types sections yet and on some objects .debug_types produces larger instead
of smaller debugging information.

-gstabs+ Produce debugging information in stabs format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program.

-gcoff Produce debugging information in COFF format (if that is supported). This is
the format used by SDB on most System V systems prior to System V Release
4.

-gxcoff Produce debugging information in XCOFF format (if that is supported). This
is the format used by the DBX debugger on IBM RS/6000 systems.

-gxcoff+ Produce debugging information in XCOFF format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of

80 Using the GNU Compiler Collection (GCC)

these extensions is likely to make other debuggers crash or refuse to read the
program, and may cause assemblers other than the GNU assembler (GAS) to
fail with an error.

-gdwarf-version
Produce debugging information in DWARF format (if that is supported). The
value of version may be either 2, 3 or 4; the default version for most targets is
4.
Note that with DWARF Version 2, some ports require and always use some
non-conflicting DWARF 3 extensions in the unwind tables.
Version 4 may require GDB 7.0 and ‘-fvar-tracking-assignments’ for max-
imum benefit.

-grecord-gcc-switches
This switch causes the command-line options used to invoke the compiler that
may affect code generation to be appended to the DW AT producer attribute
in DWARF debugging information. The options are concatenated with spa-
ces separating them from each other and from the compiler version. See also
‘-frecord-gcc-switches’ for another way of storing compiler options into the
object file. This is the default.

-gno-record-gcc-switches
Disallow appending command-line options to the DW AT producer attribute
in DWARF debugging information.

-gstrict-dwarf
Disallow using extensions of later DWARF standard version than selected with
‘-gdwarf-version’. On most targets using non-conflicting DWARF extensions
from later standard versions is allowed.

-gno-strict-dwarf
Allow using extensions of later DWARF standard version than selected with
‘-gdwarf-version’.

-gvms Produce debugging information in Alpha/VMS debug format (if that is sup-
ported). This is the format used by DEBUG on Alpha/VMS systems.

-glevel
-ggdblevel
-gstabslevel
-gcofflevel
-gxcofflevel
-gvmslevel

Request debugging information and also use level to specify how much infor-
mation. The default level is 2.
Level 0 produces no debug information at all. Thus, ‘-g0’ negates ‘-g’.
Level 1 produces minimal information, enough for making backtraces in parts
of the program that you don’t plan to debug. This includes descriptions of
functions and external variables, and line number tables, but no information
about local variables.

Chapter 3: GCC Command Options 81

Level 3 includes extra information, such as all the macro definitions present in
the program. Some debuggers support macro expansion when you use ‘-g3’.

‘-gdwarf-2’ does not accept a concatenated debug level, because GCC used
to support an option ‘-gdwarf’ that meant to generate debug information in
version 1 of the DWARF format (which is very different from version 2), and
it would have been too confusing. That debug format is long obsolete, but the
option cannot be changed now. Instead use an additional ‘-glevel’ option to
change the debug level for DWARF.

-gtoggle Turn off generation of debug info, if leaving out this option generates it, or turn
it on at level 2 otherwise. The position of this argument in the command line
does not matter; it takes effect after all other options are processed, and it does
so only once, no matter how many times it is given. This is mainly intended to
be used with ‘-fcompare-debug’.

-fsanitize=address
Enable AddressSanitizer, a fast memory error detector. Memory access instruc-
tions will be instrumented to detect out-of-bounds and use-after-free bugs. See
http://code.google.com/p/address-sanitizer/ for more details. The
run-time behavior can be influenced using the ASAN_OPTIONS environment vari-
able; see https://code.google.com/p/address-sanitizer/wiki/Flags#
Run-time_flags for a list of supported options.

-fsanitize=thread
Enable ThreadSanitizer, a fast data race detector. Memory access instructions
will be instrumented to detect data race bugs. See http://code.google.
com/p/thread-sanitizer/ for more details. The run-time behavior can be
influenced using the TSAN_OPTIONS environment variable; see https://code.
google.com/p/thread-sanitizer/wiki/Flags for a list of supported options.

-fsanitize=leak
Enable LeakSanitizer, a memory leak detector. This option only matters
for linking of executables and if neither ‘-fsanitize=address’ nor
‘-fsanitize=thread’ is used. In that case it will link the executable against
a library that overrides malloc and other allocator functions. See https://
code.google.com/p/address-sanitizer/wiki/LeakSanitizer for more
details. The run-time behavior can be influenced using the LSAN_OPTIONS
environment variable.

-fsanitize=undefined
Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector. Vari-
ous computations will be instrumented to detect undefined behavior at runtime.
Current suboptions are:

-fsanitize=shift
This option enables checking that the result of a shift operation
is not undefined. Note that what exactly is considered undefined
differs slightly between C and C++, as well as between ISO C90 and
C99, etc.

http://code.google.com/p/address-sanitizer/
https://code.google.com/p/address-sanitizer/wiki/Flags#Run-time_flags
https://code.google.com/p/address-sanitizer/wiki/Flags#Run-time_flags
http://code.google.com/p/thread-sanitizer/
http://code.google.com/p/thread-sanitizer/
https://code.google.com/p/thread-sanitizer/wiki/Flags
https://code.google.com/p/thread-sanitizer/wiki/Flags
https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer
https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer

82 Using the GNU Compiler Collection (GCC)

-fsanitize=integer-divide-by-zero
Detect integer division by zero as well as INT_MIN / -1 division.

-fsanitize=unreachable
With this option, the compiler will turn the __builtin_
unreachable call into a diagnostics message call instead. When
reaching the __builtin_unreachable call, the behavior is
undefined.

-fsanitize=vla-bound
This option instructs the compiler to check that the size of a vari-
able length array is positive. This option does not have any effect
in ‘-std=c++1y’ mode, as the standard requires the exception be
thrown instead.

-fsanitize=null
This option enables pointer checking. Particularly, the application
built with this option turned on will issue an error message when
it tries to dereference a NULL pointer, or if a reference (possibly
an rvalue reference) is bound to a NULL pointer.

-fsanitize=return
This option enables return statement checking. Programs built
with this option turned on will issue an error message when the
end of a non-void function is reached without actually returning a
value. This option works in C++ only.

-fsanitize=signed-integer-overflow
This option enables signed integer overflow checking. We check that
the result of +, *, and both unary and binary - does not overflow
in the signed arithmetics. Note, integer promotion rules must be
taken into account. That is, the following is not an overflow:

signed char a = SCHAR_MAX;

a++;

While ‘-ftrapv’ causes traps for signed overflows to be emitted,
‘-fsanitize=undefined’ gives a diagnostic message. This currently works
only for the C family of languages.

-fdump-final-insns[=file]
Dump the final internal representation (RTL) to file. If the optional argument
is omitted (or if file is .), the name of the dump file is determined by appending
.gkd to the compilation output file name.

-fcompare-debug[=opts]
If no error occurs during compilation, run the compiler a second time, adding
opts and ‘-fcompare-debug-second’ to the arguments passed to the second
compilation. Dump the final internal representation in both compilations, and
print an error if they differ.
If the equal sign is omitted, the default ‘-gtoggle’ is used.
The environment variable GCC_COMPARE_DEBUG, if defined, non-empty and
nonzero, implicitly enables ‘-fcompare-debug’. If GCC_COMPARE_DEBUG is

Chapter 3: GCC Command Options 83

defined to a string starting with a dash, then it is used for opts, otherwise the
default ‘-gtoggle’ is used.

‘-fcompare-debug=’, with the equal sign but without opts, is equivalent to
‘-fno-compare-debug’, which disables the dumping of the final representation
and the second compilation, preventing even GCC_COMPARE_DEBUG from taking
effect.

To verify full coverage during ‘-fcompare-debug’ testing, set GCC_COMPARE_
DEBUG to say ‘-fcompare-debug-not-overridden’, which GCC rejects as
an invalid option in any actual compilation (rather than preprocessing,
assembly or linking). To get just a warning, setting GCC_COMPARE_DEBUG to
‘-w%n-fcompare-debug not overridden’ will do.

-fcompare-debug-second
This option is implicitly passed to the compiler for the second compilation
requested by ‘-fcompare-debug’, along with options to silence warnings, and
omitting other options that would cause side-effect compiler outputs to files or
to the standard output. Dump files and preserved temporary files are renamed
so as to contain the .gk additional extension during the second compilation, to
avoid overwriting those generated by the first.

When this option is passed to the compiler driver, it causes the first compilation
to be skipped, which makes it useful for little other than debugging the compiler
proper.

-feliminate-dwarf2-dups
Compress DWARF 2 debugging information by eliminating duplicated infor-
mation about each symbol. This option only makes sense when generating
DWARF 2 debugging information with ‘-gdwarf-2’.

-femit-struct-debug-baseonly
Emit debug information for struct-like types only when the base name of the
compilation source file matches the base name of file in which the struct is
defined.

This option substantially reduces the size of debugging information,
but at significant potential loss in type information to the debugger.
See ‘-femit-struct-debug-reduced’ for a less aggressive option. See
‘-femit-struct-debug-detailed’ for more detailed control.

This option works only with DWARF 2.

-femit-struct-debug-reduced
Emit debug information for struct-like types only when the base name of the
compilation source file matches the base name of file in which the type is defined,
unless the struct is a template or defined in a system header.

This option significantly reduces the size of debugging information,
with some potential loss in type information to the debugger. See
‘-femit-struct-debug-baseonly’ for a more aggressive option. See
‘-femit-struct-debug-detailed’ for more detailed control.

This option works only with DWARF 2.

84 Using the GNU Compiler Collection (GCC)

-femit-struct-debug-detailed[=spec-list]
Specify the struct-like types for which the compiler generates debug informa-
tion. The intent is to reduce duplicate struct debug information between dif-
ferent object files within the same program.
This option is a detailed version of ‘-femit-struct-debug-reduced’ and
‘-femit-struct-debug-baseonly’, which serves for most needs.
A specification has the syntax
[‘dir:’|‘ind:’][‘ord:’|‘gen:’](‘any’|‘sys’|‘base’|‘none’)
The optional first word limits the specification to structs that are used directly
(‘dir:’) or used indirectly (‘ind:’). A struct type is used directly when it is
the type of a variable, member. Indirect uses arise through pointers to structs.
That is, when use of an incomplete struct is valid, the use is indirect. An
example is ‘struct one direct; struct two * indirect;’.
The optional second word limits the specification to ordinary structs (‘ord:’) or
generic structs (‘gen:’). Generic structs are a bit complicated to explain. For
C++, these are non-explicit specializations of template classes, or non-template
classes within the above. Other programming languages have generics, but
‘-femit-struct-debug-detailed’ does not yet implement them.
The third word specifies the source files for those structs for which the compiler
should emit debug information. The values ‘none’ and ‘any’ have the normal
meaning. The value ‘base’ means that the base of name of the file in which
the type declaration appears must match the base of the name of the main
compilation file. In practice, this means that when compiling ‘foo.c’, debug
information is generated for types declared in that file and ‘foo.h’, but not other
header files. The value ‘sys’ means those types satisfying ‘base’ or declared in
system or compiler headers.
You may need to experiment to determine the best settings for your application.
The default is ‘-femit-struct-debug-detailed=all’.
This option works only with DWARF 2.

-fno-merge-debug-strings
Direct the linker to not merge together strings in the debugging information
that are identical in different object files. Merging is not supported by all
assemblers or linkers. Merging decreases the size of the debug information in
the output file at the cost of increasing link processing time. Merging is enabled
by default.

-fdebug-prefix-map=old=new
When compiling files in directory ‘old’, record debugging information describing
them as in ‘new’ instead.

-fno-dwarf2-cfi-asm
Emit DWARF 2 unwind info as compiler generated .eh_frame section instead
of using GAS .cfi_* directives.

-p Generate extra code to write profile information suitable for the analysis pro-
gram prof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

Chapter 3: GCC Command Options 85

-pg Generate extra code to write profile information suitable for the analysis pro-
gram gprof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

-Q Makes the compiler print out each function name as it is compiled, and print
some statistics about each pass when it finishes.

-ftime-report
Makes the compiler print some statistics about the time consumed by each pass
when it finishes.

-fmem-report
Makes the compiler print some statistics about permanent memory allocation
when it finishes.

-fmem-report-wpa
Makes the compiler print some statistics about permanent memory allocation
for the WPA phase only.

-fpre-ipa-mem-report
-fpost-ipa-mem-report

Makes the compiler print some statistics about permanent memory allocation
before or after interprocedural optimization.

-fprofile-report
Makes the compiler print some statistics about consistency of the (estimated)
profile and effect of individual passes.

-fstack-usage
Makes the compiler output stack usage information for the program, on a per-
function basis. The filename for the dump is made by appending ‘.su’ to the
auxname. auxname is generated from the name of the output file, if explicitly
specified and it is not an executable, otherwise it is the basename of the source
file. An entry is made up of three fields:
• The name of the function.
• A number of bytes.
• One or more qualifiers: static, dynamic, bounded.

The qualifier static means that the function manipulates the stack statically: a
fixed number of bytes are allocated for the frame on function entry and released
on function exit; no stack adjustments are otherwise made in the function. The
second field is this fixed number of bytes.
The qualifier dynamic means that the function manipulates the stack dynami-
cally: in addition to the static allocation described above, stack adjustments are
made in the body of the function, for example to push/pop arguments around
function calls. If the qualifier bounded is also present, the amount of these ad-
justments is bounded at compile time and the second field is an upper bound of
the total amount of stack used by the function. If it is not present, the amount
of these adjustments is not bounded at compile time and the second field only
represents the bounded part.

86 Using the GNU Compiler Collection (GCC)

-fprofile-arcs
Add code so that program flow arcs are instrumented. During execution the
program records how many times each branch and call is executed and how
many times it is taken or returns. When the compiled program exits it saves
this data to a file called ‘auxname.gcda’ for each source file. The data may be
used for profile-directed optimizations (‘-fbranch-probabilities’), or for test
coverage analysis (‘-ftest-coverage’). Each object file’s auxname is generated
from the name of the output file, if explicitly specified and it is not the final
executable, otherwise it is the basename of the source file. In both cases any
suffix is removed (e.g. ‘foo.gcda’ for input file ‘dir/foo.c’, or ‘dir/foo.gcda’
for output file specified as ‘-o dir/foo.o’). See Section 10.5 [Cross-profiling],
page 743.

--coverage
This option is used to compile and link code instrumented for coverage analysis.
The option is a synonym for ‘-fprofile-arcs’ ‘-ftest-coverage’ (when com-
piling) and ‘-lgcov’ (when linking). See the documentation for those options
for more details.

• Compile the source files with ‘-fprofile-arcs’ plus optimization and
code generation options. For test coverage analysis, use the additional
‘-ftest-coverage’ option. You do not need to profile every source file in
a program.

• Link your object files with ‘-lgcov’ or ‘-fprofile-arcs’ (the latter implies
the former).

• Run the program on a representative workload to generate the arc profile
information. This may be repeated any number of times. You can run
concurrent instances of your program, and provided that the file system
supports locking, the data files will be correctly updated. Also fork calls
are detected and correctly handled (double counting will not happen).

• For profile-directed optimizations, compile the source files again
with the same optimization and code generation options plus
‘-fbranch-probabilities’ (see Section 3.10 [Options that Control
Optimization], page 101).

• For test coverage analysis, use gcov to produce human readable information
from the ‘.gcno’ and ‘.gcda’ files. Refer to the gcov documentation for
further information.

With ‘-fprofile-arcs’, for each function of your program GCC creates a
program flow graph, then finds a spanning tree for the graph. Only arcs that
are not on the spanning tree have to be instrumented: the compiler adds code
to count the number of times that these arcs are executed. When an arc is
the only exit or only entrance to a block, the instrumentation code can be
added to the block; otherwise, a new basic block must be created to hold the
instrumentation code.

Chapter 3: GCC Command Options 87

-ftest-coverage
Produce a notes file that the gcov code-coverage utility (see Chapter 10 [gcov—
a Test Coverage Program], page 735) can use to show program coverage. Each
source file’s note file is called ‘auxname.gcno’. Refer to the ‘-fprofile-arcs’
option above for a description of auxname and instructions on how to generate
test coverage data. Coverage data matches the source files more closely if you
do not optimize.

-fdbg-cnt-list
Print the name and the counter upper bound for all debug counters.

-fdbg-cnt=counter-value-list
Set the internal debug counter upper bound. counter-value-list is a comma-
separated list of name:value pairs which sets the upper bound of each debug
counter name to value. All debug counters have the initial upper bound of
UINT_MAX; thus dbg_cnt() returns true always unless the upper bound is set
by this option. For example, with ‘-fdbg-cnt=dce:10,tail_call:0’, dbg_
cnt(dce) returns true only for first 10 invocations.

-fenable-kind-pass
-fdisable-kind-pass=range-list

This is a set of options that are used to explicitly disable/enable optimization
passes. These options are intended for use for debugging GCC. Compiler users
should use regular options for enabling/disabling passes instead.

-fdisable-ipa-pass
Disable IPA pass pass. pass is the pass name. If the same pass
is statically invoked in the compiler multiple times, the pass name
should be appended with a sequential number starting from 1.

-fdisable-rtl-pass
-fdisable-rtl-pass=range-list

Disable RTL pass pass. pass is the pass name. If the same pass is
statically invoked in the compiler multiple times, the pass name
should be appended with a sequential number starting from 1.
range-list is a comma-separated list of function ranges or assem-
bler names. Each range is a number pair separated by a colon.
The range is inclusive in both ends. If the range is trivial, the
number pair can be simplified as a single number. If the function’s
call graph node’s uid falls within one of the specified ranges, the
pass is disabled for that function. The uid is shown in the function
header of a dump file, and the pass names can be dumped by using
option ‘-fdump-passes’.

-fdisable-tree-pass
-fdisable-tree-pass=range-list

Disable tree pass pass. See ‘-fdisable-rtl’ for the description of
option arguments.

88 Using the GNU Compiler Collection (GCC)

-fenable-ipa-pass
Enable IPA pass pass. pass is the pass name. If the same pass
is statically invoked in the compiler multiple times, the pass name
should be appended with a sequential number starting from 1.

-fenable-rtl-pass
-fenable-rtl-pass=range-list

Enable RTL pass pass. See ‘-fdisable-rtl’ for option argument
description and examples.

-fenable-tree-pass
-fenable-tree-pass=range-list

Enable tree pass pass. See ‘-fdisable-rtl’ for the description of
option arguments.

Here are some examples showing uses of these options.

disable ccp1 for all functions

-fdisable-tree-ccp1

disable complete unroll for function whose cgraph node uid is 1

-fenable-tree-cunroll=1

disable gcse2 for functions at the following ranges [1,1],

[300,400], and [400,1000]

disable gcse2 for functions foo and foo2

-fdisable-rtl-gcse2=foo,foo2

disable early inlining

-fdisable-tree-einline

disable ipa inlining

-fdisable-ipa-inline

enable tree full unroll

-fenable-tree-unroll

-dletters
-fdump-rtl-pass
-fdump-rtl-pass=filename

Says to make debugging dumps during compilation at times specified by letters.
This is used for debugging the RTL-based passes of the compiler. The file names
for most of the dumps are made by appending a pass number and a word to
the dumpname, and the files are created in the directory of the output file. In
case of ‘=filename’ option, the dump is output on the given file instead of the
pass numbered dump files. Note that the pass number is computed statically as
passes get registered into the pass manager. Thus the numbering is not related
to the dynamic order of execution of passes. In particular, a pass installed by a
plugin could have a number over 200 even if it executed quite early. dumpname
is generated from the name of the output file, if explicitly specified and it is not
an executable, otherwise it is the basename of the source file. These switches
may have different effects when ‘-E’ is used for preprocessing.

Debug dumps can be enabled with a ‘-fdump-rtl’ switch or some ‘-d’ option
letters. Here are the possible letters for use in pass and letters, and their
meanings:

Chapter 3: GCC Command Options 89

-fdump-rtl-alignments
Dump after branch alignments have been computed.

-fdump-rtl-asmcons
Dump after fixing rtl statements that have unsatisfied in/out con-
straints.

-fdump-rtl-auto_inc_dec
Dump after auto-inc-dec discovery. This pass is only run on archi-
tectures that have auto inc or auto dec instructions.

-fdump-rtl-barriers
Dump after cleaning up the barrier instructions.

-fdump-rtl-bbpart
Dump after partitioning hot and cold basic blocks.

-fdump-rtl-bbro
Dump after block reordering.

-fdump-rtl-btl1
-fdump-rtl-btl2

‘-fdump-rtl-btl1’ and ‘-fdump-rtl-btl2’ enable dumping after
the two branch target load optimization passes.

-fdump-rtl-bypass
Dump after jump bypassing and control flow optimizations.

-fdump-rtl-combine
Dump after the RTL instruction combination pass.

-fdump-rtl-compgotos
Dump after duplicating the computed gotos.

-fdump-rtl-ce1
-fdump-rtl-ce2
-fdump-rtl-ce3

‘-fdump-rtl-ce1’, ‘-fdump-rtl-ce2’, and ‘-fdump-rtl-ce3’ en-
able dumping after the three if conversion passes.

-fdump-rtl-cprop_hardreg
Dump after hard register copy propagation.

-fdump-rtl-csa
Dump after combining stack adjustments.

-fdump-rtl-cse1
-fdump-rtl-cse2

‘-fdump-rtl-cse1’ and ‘-fdump-rtl-cse2’ enable dumping after
the two common subexpression elimination passes.

-fdump-rtl-dce
Dump after the standalone dead code elimination passes.

-fdump-rtl-dbr
Dump after delayed branch scheduling.

90 Using the GNU Compiler Collection (GCC)

-fdump-rtl-dce1
-fdump-rtl-dce2

‘-fdump-rtl-dce1’ and ‘-fdump-rtl-dce2’ enable dumping after
the two dead store elimination passes.

-fdump-rtl-eh
Dump after finalization of EH handling code.

-fdump-rtl-eh_ranges
Dump after conversion of EH handling range regions.

-fdump-rtl-expand
Dump after RTL generation.

-fdump-rtl-fwprop1
-fdump-rtl-fwprop2

‘-fdump-rtl-fwprop1’ and ‘-fdump-rtl-fwprop2’ enable dump-
ing after the two forward propagation passes.

-fdump-rtl-gcse1
-fdump-rtl-gcse2

‘-fdump-rtl-gcse1’ and ‘-fdump-rtl-gcse2’ enable dumping af-
ter global common subexpression elimination.

-fdump-rtl-init-regs
Dump after the initialization of the registers.

-fdump-rtl-initvals
Dump after the computation of the initial value sets.

-fdump-rtl-into_cfglayout
Dump after converting to cfglayout mode.

-fdump-rtl-ira
Dump after iterated register allocation.

-fdump-rtl-jump
Dump after the second jump optimization.

-fdump-rtl-loop2
‘-fdump-rtl-loop2’ enables dumping after the rtl loop optimiza-
tion passes.

-fdump-rtl-mach
Dump after performing the machine dependent reorganization pass,
if that pass exists.

-fdump-rtl-mode_sw
Dump after removing redundant mode switches.

-fdump-rtl-rnreg
Dump after register renumbering.

-fdump-rtl-outof_cfglayout
Dump after converting from cfglayout mode.

Chapter 3: GCC Command Options 91

-fdump-rtl-peephole2
Dump after the peephole pass.

-fdump-rtl-postreload
Dump after post-reload optimizations.

-fdump-rtl-pro_and_epilogue
Dump after generating the function prologues and epilogues.

-fdump-rtl-sched1
-fdump-rtl-sched2

‘-fdump-rtl-sched1’ and ‘-fdump-rtl-sched2’ enable dumping
after the basic block scheduling passes.

-fdump-rtl-ree
Dump after sign/zero extension elimination.

-fdump-rtl-seqabstr
Dump after common sequence discovery.

-fdump-rtl-shorten
Dump after shortening branches.

-fdump-rtl-sibling
Dump after sibling call optimizations.

-fdump-rtl-split1
-fdump-rtl-split2
-fdump-rtl-split3
-fdump-rtl-split4
-fdump-rtl-split5

‘-fdump-rtl-split1’, ‘-fdump-rtl-split2’, ‘-fdump-rtl-split3’,
‘-fdump-rtl-split4’ and ‘-fdump-rtl-split5’ enable dumping
after five rounds of instruction splitting.

-fdump-rtl-sms
Dump after modulo scheduling. This pass is only run on some
architectures.

-fdump-rtl-stack
Dump after conversion from GCC’s “flat register file” registers to
the x87’s stack-like registers. This pass is only run on x86 variants.

-fdump-rtl-subreg1
-fdump-rtl-subreg2

‘-fdump-rtl-subreg1’ and ‘-fdump-rtl-subreg2’ enable dump-
ing after the two subreg expansion passes.

-fdump-rtl-unshare
Dump after all rtl has been unshared.

-fdump-rtl-vartrack
Dump after variable tracking.

92 Using the GNU Compiler Collection (GCC)

-fdump-rtl-vregs
Dump after converting virtual registers to hard registers.

-fdump-rtl-web
Dump after live range splitting.

-fdump-rtl-regclass
-fdump-rtl-subregs_of_mode_init
-fdump-rtl-subregs_of_mode_finish
-fdump-rtl-dfinit
-fdump-rtl-dfinish

These dumps are defined but always produce empty files.

-da
-fdump-rtl-all

Produce all the dumps listed above.

-dA Annotate the assembler output with miscellaneous debugging in-
formation.

-dD Dump all macro definitions, at the end of preprocessing, in addition
to normal output.

-dH Produce a core dump whenever an error occurs.

-dp Annotate the assembler output with a comment indicating which
pattern and alternative is used. The length of each instruction is
also printed.

-dP Dump the RTL in the assembler output as a comment before each
instruction. Also turns on ‘-dp’ annotation.

-dx Just generate RTL for a function instead of compiling it. Usually
used with ‘-fdump-rtl-expand’.

-fdump-noaddr
When doing debugging dumps, suppress address output. This makes it more
feasible to use diff on debugging dumps for compiler invocations with different
compiler binaries and/or different text / bss / data / heap / stack / dso start
locations.

-fdump-unnumbered
When doing debugging dumps, suppress instruction numbers and address out-
put. This makes it more feasible to use diff on debugging dumps for compiler
invocations with different options, in particular with and without ‘-g’.

-fdump-unnumbered-links
When doing debugging dumps (see ‘-d’ option above), suppress instruction
numbers for the links to the previous and next instructions in a sequence.

-fdump-translation-unit (C++ only)
-fdump-translation-unit-options (C++ only)

Dump a representation of the tree structure for the entire translation unit to
a file. The file name is made by appending ‘.tu’ to the source file name, and

Chapter 3: GCC Command Options 93

the file is created in the same directory as the output file. If the ‘-options’
form is used, options controls the details of the dump as described for the
‘-fdump-tree’ options.

-fdump-class-hierarchy (C++ only)
-fdump-class-hierarchy-options (C++ only)

Dump a representation of each class’s hierarchy and virtual function table layout
to a file. The file name is made by appending ‘.class’ to the source file name,
and the file is created in the same directory as the output file. If the ‘-options’
form is used, options controls the details of the dump as described for the
‘-fdump-tree’ options.

-fdump-ipa-switch
Control the dumping at various stages of inter-procedural analysis language tree
to a file. The file name is generated by appending a switch specific suffix to the
source file name, and the file is created in the same directory as the output file.
The following dumps are possible:

‘all’ Enables all inter-procedural analysis dumps.

‘cgraph’ Dumps information about call-graph optimization, unused function
removal, and inlining decisions.

‘inline’ Dump after function inlining.

-fdump-passes
Dump the list of optimization passes that are turned on and off by the current
command-line options.

-fdump-statistics-option
Enable and control dumping of pass statistics in a separate file. The file name
is generated by appending a suffix ending in ‘.statistics’ to the source file
name, and the file is created in the same directory as the output file. If the
‘-option’ form is used, ‘-stats’ causes counters to be summed over the whole
compilation unit while ‘-details’ dumps every event as the passes generate
them. The default with no option is to sum counters for each function compiled.

-fdump-tree-switch
-fdump-tree-switch-options
-fdump-tree-switch-options=filename

Control the dumping at various stages of processing the intermediate language
tree to a file. The file name is generated by appending a switch-specific suffix to
the source file name, and the file is created in the same directory as the output
file. In case of ‘=filename’ option, the dump is output on the given file instead
of the auto named dump files. If the ‘-options’ form is used, options is a list
of ‘-’ separated options which control the details of the dump. Not all options
are applicable to all dumps; those that are not meaningful are ignored. The
following options are available

‘address’ Print the address of each node. Usually this is not meaningful as it
changes according to the environment and source file. Its primary
use is for tying up a dump file with a debug environment.

94 Using the GNU Compiler Collection (GCC)

‘asmname’ If DECL_ASSEMBLER_NAME has been set for a given decl, use that
in the dump instead of DECL_NAME. Its primary use is ease of use
working backward from mangled names in the assembly file.

‘slim’ When dumping front-end intermediate representations, inhibit
dumping of members of a scope or body of a function merely
because that scope has been reached. Only dump such items when
they are directly reachable by some other path.

When dumping pretty-printed trees, this option inhibits dumping
the bodies of control structures.

When dumping RTL, print the RTL in slim (condensed) form in-
stead of the default LISP-like representation.

‘raw’ Print a raw representation of the tree. By default, trees are pretty-
printed into a C-like representation.

‘details’ Enable more detailed dumps (not honored by every dump option).
Also include information from the optimization passes.

‘stats’ Enable dumping various statistics about the pass (not honored by
every dump option).

‘blocks’ Enable showing basic block boundaries (disabled in raw dumps).

‘graph’ For each of the other indicated dump files (‘-fdump-rtl-pass’),
dump a representation of the control flow graph suitable for viewing
with GraphViz to ‘file.passid.pass.dot’. Each function in the
file is pretty-printed as a subgraph, so that GraphViz can render
them all in a single plot.

This option currently only works for RTL dumps, and the RTL is
always dumped in slim form.

‘vops’ Enable showing virtual operands for every statement.

‘lineno’ Enable showing line numbers for statements.

‘uid’ Enable showing the unique ID (DECL_UID) for each variable.

‘verbose’ Enable showing the tree dump for each statement.

‘eh’ Enable showing the EH region number holding each statement.

‘scev’ Enable showing scalar evolution analysis details.

‘optimized’
Enable showing optimization information (only available in certain
passes).

‘missed’ Enable showing missed optimization information (only available in
certain passes).

‘notes’ Enable other detailed optimization information (only available in
certain passes).

Chapter 3: GCC Command Options 95

‘=filename’
Instead of an auto named dump file, output into the given file name.
The file names ‘stdout’ and ‘stderr’ are treated specially and are
considered already open standard streams. For example,

gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump

-fdump-tree-pre=stderr file.c

outputs vectorizer dump into ‘foo.dump’, while the PRE dump is
output on to ‘stderr’. If two conflicting dump filenames are given
for the same pass, then the latter option overrides the earlier one.

‘all’ Turn on all options, except ‘raw’, ‘slim’, ‘verbose’ and ‘lineno’.

‘optall’ Turn on all optimization options, i.e., ‘optimized’, ‘missed’, and
‘note’.

The following tree dumps are possible:

‘original’
Dump before any tree based optimization, to ‘file.original’.

‘optimized’
Dump after all tree based optimization, to ‘file.optimized’.

‘gimple’ Dump each function before and after the gimplification pass to a
file. The file name is made by appending ‘.gimple’ to the source
file name.

‘cfg’ Dump the control flow graph of each function to a file. The file
name is made by appending ‘.cfg’ to the source file name.

‘ch’ Dump each function after copying loop headers. The file name is
made by appending ‘.ch’ to the source file name.

‘ssa’ Dump SSA related information to a file. The file name is made by
appending ‘.ssa’ to the source file name.

‘alias’ Dump aliasing information for each function. The file name is made
by appending ‘.alias’ to the source file name.

‘ccp’ Dump each function after CCP. The file name is made by append-
ing ‘.ccp’ to the source file name.

‘storeccp’
Dump each function after STORE-CCP. The file name is made by
appending ‘.storeccp’ to the source file name.

‘pre’ Dump trees after partial redundancy elimination. The file name is
made by appending ‘.pre’ to the source file name.

‘fre’ Dump trees after full redundancy elimination. The file name is
made by appending ‘.fre’ to the source file name.

‘copyprop’
Dump trees after copy propagation. The file name is made by
appending ‘.copyprop’ to the source file name.

96 Using the GNU Compiler Collection (GCC)

‘store_copyprop’
Dump trees after store copy-propagation. The file name is made
by appending ‘.store_copyprop’ to the source file name.

‘dce’ Dump each function after dead code elimination. The file name is
made by appending ‘.dce’ to the source file name.

‘sra’ Dump each function after performing scalar replacement of aggre-
gates. The file name is made by appending ‘.sra’ to the source file
name.

‘sink’ Dump each function after performing code sinking. The file name
is made by appending ‘.sink’ to the source file name.

‘dom’ Dump each function after applying dominator tree optimizations.
The file name is made by appending ‘.dom’ to the source file name.

‘dse’ Dump each function after applying dead store elimination. The file
name is made by appending ‘.dse’ to the source file name.

‘phiopt’ Dump each function after optimizing PHI nodes into straightline
code. The file name is made by appending ‘.phiopt’ to the source
file name.

‘forwprop’
Dump each function after forward propagating single use variables.
The file name is made by appending ‘.forwprop’ to the source file
name.

‘copyrename’
Dump each function after applying the copy rename optimization.
The file name is made by appending ‘.copyrename’ to the source
file name.

‘nrv’ Dump each function after applying the named return value opti-
mization on generic trees. The file name is made by appending
‘.nrv’ to the source file name.

‘vect’ Dump each function after applying vectorization of loops. The file
name is made by appending ‘.vect’ to the source file name.

‘slp’ Dump each function after applying vectorization of basic blocks.
The file name is made by appending ‘.slp’ to the source file name.

‘vrp’ Dump each function after Value Range Propagation (VRP). The
file name is made by appending ‘.vrp’ to the source file name.

‘all’ Enable all the available tree dumps with the flags provided in this
option.

-fopt-info
-fopt-info-options
-fopt-info-options=filename

Controls optimization dumps from various optimization passes. If the
‘-options’ form is used, options is a list of ‘-’ separated options to select

Chapter 3: GCC Command Options 97

the dump details and optimizations. If options is not specified, it defaults to
‘optimized’ for details and ‘optall’ for optimization groups. If the filename
is not specified, it defaults to ‘stderr’. Note that the output filename will be
overwritten in case of multiple translation units. If a combined output from
multiple translation units is desired, ‘stderr’ should be used instead.
The options can be divided into two groups, 1) options describing the ver-
bosity of the dump, and 2) options describing which optimizations should be
included. The options from both the groups can be freely mixed as they are
non-overlapping. However, in case of any conflicts, the latter options override
the earlier options on the command line. Though multiple -fopt-info options
are accepted, only one of them can have ‘=filename’. If other filenames are
provided then all but the first one are ignored.
The dump verbosity has the following options

‘optimized’
Print information when an optimization is successfully applied. It
is up to a pass to decide which information is relevant. For example,
the vectorizer passes print the source location of loops which got
successfully vectorized.

‘missed’ Print information about missed optimizations. Individual passes
control which information to include in the output. For example,

gcc -O2 -ftree-vectorize -fopt-info-vec-missed

will print information about missed optimization opportunities
from vectorization passes on stderr.

‘note’ Print verbose information about optimizations, such as certain
transformations, more detailed messages about decisions etc.

‘all’ Print detailed optimization information. This includes optimized,
missed, and note.

The second set of options describes a group of optimizations and may include
one or more of the following.

‘ipa’ Enable dumps from all interprocedural optimizations.

‘loop’ Enable dumps from all loop optimizations.

‘inline’ Enable dumps from all inlining optimizations.

‘vec’ Enable dumps from all vectorization optimizations.

‘optall’ Enable dumps from all optimizations. This is a superset of the
optimization groups listed above.

For example,
gcc -O3 -fopt-info-missed=missed.all

outputs missed optimization report from all the passes into ‘missed.all’.
As another example,

gcc -O3 -fopt-info-inline-optimized-missed=inline.txt

98 Using the GNU Compiler Collection (GCC)

will output information about missed optimizations as well as optimized loca-
tions from all the inlining passes into ‘inline.txt’.
If the filename is provided, then the dumps from all the applicable optimizations
are concatenated into the ‘filename’. Otherwise the dump is output onto
‘stderr’. If options is omitted, it defaults to ‘all-optall’, which means dump
all available optimization info from all the passes. In the following example, all
optimization info is output on to ‘stderr’.

gcc -O3 -fopt-info

Note that ‘-fopt-info-vec-missed’ behaves the same as ‘-fopt-info-missed-vec’.
As another example, consider

gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt

Here the two output filenames ‘vec.miss’ and ‘loop.opt’ are in conflict since
only one output file is allowed. In this case, only the first option takes effect
and the subsequent options are ignored. Thus only the ‘vec.miss’ is produced
which contains dumps from the vectorizer about missed opportunities.

-frandom-seed=string
This option provides a seed that GCC uses in place of random numbers in
generating certain symbol names that have to be different in every compiled
file. It is also used to place unique stamps in coverage data files and the object
files that produce them. You can use the ‘-frandom-seed’ option to produce
reproducibly identical object files.
The string should be different for every file you compile.

-fsched-verbose=n
On targets that use instruction scheduling, this option controls the amount of
debugging output the scheduler prints. This information is written to stan-
dard error, unless ‘-fdump-rtl-sched1’ or ‘-fdump-rtl-sched2’ is specified,
in which case it is output to the usual dump listing file, ‘.sched1’ or ‘.sched2’
respectively. However for n greater than nine, the output is always printed to
standard error.
For n greater than zero, ‘-fsched-verbose’ outputs the same information as
‘-fdump-rtl-sched1’ and ‘-fdump-rtl-sched2’. For n greater than one, it also
output basic block probabilities, detailed ready list information and unit/insn
info. For n greater than two, it includes RTL at abort point, control-flow and
regions info. And for n over four, ‘-fsched-verbose’ also includes dependence
info.

-save-temps
-save-temps=cwd

Store the usual “temporary” intermediate files permanently; place them in the
current directory and name them based on the source file. Thus, compiling
‘foo.c’ with ‘-c -save-temps’ produces files ‘foo.i’ and ‘foo.s’, as well as
‘foo.o’. This creates a preprocessed ‘foo.i’ output file even though the com-
piler now normally uses an integrated preprocessor.
When used in combination with the ‘-x’ command-line option, ‘-save-temps’
is sensible enough to avoid over writing an input source file with the same

Chapter 3: GCC Command Options 99

extension as an intermediate file. The corresponding intermediate file may be
obtained by renaming the source file before using ‘-save-temps’.
If you invoke GCC in parallel, compiling several different source files that share
a common base name in different subdirectories or the same source file compiled
for multiple output destinations, it is likely that the different parallel compilers
will interfere with each other, and overwrite the temporary files. For instance:

gcc -save-temps -o outdir1/foo.o indir1/foo.c&

gcc -save-temps -o outdir2/foo.o indir2/foo.c&

may result in ‘foo.i’ and ‘foo.o’ being written to simultaneously by both
compilers.

-save-temps=obj
Store the usual “temporary” intermediate files permanently. If the ‘-o’ option
is used, the temporary files are based on the object file. If the ‘-o’ option is
not used, the ‘-save-temps=obj’ switch behaves like ‘-save-temps’.
For example:

gcc -save-temps=obj -c foo.c

gcc -save-temps=obj -c bar.c -o dir/xbar.o

gcc -save-temps=obj foobar.c -o dir2/yfoobar

creates ‘foo.i’, ‘foo.s’, ‘dir/xbar.i’, ‘dir/xbar.s’, ‘dir2/yfoobar.i’,
‘dir2/yfoobar.s’, and ‘dir2/yfoobar.o’.

-time[=file]
Report the CPU time taken by each subprocess in the compilation sequence.
For C source files, this is the compiler proper and assembler (plus the linker if
linking is done).
Without the specification of an output file, the output looks like this:

cc1 0.12 0.01

as 0.00 0.01

The first number on each line is the “user time”, that is time spent executing
the program itself. The second number is “system time”, time spent executing
operating system routines on behalf of the program. Both numbers are in
seconds.
With the specification of an output file, the output is appended to the named
file, and it looks like this:

0.12 0.01 cc1 options

0.00 0.01 as options

The “user time” and the “system time” are moved before the program name,
and the options passed to the program are displayed, so that one can later tell
what file was being compiled, and with which options.

-fvar-tracking
Run variable tracking pass. It computes where variables are stored at each posi-
tion in code. Better debugging information is then generated (if the debugging
information format supports this information).
It is enabled by default when compiling with optimization (‘-Os’, ‘-O’, ‘-O2’,
. . .), debugging information (‘-g’) and the debug info format supports it.

100 Using the GNU Compiler Collection (GCC)

-fvar-tracking-assignments
Annotate assignments to user variables early in the compilation and attempt to
carry the annotations over throughout the compilation all the way to the end, in
an attempt to improve debug information while optimizing. Use of ‘-gdwarf-4’
is recommended along with it.
It can be enabled even if var-tracking is disabled, in which case annotations are
created and maintained, but discarded at the end.

-fvar-tracking-assignments-toggle
Toggle ‘-fvar-tracking-assignments’, in the same way that ‘-gtoggle’ tog-
gles ‘-g’.

-print-file-name=library
Print the full absolute name of the library file library that would be used when
linking—and don’t do anything else. With this option, GCC does not compile
or link anything; it just prints the file name.

-print-multi-directory
Print the directory name corresponding to the multilib selected by any other
switches present in the command line. This directory is supposed to exist in
GCC_EXEC_PREFIX.

-print-multi-lib
Print the mapping from multilib directory names to compiler switches that
enable them. The directory name is separated from the switches by ‘;’, and
each switch starts with an ‘@’ instead of the ‘-’, without spaces between multiple
switches. This is supposed to ease shell processing.

-print-multi-os-directory
Print the path to OS libraries for the selected multilib, relative to some ‘lib’
subdirectory. If OS libraries are present in the ‘lib’ subdirectory and no mul-
tilibs are used, this is usually just ‘.’, if OS libraries are present in ‘libsuffix’
sibling directories this prints e.g. ‘../lib64’, ‘../lib’ or ‘../lib32’, or if
OS libraries are present in ‘lib/subdir’ subdirectories it prints e.g. ‘amd64’,
‘sparcv9’ or ‘ev6’.

-print-multiarch
Print the path to OS libraries for the selected multiarch, relative to some ‘lib’
subdirectory.

-print-prog-name=program
Like ‘-print-file-name’, but searches for a program such as ‘cpp’.

-print-libgcc-file-name
Same as ‘-print-file-name=libgcc.a’.
This is useful when you use ‘-nostdlib’ or ‘-nodefaultlibs’ but you do want
to link with ‘libgcc.a’. You can do:

gcc -nostdlib files... ‘gcc -print-libgcc-file-name‘

-print-search-dirs
Print the name of the configured installation directory and a list of program
and library directories gcc searches—and don’t do anything else.

Chapter 3: GCC Command Options 101

This is useful when gcc prints the error message ‘installation problem,
cannot exec cpp0: No such file or directory’. To resolve this you either
need to put ‘cpp0’ and the other compiler components where gcc expects to
find them, or you can set the environment variable GCC_EXEC_PREFIX to the di-
rectory where you installed them. Don’t forget the trailing ‘/’. See Section 3.19
[Environment Variables], page 333.

-print-sysroot
Print the target sysroot directory that is used during compilation. This is the
target sysroot specified either at configure time or using the ‘--sysroot’ option,
possibly with an extra suffix that depends on compilation options. If no target
sysroot is specified, the option prints nothing.

-print-sysroot-headers-suffix
Print the suffix added to the target sysroot when searching for headers, or
give an error if the compiler is not configured with such a suffix—and don’t do
anything else.

-dumpmachine
Print the compiler’s target machine (for example, ‘i686-pc-linux-gnu’)—and
don’t do anything else.

-dumpversion
Print the compiler version (for example, ‘3.0’)—and don’t do anything else.

-dumpspecs
Print the compiler’s built-in specs—and don’t do anything else. (This is used
when GCC itself is being built.) See Section 3.15 [Spec Files], page 172.

-fno-eliminate-unused-debug-types
Normally, when producing DWARF 2 output, GCC avoids producing debug
symbol output for types that are nowhere used in the source file being compiled.
Sometimes it is useful to have GCC emit debugging information for all types
declared in a compilation unit, regardless of whether or not they are actually
used in that compilation unit, for example if, in the debugger, you want to cast
a value to a type that is not actually used in your program (but is declared).
More often, however, this results in a significant amount of wasted space.

3.10 Options That Control Optimization

These options control various sorts of optimizations.

Without any optimization option, the compiler’s goal is to reduce the cost of compilation
and to make debugging produce the expected results. Statements are independent: if you
stop the program with a breakpoint between statements, you can then assign a new value
to any variable or change the program counter to any other statement in the function and
get exactly the results you expect from the source code.

Turning on optimization flags makes the compiler attempt to improve the performance
and/or code size at the expense of compilation time and possibly the ability to debug the
program.

102 Using the GNU Compiler Collection (GCC)

The compiler performs optimization based on the knowledge it has of the program. Com-
piling multiple files at once to a single output file mode allows the compiler to use informa-
tion gained from all of the files when compiling each of them.

Not all optimizations are controlled directly by a flag. Only optimizations that have a
flag are listed in this section.

Most optimizations are only enabled if an ‘-O’ level is set on the command line. Otherwise
they are disabled, even if individual optimization flags are specified.

Depending on the target and how GCC was configured, a slightly different set of opti-
mizations may be enabled at each ‘-O’ level than those listed here. You can invoke GCC
with ‘-Q --help=optimizers’ to find out the exact set of optimizations that are enabled
at each level. See Section 3.2 [Overall Options], page 25, for examples.

-O
-O1 Optimize. Optimizing compilation takes somewhat more time, and a lot more

memory for a large function.

With ‘-O’, the compiler tries to reduce code size and execution time, without
performing any optimizations that take a great deal of compilation time.

‘-O’ turns on the following optimization flags:
-fauto-inc-dec

-fcompare-elim

-fcprop-registers

-fdce

-fdefer-pop

-fdelayed-branch

-fdse

-fguess-branch-probability

-fif-conversion2

-fif-conversion

-fipa-pure-const

-fipa-profile

-fipa-reference

-fmerge-constants -fsplit-wide-types

-ftree-bit-ccp

-ftree-builtin-call-dce

-ftree-ccp

-ftree-ch

-ftree-copyrename

-ftree-dce

-ftree-dominator-opts

-ftree-dse

-ftree-forwprop

-ftree-fre

-ftree-phiprop

-ftree-slsr

-ftree-sra

-ftree-pta

-ftree-ter

-funit-at-a-time

‘-O’ also turns on ‘-fomit-frame-pointer’ on machines where doing so does
not interfere with debugging.

Chapter 3: GCC Command Options 103

-O2 Optimize even more. GCC performs nearly all supported optimizations that do
not involve a space-speed tradeoff. As compared to ‘-O’, this option increases
both compilation time and the performance of the generated code.

‘-O2’ turns on all optimization flags specified by ‘-O’. It also turns on the
following optimization flags:

-fthread-jumps

-falign-functions -falign-jumps

-falign-loops -falign-labels

-fcaller-saves

-fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks

-fdelete-null-pointer-checks

-fdevirtualize -fdevirtualize-speculatively

-fexpensive-optimizations

-fgcse -fgcse-lm

-fhoist-adjacent-loads

-finline-small-functions

-findirect-inlining

-fipa-sra

-fisolate-erroneous-paths-dereference

-foptimize-sibling-calls

-fpartial-inlining

-fpeephole2

-freorder-blocks -freorder-functions

-frerun-cse-after-loop

-fsched-interblock -fsched-spec

-fschedule-insns -fschedule-insns2

-fstrict-aliasing -fstrict-overflow

-ftree-switch-conversion -ftree-tail-merge

-ftree-pre

-ftree-vrp

Please note the warning under ‘-fgcse’ about invoking ‘-O2’ on programs that
use computed gotos.

-O3 Optimize yet more. ‘-O3’ turns on all optimizations spec-
ified by ‘-O2’ and also turns on the ‘-finline-functions’,
‘-funswitch-loops’, ‘-fpredictive-commoning’, ‘-fgcse-after-reload’,
‘-ftree-loop-vectorize’, ‘-ftree-slp-vectorize’, ‘-fvect-cost-model’,
‘-ftree-partial-pre’ and ‘-fipa-cp-clone’ options.

-O0 Reduce compilation time and make debugging produce the expected results.
This is the default.

-Os Optimize for size. ‘-Os’ enables all ‘-O2’ optimizations that do not typically
increase code size. It also performs further optimizations designed to reduce
code size.

‘-Os’ disables the following optimization flags:
-falign-functions -falign-jumps -falign-loops

-falign-labels -freorder-blocks -freorder-blocks-and-partition

-fprefetch-loop-arrays

-Ofast Disregard strict standards compliance. ‘-Ofast’ enables all ‘-O3’
optimizations. It also enables optimizations that are not valid for all standard-

104 Using the GNU Compiler Collection (GCC)

compliant programs. It turns on ‘-ffast-math’ and the Fortran-specific
‘-fno-protect-parens’ and ‘-fstack-arrays’.

-Og Optimize debugging experience. ‘-Og’ enables optimizations that do not in-
terfere with debugging. It should be the optimization level of choice for the
standard edit-compile-debug cycle, offering a reasonable level of optimization
while maintaining fast compilation and a good debugging experience.
If you use multiple ‘-O’ options, with or without level numbers, the last such
option is the one that is effective.

Options of the form ‘-fflag’ specify machine-independent flags. Most flags have both
positive and negative forms; the negative form of ‘-ffoo’ is ‘-fno-foo’. In the table below,
only one of the forms is listed—the one you typically use. You can figure out the other form
by either removing ‘no-’ or adding it.

The following options control specific optimizations. They are either activated by ‘-O’
options or are related to ones that are. You can use the following flags in the rare cases
when “fine-tuning” of optimizations to be performed is desired.

-fno-defer-pop
Always pop the arguments to each function call as soon as that function re-
turns. For machines that must pop arguments after a function call, the compiler
normally lets arguments accumulate on the stack for several function calls and
pops them all at once.
Disabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fforward-propagate
Perform a forward propagation pass on RTL. The pass tries to combine two
instructions and checks if the result can be simplified. If loop unrolling is active,
two passes are performed and the second is scheduled after loop unrolling.
This option is enabled by default at optimization levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-ffp-contract=style
‘-ffp-contract=off’ disables floating-point expression contraction.
‘-ffp-contract=fast’ enables floating-point expression contraction such as
forming of fused multiply-add operations if the target has native support for
them. ‘-ffp-contract=on’ enables floating-point expression contraction if
allowed by the language standard. This is currently not implemented and
treated equal to ‘-ffp-contract=off’.
The default is ‘-ffp-contract=fast’.

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that don’t need one.
This avoids the instructions to save, set up and restore frame pointers; it also
makes an extra register available in many functions. It also makes debugging
impossible on some machines.

On some machines, such as the VAX, this flag has no effect, because the stan-
dard calling sequence automatically handles the frame pointer and nothing is
saved by pretending it doesn’t exist. The machine-description macro FRAME_
POINTER_REQUIRED controls whether a target machine supports this flag. See
Section “Register Usage” in GNU Compiler Collection (GCC) Internals.

Chapter 3: GCC Command Options 105

Starting with GCC version 4.6, the default setting (when not optimizing
for size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets
has been changed to ‘-fomit-frame-pointer’. The default can be
reverted to ‘-fno-omit-frame-pointer’ by configuring GCC with the
‘--enable-frame-pointer’ configure option.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-foptimize-sibling-calls
Optimize sibling and tail recursive calls.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fno-inline
Do not expand any functions inline apart from those marked with the always_
inline attribute. This is the default when not optimizing.
Single functions can be exempted from inlining by marking them with the
noinline attribute.

-finline-small-functions
Integrate functions into their callers when their body is smaller than expected
function call code (so overall size of program gets smaller). The compiler heuris-
tically decides which functions are simple enough to be worth integrating in this
way. This inlining applies to all functions, even those not declared inline.
Enabled at level ‘-O2’.

-findirect-inlining
Inline also indirect calls that are discovered to be known at compile time thanks
to previous inlining. This option has any effect only when inlining itself is turned
on by the ‘-finline-functions’ or ‘-finline-small-functions’ options.
Enabled at level ‘-O2’.

-finline-functions
Consider all functions for inlining, even if they are not declared inline. The
compiler heuristically decides which functions are worth integrating in this way.
If all calls to a given function are integrated, and the function is declared
static, then the function is normally not output as assembler code in its own
right.
Enabled at level ‘-O3’.

-finline-functions-called-once
Consider all static functions called once for inlining into their caller even if
they are not marked inline. If a call to a given function is integrated, then
the function is not output as assembler code in its own right.
Enabled at levels ‘-O1’, ‘-O2’, ‘-O3’ and ‘-Os’.

-fearly-inlining
Inline functions marked by always_inline and functions whose body
seems smaller than the function call overhead early before doing
‘-fprofile-generate’ instrumentation and real inlining pass. Doing so makes
profiling significantly cheaper and usually inlining faster on programs having
large chains of nested wrapper functions.

106 Using the GNU Compiler Collection (GCC)

Enabled by default.

-fipa-sra
Perform interprocedural scalar replacement of aggregates, removal of unused
parameters and replacement of parameters passed by reference by parameters
passed by value.
Enabled at levels ‘-O2’, ‘-O3’ and ‘-Os’.

-finline-limit=n
By default, GCC limits the size of functions that can be inlined. This flag
allows coarse control of this limit. n is the size of functions that can be inlined
in number of pseudo instructions.
Inlining is actually controlled by a number of parameters, which may be spec-
ified individually by using ‘--param name=value’. The ‘-finline-limit=n’
option sets some of these parameters as follows:

max-inline-insns-single
is set to n/2.

max-inline-insns-auto
is set to n/2.

See below for a documentation of the individual parameters controlling inlining
and for the defaults of these parameters.
Note: there may be no value to ‘-finline-limit’ that results in default be-
havior.
Note: pseudo instruction represents, in this particular context, an abstract
measurement of function’s size. In no way does it represent a count of assembly
instructions and as such its exact meaning might change from one release to an
another.

-fno-keep-inline-dllexport
This is a more fine-grained version of ‘-fkeep-inline-functions’, which ap-
plies only to functions that are declared using the dllexport attribute or de-
clspec (See Section 6.30 [Declaring Attributes of Functions], page 372.)

-fkeep-inline-functions
In C, emit static functions that are declared inline into the object file, even
if the function has been inlined into all of its callers. This switch does not affect
functions using the extern inline extension in GNU C90. In C++, emit any
and all inline functions into the object file.

-fkeep-static-consts
Emit variables declared static const when optimization isn’t turned on, even
if the variables aren’t referenced.
GCC enables this option by default. If you want to force the compiler to check
if a variable is referenced, regardless of whether or not optimization is turned
on, use the ‘-fno-keep-static-consts’ option.

-fmerge-constants
Attempt to merge identical constants (string constants and floating-point con-
stants) across compilation units.

Chapter 3: GCC Command Options 107

This option is the default for optimized compilation if the assembler and linker
support it. Use ‘-fno-merge-constants’ to inhibit this behavior.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fmerge-all-constants
Attempt to merge identical constants and identical variables.
This option implies ‘-fmerge-constants’. In addition to ‘-fmerge-constants’
this considers e.g. even constant initialized arrays or initialized constant vari-
ables with integral or floating-point types. Languages like C or C++ require each
variable, including multiple instances of the same variable in recursive calls, to
have distinct locations, so using this option results in non-conforming behavior.

-fmodulo-sched
Perform swing modulo scheduling immediately before the first scheduling pass.
This pass looks at innermost loops and reorders their instructions by overlap-
ping different iterations.

-fmodulo-sched-allow-regmoves
Perform more aggressive SMS-based modulo scheduling with register moves
allowed. By setting this flag certain anti-dependences edges are deleted, which
triggers the generation of reg-moves based on the life-range analysis. This
option is effective only with ‘-fmodulo-sched’ enabled.

-fno-branch-count-reg
Do not use “decrement and branch” instructions on a count register, but instead
generate a sequence of instructions that decrement a register, compare it against
zero, then branch based upon the result. This option is only meaningful on
architectures that support such instructions, which include x86, PowerPC, IA-
64 and S/390.
The default is ‘-fbranch-count-reg’.

-fno-function-cse
Do not put function addresses in registers; make each instruction that calls a
constant function contain the function’s address explicitly.
This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option is not used.
The default is ‘-ffunction-cse’

-fno-zero-initialized-in-bss
If the target supports a BSS section, GCC by default puts variables that are
initialized to zero into BSS. This can save space in the resulting code.
This option turns off this behavior because some programs explicitly rely on
variables going to the data section—e.g., so that the resulting executable can
find the beginning of that section and/or make assumptions based on that.
The default is ‘-fzero-initialized-in-bss’.

-fthread-jumps
Perform optimizations that check to see if a jump branches to a location where
another comparison subsumed by the first is found. If so, the first branch is

108 Using the GNU Compiler Collection (GCC)

redirected to either the destination of the second branch or a point immediately
following it, depending on whether the condition is known to be true or false.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fsplit-wide-types
When using a type that occupies multiple registers, such as long long on a
32-bit system, split the registers apart and allocate them independently. This
normally generates better code for those types, but may make debugging more
difficult.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fcse-follow-jumps
In common subexpression elimination (CSE), scan through jump instructions
when the target of the jump is not reached by any other path. For example,
when CSE encounters an if statement with an else clause, CSE follows the
jump when the condition tested is false.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fcse-skip-blocks
This is similar to ‘-fcse-follow-jumps’, but causes CSE to follow jumps that
conditionally skip over blocks. When CSE encounters a simple if statement
with no else clause, ‘-fcse-skip-blocks’ causes CSE to follow the jump around
the body of the if.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-frerun-cse-after-loop
Re-run common subexpression elimination after loop optimizations are per-
formed.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fgcse Perform a global common subexpression elimination pass. This pass also per-
forms global constant and copy propagation.
Note: When compiling a program using computed gotos, a GCC extension,
you may get better run-time performance if you disable the global common
subexpression elimination pass by adding ‘-fno-gcse’ to the command line.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fgcse-lm
When ‘-fgcse-lm’ is enabled, global common subexpression elimination at-
tempts to move loads that are only killed by stores into themselves. This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.
Enabled by default when ‘-fgcse’ is enabled.

-fgcse-sm
When ‘-fgcse-sm’ is enabled, a store motion pass is run after global common
subexpression elimination. This pass attempts to move stores out of loops.
When used in conjunction with ‘-fgcse-lm’, loops containing a load/store se-
quence can be changed to a load before the loop and a store after the loop.
Not enabled at any optimization level.

Chapter 3: GCC Command Options 109

-fgcse-las
When ‘-fgcse-las’ is enabled, the global common subexpression elimination
pass eliminates redundant loads that come after stores to the same memory
location (both partial and full redundancies).

Not enabled at any optimization level.

-fgcse-after-reload
When ‘-fgcse-after-reload’ is enabled, a redundant load elimination pass
is performed after reload. The purpose of this pass is to clean up redundant
spilling.

-faggressive-loop-optimizations
This option tells the loop optimizer to use language constraints to derive bounds
for the number of iterations of a loop. This assumes that loop code does not
invoke undefined behavior by for example causing signed integer overflows or
out-of-bound array accesses. The bounds for the number of iterations of a loop
are used to guide loop unrolling and peeling and loop exit test optimizations.
This option is enabled by default.

-funsafe-loop-optimizations
This option tells the loop optimizer to assume that loop indices do not overflow,
and that loops with nontrivial exit condition are not infinite. This enables a
wider range of loop optimizations even if the loop optimizer itself cannot prove
that these assumptions are valid. If you use ‘-Wunsafe-loop-optimizations’,
the compiler warns you if it finds this kind of loop.

-fcrossjumping
Perform cross-jumping transformation. This transformation unifies equivalent
code and saves code size. The resulting code may or may not perform better
than without cross-jumping.

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fauto-inc-dec
Combine increments or decrements of addresses with memory accesses. This
pass is always skipped on architectures that do not have instructions to support
this. Enabled by default at ‘-O’ and higher on architectures that support this.

-fdce Perform dead code elimination (DCE) on RTL. Enabled by default at ‘-O’ and
higher.

-fdse Perform dead store elimination (DSE) on RTL. Enabled by default at ‘-O’ and
higher.

-fif-conversion
Attempt to transform conditional jumps into branch-less equivalents. This
includes use of conditional moves, min, max, set flags and abs instructions, and
some tricks doable by standard arithmetics. The use of conditional execution
on chips where it is available is controlled by if-conversion2.

Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

110 Using the GNU Compiler Collection (GCC)

-fif-conversion2
Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fdeclone-ctor-dtor
The C++ ABI requires multiple entry points for constructors and destructors:
one for a base subobject, one for a complete object, and one for a virtual
destructor that calls operator delete afterwards. For a hierarchy with virtual
bases, the base and complete variants are clones, which means two copies of the
function. With this option, the base and complete variants are changed to be
thunks that call a common implementation.
Enabled by ‘-Os’.

-fdelete-null-pointer-checks
Assume that programs cannot safely dereference null pointers, and that no code
or data element resides there. This enables simple constant folding optimiza-
tions at all optimization levels. In addition, other optimization passes in GCC
use this flag to control global dataflow analyses that eliminate useless checks
for null pointers; these assume that if a pointer is checked after it has already
been dereferenced, it cannot be null.
Note however that in some environments this assumption is not true.
Use ‘-fno-delete-null-pointer-checks’ to disable this optimization for
programs that depend on that behavior.
Some targets, especially embedded ones, disable this option at all levels. Oth-
erwise it is enabled at all levels: ‘-O0’, ‘-O1’, ‘-O2’, ‘-O3’, ‘-Os’. Passes that use
the information are enabled independently at different optimization levels.

-fdevirtualize
Attempt to convert calls to virtual functions to direct calls. This is done
both within a procedure and interprocedurally as part of indirect inlining (-
findirect-inlining) and interprocedural constant propagation (‘-fipa-cp’).
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fdevirtualize-speculatively
Attempt to convert calls to virtual functions to speculative direct calls. Based
on the analysis of the type inheritance graph, determine for a given call the set
of likely targets. If the set is small, preferably of size 1, change the call into an
conditional deciding on direct and indirect call. The speculative calls enable
more optimizations, such as inlining. When they seem useless after further
optimization, they are converted back into original form.

-fexpensive-optimizations
Perform a number of minor optimizations that are relatively expensive.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-free Attempt to remove redundant extension instructions. This is especially helpful
for the x86-64 architecture, which implicitly zero-extends in 64-bit registers
after writing to their lower 32-bit half.

Chapter 3: GCC Command Options 111

Enabled for AArch64 and x86 at levels ‘-O2’, ‘-O3’.

-flive-range-shrinkage
Attempt to decrease register pressure through register live range shrinkage.
This is helpful for fast processors with small or moderate size register sets.

-fira-algorithm=algorithm
Use the specified coloring algorithm for the integrated register allocator. The
algorithm argument can be ‘priority’, which specifies Chow’s priority coloring,
or ‘CB’, which specifies Chaitin-Briggs coloring. Chaitin-Briggs coloring is not
implemented for all architectures, but for those targets that do support it, it is
the default because it generates better code.

-fira-region=region
Use specified regions for the integrated register allocator. The region argument
should be one of the following:

‘all’ Use all loops as register allocation regions. This can give the best
results for machines with a small and/or irregular register set.

‘mixed’ Use all loops except for loops with small register pressure as the
regions. This value usually gives the best results in most cases and
for most architectures, and is enabled by default when compiling
with optimization for speed (‘-O’, ‘-O2’, . . .).

‘one’ Use all functions as a single region. This typically results in the
smallest code size, and is enabled by default for ‘-Os’ or ‘-O0’.

-fira-hoist-pressure
Use IRA to evaluate register pressure in the code hoisting pass for decisions to
hoist expressions. This option usually results in smaller code, but it can slow
the compiler down.

This option is enabled at level ‘-Os’ for all targets.

-fira-loop-pressure
Use IRA to evaluate register pressure in loops for decisions to move loop in-
variants. This option usually results in generation of faster and smaller code on
machines with large register files (>= 32 registers), but it can slow the compiler
down.

This option is enabled at level ‘-O3’ for some targets.

-fno-ira-share-save-slots
Disable sharing of stack slots used for saving call-used hard registers living
through a call. Each hard register gets a separate stack slot, and as a result
function stack frames are larger.

-fno-ira-share-spill-slots
Disable sharing of stack slots allocated for pseudo-registers. Each pseudo-
register that does not get a hard register gets a separate stack slot, and as
a result function stack frames are larger.

112 Using the GNU Compiler Collection (GCC)

-fira-verbose=n
Control the verbosity of the dump file for the integrated register allocator. The
default value is 5. If the value n is greater or equal to 10, the dump output is
sent to stderr using the same format as n minus 10.

-fdelayed-branch
If supported for the target machine, attempt to reorder instructions to exploit
instruction slots available after delayed branch instructions.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fschedule-insns
If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines
that have slow floating point or memory load instructions by allowing other
instructions to be issued until the result of the load or floating-point instruction
is required.
Enabled at levels ‘-O2’, ‘-O3’.

-fschedule-insns2
Similar to ‘-fschedule-insns’, but requests an additional pass of instruction
scheduling after register allocation has been done. This is especially useful on
machines with a relatively small number of registers and where memory load
instructions take more than one cycle.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fno-sched-interblock
Don’t schedule instructions across basic blocks. This is normally enabled by
default when scheduling before register allocation, i.e. with ‘-fschedule-insns’
or at ‘-O2’ or higher.

-fno-sched-spec
Don’t allow speculative motion of non-load instructions. This is normally
enabled by default when scheduling before register allocation, i.e. with
‘-fschedule-insns’ or at ‘-O2’ or higher.

-fsched-pressure
Enable register pressure sensitive insn scheduling before register allocation.
This only makes sense when scheduling before register allocation is enabled,
i.e. with ‘-fschedule-insns’ or at ‘-O2’ or higher. Usage of this option can
improve the generated code and decrease its size by preventing register pressure
increase above the number of available hard registers and subsequent spills in
register allocation.

-fsched-spec-load
Allow speculative motion of some load instructions. This only makes sense
when scheduling before register allocation, i.e. with ‘-fschedule-insns’ or at
‘-O2’ or higher.

-fsched-spec-load-dangerous
Allow speculative motion of more load instructions. This only makes sense
when scheduling before register allocation, i.e. with ‘-fschedule-insns’ or at
‘-O2’ or higher.

Chapter 3: GCC Command Options 113

-fsched-stalled-insns
-fsched-stalled-insns=n

Define how many insns (if any) can be moved prematurely from the queue
of stalled insns into the ready list during the second scheduling pass.
‘-fno-sched-stalled-insns’ means that no insns are moved prematurely,
‘-fsched-stalled-insns=0’ means there is no limit on how many queued
insns can be moved prematurely. ‘-fsched-stalled-insns’ without a value
is equivalent to ‘-fsched-stalled-insns=1’.

-fsched-stalled-insns-dep
-fsched-stalled-insns-dep=n

Define how many insn groups (cycles) are examined for a depen-
dency on a stalled insn that is a candidate for premature removal
from the queue of stalled insns. This has an effect only during
the second scheduling pass, and only if ‘-fsched-stalled-insns’
is used. ‘-fno-sched-stalled-insns-dep’ is equivalent to
‘-fsched-stalled-insns-dep=0’. ‘-fsched-stalled-insns-dep’
without a value is equivalent to ‘-fsched-stalled-insns-dep=1’.

-fsched2-use-superblocks
When scheduling after register allocation, use superblock scheduling. This al-
lows motion across basic block boundaries, resulting in faster schedules. This
option is experimental, as not all machine descriptions used by GCC model the
CPU closely enough to avoid unreliable results from the algorithm.
This only makes sense when scheduling after register allocation, i.e. with
‘-fschedule-insns2’ or at ‘-O2’ or higher.

-fsched-group-heuristic
Enable the group heuristic in the scheduler. This heuristic favors the instruction
that belongs to a schedule group. This is enabled by default when scheduling
is enabled, i.e. with ‘-fschedule-insns’ or ‘-fschedule-insns2’ or at ‘-O2’
or higher.

-fsched-critical-path-heuristic
Enable the critical-path heuristic in the scheduler. This heuristic favors in-
structions on the critical path. This is enabled by default when scheduling is
enabled, i.e. with ‘-fschedule-insns’ or ‘-fschedule-insns2’ or at ‘-O2’ or
higher.

-fsched-spec-insn-heuristic
Enable the speculative instruction heuristic in the scheduler. This heuristic
favors speculative instructions with greater dependency weakness. This is en-
abled by default when scheduling is enabled, i.e. with ‘-fschedule-insns’ or
‘-fschedule-insns2’ or at ‘-O2’ or higher.

-fsched-rank-heuristic
Enable the rank heuristic in the scheduler. This heuristic favors the instruc-
tion belonging to a basic block with greater size or frequency. This is en-
abled by default when scheduling is enabled, i.e. with ‘-fschedule-insns’ or
‘-fschedule-insns2’ or at ‘-O2’ or higher.

114 Using the GNU Compiler Collection (GCC)

-fsched-last-insn-heuristic
Enable the last-instruction heuristic in the scheduler. This heuristic favors the
instruction that is less dependent on the last instruction scheduled. This is
enabled by default when scheduling is enabled, i.e. with ‘-fschedule-insns’
or ‘-fschedule-insns2’ or at ‘-O2’ or higher.

-fsched-dep-count-heuristic
Enable the dependent-count heuristic in the scheduler. This heuristic favors
the instruction that has more instructions depending on it. This is enabled
by default when scheduling is enabled, i.e. with ‘-fschedule-insns’ or
‘-fschedule-insns2’ or at ‘-O2’ or higher.

-freschedule-modulo-scheduled-loops
Modulo scheduling is performed before traditional scheduling. If a loop is mod-
ulo scheduled, later scheduling passes may change its schedule. Use this option
to control that behavior.

-fselective-scheduling
Schedule instructions using selective scheduling algorithm. Selective scheduling
runs instead of the first scheduler pass.

-fselective-scheduling2
Schedule instructions using selective scheduling algorithm. Selective scheduling
runs instead of the second scheduler pass.

-fsel-sched-pipelining
Enable software pipelining of innermost loops during selective scheduling.
This option has no effect unless one of ‘-fselective-scheduling’ or
‘-fselective-scheduling2’ is turned on.

-fsel-sched-pipelining-outer-loops
When pipelining loops during selective scheduling, also pipeline outer loops.
This option has no effect unless ‘-fsel-sched-pipelining’ is turned on.

-fshrink-wrap
Emit function prologues only before parts of the function that need it, rather
than at the top of the function. This flag is enabled by default at ‘-O’ and
higher.

-fcaller-saves
Enable allocation of values to registers that are clobbered by function calls, by
emitting extra instructions to save and restore the registers around such calls.
Such allocation is done only when it seems to result in better code.
This option is always enabled by default on certain machines, usually those
which have no call-preserved registers to use instead.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fcombine-stack-adjustments
Tracks stack adjustments (pushes and pops) and stack memory references and
then tries to find ways to combine them.
Enabled by default at ‘-O1’ and higher.

Chapter 3: GCC Command Options 115

-fconserve-stack
Attempt to minimize stack usage. The compiler attempts to use less stack
space, even if that makes the program slower. This option implies setting the
‘large-stack-frame’ parameter to 100 and the ‘large-stack-frame-growth’
parameter to 400.

-ftree-reassoc
Perform reassociation on trees. This flag is enabled by default at ‘-O’ and
higher.

-ftree-pre
Perform partial redundancy elimination (PRE) on trees. This flag is enabled
by default at ‘-O2’ and ‘-O3’.

-ftree-partial-pre
Make partial redundancy elimination (PRE) more aggressive. This flag is en-
abled by default at ‘-O3’.

-ftree-forwprop
Perform forward propagation on trees. This flag is enabled by default at ‘-O’
and higher.

-ftree-fre
Perform full redundancy elimination (FRE) on trees. The difference between
FRE and PRE is that FRE only considers expressions that are computed on
all paths leading to the redundant computation. This analysis is faster than
PRE, though it exposes fewer redundancies. This flag is enabled by default at
‘-O’ and higher.

-ftree-phiprop
Perform hoisting of loads from conditional pointers on trees. This pass is en-
abled by default at ‘-O’ and higher.

-fhoist-adjacent-loads
Speculatively hoist loads from both branches of an if-then-else if the loads are
from adjacent locations in the same structure and the target architecture has
a conditional move instruction. This flag is enabled by default at ‘-O2’ and
higher.

-ftree-copy-prop
Perform copy propagation on trees. This pass eliminates unnecessary copy
operations. This flag is enabled by default at ‘-O’ and higher.

-fipa-pure-const
Discover which functions are pure or constant. Enabled by default at ‘-O’ and
higher.

-fipa-reference
Discover which static variables do not escape the compilation unit. Enabled by
default at ‘-O’ and higher.

-fipa-pta
Perform interprocedural pointer analysis and interprocedural modification and
reference analysis. This option can cause excessive memory and compile-time

116 Using the GNU Compiler Collection (GCC)

usage on large compilation units. It is not enabled by default at any optimiza-
tion level.

-fipa-profile
Perform interprocedural profile propagation. The functions called only from
cold functions are marked as cold. Also functions executed once (such as cold,
noreturn, static constructors or destructors) are identified. Cold functions and
loop less parts of functions executed once are then optimized for size. Enabled
by default at ‘-O’ and higher.

-fipa-cp Perform interprocedural constant propagation. This optimization analyzes the
program to determine when values passed to functions are constants and then
optimizes accordingly. This optimization can substantially increase perfor-
mance if the application has constants passed to functions. This flag is enabled
by default at ‘-O2’, ‘-Os’ and ‘-O3’.

-fipa-cp-clone
Perform function cloning to make interprocedural constant propagation
stronger. When enabled, interprocedural constant propagation performs
function cloning when externally visible function can be called with constant
arguments. Because this optimization can create multiple copies of functions, it
may significantly increase code size (see ‘--param ipcp-unit-growth=value’).
This flag is enabled by default at ‘-O3’.

-fisolate-erroneous-paths-dereference
Detect paths which trigger erroneous or undefined behaviour due to dereferenc-
ing a NULL pointer. Isolate those paths from the main control flow and turn
the statement with erroneous or undefined behaviour into a trap.

-fisolate-erroneous-paths-attribute
Detect paths which trigger erroneous or undefined behaviour due a NULL value
being used in a way which is forbidden by a returns_nonnull or nonnull at-
tribute. Isolate those paths from the main control flow and turn the statement
with erroneous or undefined behaviour into a trap. This is not currently en-
abled, but may be enabled by -O2 in the future.

-ftree-sink
Perform forward store motion on trees. This flag is enabled by default at ‘-O’
and higher.

-ftree-bit-ccp
Perform sparse conditional bit constant propagation on trees and propagate
pointer alignment information. This pass only operates on local scalar variables
and is enabled by default at ‘-O’ and higher. It requires that ‘-ftree-ccp’ is
enabled.

-ftree-ccp
Perform sparse conditional constant propagation (CCP) on trees. This pass
only operates on local scalar variables and is enabled by default at ‘-O’ and
higher.

Chapter 3: GCC Command Options 117

-ftree-switch-conversion
Perform conversion of simple initializations in a switch to initializations from a
scalar array. This flag is enabled by default at ‘-O2’ and higher.

-ftree-tail-merge
Look for identical code sequences. When found, replace one with a jump
to the other. This optimization is known as tail merging or cross jumping.
This flag is enabled by default at ‘-O2’ and higher. The compilation time in
this pass can be limited using ‘max-tail-merge-comparisons’ parameter and
‘max-tail-merge-iterations’ parameter.

-ftree-dce
Perform dead code elimination (DCE) on trees. This flag is enabled by default
at ‘-O’ and higher.

-ftree-builtin-call-dce
Perform conditional dead code elimination (DCE) for calls to built-in functions
that may set errno but are otherwise side-effect free. This flag is enabled by
default at ‘-O2’ and higher if ‘-Os’ is not also specified.

-ftree-dominator-opts
Perform a variety of simple scalar cleanups (constant/copy propagation, redun-
dancy elimination, range propagation and expression simplification) based on a
dominator tree traversal. This also performs jump threading (to reduce jumps
to jumps). This flag is enabled by default at ‘-O’ and higher.

-ftree-dse
Perform dead store elimination (DSE) on trees. A dead store is a store into a
memory location that is later overwritten by another store without any inter-
vening loads. In this case the earlier store can be deleted. This flag is enabled
by default at ‘-O’ and higher.

-ftree-ch
Perform loop header copying on trees. This is beneficial since it increases ef-
fectiveness of code motion optimizations. It also saves one jump. This flag is
enabled by default at ‘-O’ and higher. It is not enabled for ‘-Os’, since it usually
increases code size.

-ftree-loop-optimize
Perform loop optimizations on trees. This flag is enabled by default at ‘-O’ and
higher.

-ftree-loop-linear
Perform loop interchange transformations on tree. Same as
‘-floop-interchange’. To use this code transformation, GCC has
to be configured with ‘--with-ppl’ and ‘--with-cloog’ to enable the
Graphite loop transformation infrastructure.

-floop-interchange
Perform loop interchange transformations on loops. Interchanging two nested
loops switches the inner and outer loops. For example, given a loop like:

118 Using the GNU Compiler Collection (GCC)

DO J = 1, M

DO I = 1, N

A(J, I) = A(J, I) * C

ENDDO

ENDDO

loop interchange transforms the loop as if it were written:
DO I = 1, N

DO J = 1, M

A(J, I) = A(J, I) * C

ENDDO

ENDDO

which can be beneficial when N is larger than the caches, because in Fortran,
the elements of an array are stored in memory contiguously by column, and
the original loop iterates over rows, potentially creating at each access a cache
miss. This optimization applies to all the languages supported by GCC and
is not limited to Fortran. To use this code transformation, GCC has to be
configured with ‘--with-ppl’ and ‘--with-cloog’ to enable the Graphite loop
transformation infrastructure.

-floop-strip-mine
Perform loop strip mining transformations on loops. Strip mining splits a loop
into two nested loops. The outer loop has strides equal to the strip size and the
inner loop has strides of the original loop within a strip. The strip length can
be changed using the ‘loop-block-tile-size’ parameter. For example, given
a loop like:

DO I = 1, N

A(I) = A(I) + C

ENDDO

loop strip mining transforms the loop as if it were written:
DO II = 1, N, 51

DO I = II, min (II + 50, N)

A(I) = A(I) + C

ENDDO

ENDDO

This optimization applies to all the languages supported by GCC and is not
limited to Fortran. To use this code transformation, GCC has to be configured
with ‘--with-ppl’ and ‘--with-cloog’ to enable the Graphite loop transfor-
mation infrastructure.

-floop-block
Perform loop blocking transformations on loops. Blocking strip mines each loop
in the loop nest such that the memory accesses of the element loops fit inside
caches. The strip length can be changed using the ‘loop-block-tile-size’
parameter. For example, given a loop like:

DO I = 1, N

DO J = 1, M

A(J, I) = B(I) + C(J)

ENDDO

ENDDO

loop blocking transforms the loop as if it were written:

Chapter 3: GCC Command Options 119

DO II = 1, N, 51

DO JJ = 1, M, 51

DO I = II, min (II + 50, N)

DO J = JJ, min (JJ + 50, M)

A(J, I) = B(I) + C(J)

ENDDO

ENDDO

ENDDO

ENDDO

which can be beneficial when M is larger than the caches, because the innermost
loop iterates over a smaller amount of data which can be kept in the caches. This
optimization applies to all the languages supported by GCC and is not limited
to Fortran. To use this code transformation, GCC has to be configured with
‘--with-ppl’ and ‘--with-cloog’ to enable the Graphite loop transformation
infrastructure.

-fgraphite-identity
Enable the identity transformation for graphite. For every SCoP we gener-
ate the polyhedral representation and transform it back to gimple. Using
‘-fgraphite-identity’ we can check the costs or benefits of the GIMPLE
-> GRAPHITE -> GIMPLE transformation. Some minimal optimizations are
also performed by the code generator CLooG, like index splitting and dead code
elimination in loops.

-floop-nest-optimize
Enable the ISL based loop nest optimizer. This is a generic loop nest optimizer
based on the Pluto optimization algorithms. It calculates a loop structure
optimized for data-locality and parallelism. This option is experimental.

-floop-parallelize-all
Use the Graphite data dependence analysis to identify loops that can be paral-
lelized. Parallelize all the loops that can be analyzed to not contain loop carried
dependences without checking that it is profitable to parallelize the loops.

-fcheck-data-deps
Compare the results of several data dependence analyzers. This option is used
for debugging the data dependence analyzers.

-ftree-loop-if-convert
Attempt to transform conditional jumps in the innermost loops to branch-less
equivalents. The intent is to remove control-flow from the innermost loops in
order to improve the ability of the vectorization pass to handle these loops.
This is enabled by default if vectorization is enabled.

-ftree-loop-if-convert-stores
Attempt to also if-convert conditional jumps containing memory writes. This
transformation can be unsafe for multi-threaded programs as it transforms con-
ditional memory writes into unconditional memory writes. For example,

for (i = 0; i < N; i++)

if (cond)

A[i] = expr;

is transformed to

120 Using the GNU Compiler Collection (GCC)

for (i = 0; i < N; i++)

A[i] = cond ? expr : A[i];

potentially producing data races.

-ftree-loop-distribution
Perform loop distribution. This flag can improve cache performance on big loop
bodies and allow further loop optimizations, like parallelization or vectorization,
to take place. For example, the loop

DO I = 1, N

A(I) = B(I) + C

D(I) = E(I) * F

ENDDO

is transformed to
DO I = 1, N

A(I) = B(I) + C

ENDDO

DO I = 1, N

D(I) = E(I) * F

ENDDO

-ftree-loop-distribute-patterns
Perform loop distribution of patterns that can be code generated with calls to
a library. This flag is enabled by default at ‘-O3’.
This pass distributes the initialization loops and generates a call to memset
zero. For example, the loop

DO I = 1, N

A(I) = 0

B(I) = A(I) + I

ENDDO

is transformed to
DO I = 1, N

A(I) = 0

ENDDO

DO I = 1, N

B(I) = A(I) + I

ENDDO

and the initialization loop is transformed into a call to memset zero.

-ftree-loop-im
Perform loop invariant motion on trees. This pass moves only invariants that
are hard to handle at RTL level (function calls, operations that expand to non-
trivial sequences of insns). With ‘-funswitch-loops’ it also moves operands
of conditions that are invariant out of the loop, so that we can use just trivial
invariantness analysis in loop unswitching. The pass also includes store motion.

-ftree-loop-ivcanon
Create a canonical counter for number of iterations in loops for which deter-
mining number of iterations requires complicated analysis. Later optimizations
then may determine the number easily. Useful especially in connection with
unrolling.

-fivopts Perform induction variable optimizations (strength reduction, induction vari-
able merging and induction variable elimination) on trees.

Chapter 3: GCC Command Options 121

-ftree-parallelize-loops=n
Parallelize loops, i.e., split their iteration space to run in n threads. This is
only possible for loops whose iterations are independent and can be arbitrarily
reordered. The optimization is only profitable on multiprocessor machines, for
loops that are CPU-intensive, rather than constrained e.g. by memory band-
width. This option implies ‘-pthread’, and thus is only supported on targets
that have support for ‘-pthread’.

-ftree-pta
Perform function-local points-to analysis on trees. This flag is enabled by de-
fault at ‘-O’ and higher.

-ftree-sra
Perform scalar replacement of aggregates. This pass replaces structure refer-
ences with scalars to prevent committing structures to memory too early. This
flag is enabled by default at ‘-O’ and higher.

-ftree-copyrename
Perform copy renaming on trees. This pass attempts to rename compiler tem-
poraries to other variables at copy locations, usually resulting in variable names
which more closely resemble the original variables. This flag is enabled by de-
fault at ‘-O’ and higher.

-ftree-coalesce-inlined-vars
Tell the copyrename pass (see ‘-ftree-copyrename’) to attempt to combine
small user-defined variables too, but only if they were inlined from other func-
tions. It is a more limited form of ‘-ftree-coalesce-vars’. This may harm
debug information of such inlined variables, but it will keep variables of the
inlined-into function apart from each other, such that they are more likely to
contain the expected values in a debugging session. This was the default in
GCC versions older than 4.7.

-ftree-coalesce-vars
Tell the copyrename pass (see ‘-ftree-copyrename’) to attempt to combine
small user-defined variables too, instead of just compiler temporaries. This
may severely limit the ability to debug an optimized program compiled with
‘-fno-var-tracking-assignments’. In the negated form, this flag prevents
SSA coalescing of user variables, including inlined ones. This option is enabled
by default.

-ftree-ter
Perform temporary expression replacement during the SSA->normal phase. Sin-
gle use/single def temporaries are replaced at their use location with their defin-
ing expression. This results in non-GIMPLE code, but gives the expanders
much more complex trees to work on resulting in better RTL generation. This
is enabled by default at ‘-O’ and higher.

-ftree-slsr
Perform straight-line strength reduction on trees. This recognizes related ex-
pressions involving multiplications and replaces them by less expensive calcu-
lations when possible. This is enabled by default at ‘-O’ and higher.

122 Using the GNU Compiler Collection (GCC)

-ftree-vectorize
Perform vectorization on trees. This flag enables ‘-ftree-loop-vectorize’
and ‘-ftree-slp-vectorize’ if not explicitly specified.

-ftree-loop-vectorize
Perform loop vectorization on trees. This flag is enabled by default at ‘-O3’
and when ‘-ftree-vectorize’ is enabled.

-ftree-slp-vectorize
Perform basic block vectorization on trees. This flag is enabled by default at
‘-O3’ and when ‘-ftree-vectorize’ is enabled.

-fvect-cost-model=model
Alter the cost model used for vectorization. The model argument should be one
of unlimited, dynamic or cheap. With the unlimited model the vectorized
code-path is assumed to be profitable while with the dynamic model a runtime
check will guard the vectorized code-path to enable it only for iteration counts
that will likely execute faster than when executing the original scalar loop. The
cheap model will disable vectorization of loops where doing so would be cost
prohibitive for example due to required runtime checks for data dependence or
alignment but otherwise is equal to the dynamic model. The default cost model
depends on other optimization flags and is either dynamic or cheap.

-fsimd-cost-model=model
Alter the cost model used for vectorization of loops marked with the
OpenMP or Cilk Plus simd directive. The model argument should be one of
unlimited, dynamic, cheap. All values of model have the same meaning as
described in ‘-fvect-cost-model’ and by default a cost model defined with
‘-fvect-cost-model’ is used.

-ftree-vrp
Perform Value Range Propagation on trees. This is similar to the constant prop-
agation pass, but instead of values, ranges of values are propagated. This allows
the optimizers to remove unnecessary range checks like array bound checks and
null pointer checks. This is enabled by default at ‘-O2’ and higher. Null pointer
check elimination is only done if ‘-fdelete-null-pointer-checks’ is enabled.

-ftracer Perform tail duplication to enlarge superblock size. This transformation simpli-
fies the control flow of the function allowing other optimizations to do a better
job.

-funroll-loops
Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘-funroll-loops’ implies ‘-frerun-cse-after-loop’.
This option makes code larger, and may or may not make it run faster.

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘-funroll-all-loops’
implies the same options as ‘-funroll-loops’,

Chapter 3: GCC Command Options 123

-fsplit-ivs-in-unroller
Enables expression of values of induction variables in later iterations of the
unrolled loop using the value in the first iteration. This breaks long dependency
chains, thus improving efficiency of the scheduling passes.
A combination of ‘-fweb’ and CSE is often sufficient to obtain the same effect.
However, that is not reliable in cases where the loop body is more complicated
than a single basic block. It also does not work at all on some architectures
due to restrictions in the CSE pass.
This optimization is enabled by default.

-fvariable-expansion-in-unroller
With this option, the compiler creates multiple copies of some local variables
when unrolling a loop, which can result in superior code.

-fpartial-inlining
Inline parts of functions. This option has any effect only when inlining itself
is turned on by the ‘-finline-functions’ or ‘-finline-small-functions’
options.
Enabled at level ‘-O2’.

-fpredictive-commoning
Perform predictive commoning optimization, i.e., reusing computations (espe-
cially memory loads and stores) performed in previous iterations of loops.
This option is enabled at level ‘-O3’.

-fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch memory
to improve the performance of loops that access large arrays.
This option may generate better or worse code; results are highly dependent on
the structure of loops within the source code.
Disabled at level ‘-Os’.

-fno-peephole
-fno-peephole2

Disable any machine-specific peephole optimizations. The difference between
‘-fno-peephole’ and ‘-fno-peephole2’ is in how they are implemented in the
compiler; some targets use one, some use the other, a few use both.
‘-fpeephole’ is enabled by default. ‘-fpeephole2’ enabled at levels ‘-O2’,
‘-O3’, ‘-Os’.

-fno-guess-branch-probability
Do not guess branch probabilities using heuristics.
GCC uses heuristics to guess branch probabilities if they are not provided
by profiling feedback (‘-fprofile-arcs’). These heuristics are based
on the control flow graph. If some branch probabilities are specified by
‘__builtin_expect’, then the heuristics are used to guess branch probabilities
for the rest of the control flow graph, taking the ‘__builtin_expect’ info into
account. The interactions between the heuristics and ‘__builtin_expect’ can

124 Using the GNU Compiler Collection (GCC)

be complex, and in some cases, it may be useful to disable the heuristics so
that the effects of ‘__builtin_expect’ are easier to understand.
The default is ‘-fguess-branch-probability’ at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-freorder-blocks
Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality.
Enabled at levels ‘-O2’, ‘-O3’.

-freorder-blocks-and-partition
In addition to reordering basic blocks in the compiled function, in order to
reduce number of taken branches, partitions hot and cold basic blocks into
separate sections of the assembly and .o files, to improve paging and cache
locality performance.
This optimization is automatically turned off in the presence of exception han-
dling, for linkonce sections, for functions with a user-defined section attribute
and on any architecture that does not support named sections.
Enabled for x86 at levels ‘-O2’, ‘-O3’.

-freorder-functions
Reorder functions in the object file in order to improve code locality. This is im-
plemented by using special subsections .text.hot for most frequently executed
functions and .text.unlikely for unlikely executed functions. Reordering is
done by the linker so object file format must support named sections and linker
must place them in a reasonable way.
Also profile feedback must be available to make this option effective. See
‘-fprofile-arcs’ for details.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fstrict-aliasing
Allow the compiler to assume the strictest aliasing rules applicable to the lan-
guage being compiled. For C (and C++), this activates optimizations based on
the type of expressions. In particular, an object of one type is assumed never
to reside at the same address as an object of a different type, unless the types
are almost the same. For example, an unsigned int can alias an int, but not
a void* or a double. A character type may alias any other type.
Pay special attention to code like this:

union a_union {

int i;

double d;

};

int f() {

union a_union t;

t.d = 3.0;

return t.i;

}

The practice of reading from a different union member than the one
most recently written to (called “type-punning”) is common. Even with

Chapter 3: GCC Command Options 125

‘-fstrict-aliasing’, type-punning is allowed, provided the memory is
accessed through the union type. So, the code above works as expected. See
Section 4.9 [Structures unions enumerations and bit-fields implementation],
page 343. However, this code might not:

int f() {

union a_union t;

int* ip;

t.d = 3.0;

ip = &t.i;

return *ip;

}

Similarly, access by taking the address, casting the resulting pointer and deref-
erencing the result has undefined behavior, even if the cast uses a union type,
e.g.:

int f() {

double d = 3.0;

return ((union a_union *) &d)->i;

}

The ‘-fstrict-aliasing’ option is enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fstrict-overflow
Allow the compiler to assume strict signed overflow rules, depending on the
language being compiled. For C (and C++) this means that overflow when doing
arithmetic with signed numbers is undefined, which means that the compiler
may assume that it does not happen. This permits various optimizations. For
example, the compiler assumes that an expression like i + 10 > i is always true
for signed i. This assumption is only valid if signed overflow is undefined, as the
expression is false if i + 10 overflows when using twos complement arithmetic.
When this option is in effect any attempt to determine whether an operation
on signed numbers overflows must be written carefully to not actually involve
overflow.
This option also allows the compiler to assume strict pointer semantics: given
a pointer to an object, if adding an offset to that pointer does not produce a
pointer to the same object, the addition is undefined. This permits the compiler
to conclude that p + u > p is always true for a pointer p and unsigned integer
u. This assumption is only valid because pointer wraparound is undefined, as
the expression is false if p + u overflows using twos complement arithmetic.
See also the ‘-fwrapv’ option. Using ‘-fwrapv’ means that integer signed over-
flow is fully defined: it wraps. When ‘-fwrapv’ is used, there is no difference
between ‘-fstrict-overflow’ and ‘-fno-strict-overflow’ for integers. With
‘-fwrapv’ certain types of overflow are permitted. For example, if the compiler
gets an overflow when doing arithmetic on constants, the overflowed value can
still be used with ‘-fwrapv’, but not otherwise.
The ‘-fstrict-overflow’ option is enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-falign-functions
-falign-functions=n

Align the start of functions to the next power-of-two greater than n, skipping
up to n bytes. For instance, ‘-falign-functions=32’ aligns functions to the

126 Using the GNU Compiler Collection (GCC)

next 32-byte boundary, but ‘-falign-functions=24’ aligns to the next 32-byte
boundary only if this can be done by skipping 23 bytes or less.
‘-fno-align-functions’ and ‘-falign-functions=1’ are equivalent and mean
that functions are not aligned.
Some assemblers only support this flag when n is a power of two; in that case,
it is rounded up.
If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘-O2’, ‘-O3’.

-falign-labels
-falign-labels=n

Align all branch targets to a power-of-two boundary, skipping up to n bytes
like ‘-falign-functions’. This option can easily make code slower, because
it must insert dummy operations for when the branch target is reached in the
usual flow of the code.
‘-fno-align-labels’ and ‘-falign-labels=1’ are equivalent and mean that
labels are not aligned.
If ‘-falign-loops’ or ‘-falign-jumps’ are applicable and are greater than this
value, then their values are used instead.
If n is not specified or is zero, use a machine-dependent default which is very
likely to be ‘1’, meaning no alignment.
Enabled at levels ‘-O2’, ‘-O3’.

-falign-loops
-falign-loops=n

Align loops to a power-of-two boundary, skipping up to n bytes like
‘-falign-functions’. If the loops are executed many times, this makes up
for any execution of the dummy operations.
‘-fno-align-loops’ and ‘-falign-loops=1’ are equivalent and mean that
loops are not aligned.
If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘-O2’, ‘-O3’.

-falign-jumps
-falign-jumps=n

Align branch targets to a power-of-two boundary, for branch targets where
the targets can only be reached by jumping, skipping up to n bytes like
‘-falign-functions’. In this case, no dummy operations need be executed.
‘-fno-align-jumps’ and ‘-falign-jumps=1’ are equivalent and mean that
loops are not aligned.
If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘-O2’, ‘-O3’.

-funit-at-a-time
This option is left for compatibility reasons. ‘-funit-at-a-time’ has no
effect, while ‘-fno-unit-at-a-time’ implies ‘-fno-toplevel-reorder’ and
‘-fno-section-anchors’.

Chapter 3: GCC Command Options 127

Enabled by default.

-fno-toplevel-reorder
Do not reorder top-level functions, variables, and asm statements. Output them
in the same order that they appear in the input file. When this option is
used, unreferenced static variables are not removed. This option is intended to
support existing code that relies on a particular ordering. For new code, it is
better to use attributes when possible.
Enabled at level ‘-O0’. When disabled explicitly, it also implies
‘-fno-section-anchors’, which is otherwise enabled at ‘-O0’ on some targets.

-fweb Constructs webs as commonly used for register allocation purposes and assign
each web individual pseudo register. This allows the register allocation pass
to operate on pseudos directly, but also strengthens several other optimization
passes, such as CSE, loop optimizer and trivial dead code remover. It can,
however, make debugging impossible, since variables no longer stay in a “home
register”.
Enabled by default with ‘-funroll-loops’.

-fwhole-program
Assume that the current compilation unit represents the whole program being
compiled. All public functions and variables with the exception of main and
those merged by attribute externally_visible become static functions and
in effect are optimized more aggressively by interprocedural optimizers.
This option should not be used in combination with -flto. Instead relying on
a linker plugin should provide safer and more precise information.

-flto[=n]
This option runs the standard link-time optimizer. When invoked with source
code, it generates GIMPLE (one of GCC’s internal representations) and writes
it to special ELF sections in the object file. When the object files are linked
together, all the function bodies are read from these ELF sections and instan-
tiated as if they had been part of the same translation unit.
To use the link-time optimizer, ‘-flto’ and optimization options should be
specified at compile time and during the final link. For example:

gcc -c -O2 -flto foo.c

gcc -c -O2 -flto bar.c

gcc -o myprog -flto -O2 foo.o bar.o

The first two invocations to GCC save a bytecode representation of GIMPLE
into special ELF sections inside ‘foo.o’ and ‘bar.o’. The final invocation reads
the GIMPLE bytecode from ‘foo.o’ and ‘bar.o’, merges the two files into a
single internal image, and compiles the result as usual. Since both ‘foo.o’
and ‘bar.o’ are merged into a single image, this causes all the interprocedural
analyses and optimizations in GCC to work across the two files as if they were a
single one. This means, for example, that the inliner is able to inline functions
in ‘bar.o’ into functions in ‘foo.o’ and vice-versa.
Another (simpler) way to enable link-time optimization is:

gcc -o myprog -flto -O2 foo.c bar.c

128 Using the GNU Compiler Collection (GCC)

The above generates bytecode for ‘foo.c’ and ‘bar.c’, merges them together
into a single GIMPLE representation and optimizes them as usual to produce
‘myprog’.

The only important thing to keep in mind is that to enable link-time optimiza-
tions you need to use the GCC driver to perform the link-step. GCC then
automatically performs link-time optimization if any of the objects involved
were compiled with the ‘-flto’. You generally should specify the optimization
options to be used for link-time optimization though GCC will try to be clever
at guessing an optimization level to use from the options used at compile-time
if you fail to specify one at link-time. You can always override the automatic
decision to do link-time optimization at link-time by passing ‘-fno-lto’ to the
link command.

To make whole program optimization effective, it is necessary to make
certain whole program assumptions. The compiler needs to know what
functions and variables can be accessed by libraries and runtime outside
of the link-time optimized unit. When supported by the linker, the linker
plugin (see ‘-fuse-linker-plugin’) passes information to the compiler about
used and externally visible symbols. When the linker plugin is not available,
‘-fwhole-program’ should be used to allow the compiler to make these
assumptions, which leads to more aggressive optimization decisions.

When ‘-fuse-linker-plugin’ is not enabled then, when a file is compiled
with ‘-flto’, the generated object file is larger than a regular object
file because it contains GIMPLE bytecodes and the usual final code (see
‘-ffat-lto-objects’. This means that object files with LTO information
can be linked as normal object files; if ‘-fno-lto’ is passed to the
linker, no interprocedural optimizations are applied. Note that when
‘-fno-fat-lto-objects’ is enabled the compile-stage is faster but you cannot
perform a regular, non-LTO link on them.

Additionally, the optimization flags used to compile individual files are not
necessarily related to those used at link time. For instance,

gcc -c -O0 -ffat-lto-objects -flto foo.c

gcc -c -O0 -ffat-lto-objects -flto bar.c

gcc -o myprog -O3 foo.o bar.o

This produces individual object files with unoptimized assembler code, but the
resulting binary ‘myprog’ is optimized at ‘-O3’. If, instead, the final binary is
generated with ‘-fno-lto’, then ‘myprog’ is not optimized.

When producing the final binary, GCC only applies link-time optimizations to
those files that contain bytecode. Therefore, you can mix and match object
files and libraries with GIMPLE bytecodes and final object code. GCC auto-
matically selects which files to optimize in LTO mode and which files to link
without further processing.

There are some code generation flags preserved by GCC when generating byte-
codes, as they need to be used during the final link stage. Generally options
specified at link-time override those specified at compile-time.

Chapter 3: GCC Command Options 129

If you do not specify an optimization level option ‘-O’ at link-time then GCC
will compute one based on the optimization levels used when compiling the
object files. The highest optimization level will win here.
Currently, the following options and their setting are take from the first ob-
ject file that explicitely specified it: ‘-fPIC’, ‘-fpic’, ‘-fpie’, ‘-fcommon’,
‘-fexceptions’, ‘-fnon-call-exceptions’, ‘-fgnu-tm’ and all the ‘-m’ target
flags.
Certain ABI changing flags are required to match in all compilation-units and
trying to override this at link-time with a conflicting value is ignored. This
includes options such as ‘-freg-struct-return’ and ‘-fpcc-struct-return’.
Other options such as ‘-ffp-contract’, ‘-fno-strict-overflow’, ‘-fwrapv’,
‘-fno-trapv’ or ‘-fno-strict-aliasing’ are passed through to the link
stage and merged conservatively for conflicting translation units. Specifically
‘-fno-strict-overflow’, ‘-fwrapv’ and ‘-fno-trapv’ take precedence and for
example ‘-ffp-contract=off’ takes precedence over ‘-ffp-contract=fast’.
You can override them at linke-time.
It is recommended that you compile all the files participating in the same link
with the same options and also specify those options at link time.
If LTO encounters objects with C linkage declared with incompatible types in
separate translation units to be linked together (undefined behavior according
to ISO C99 6.2.7), a non-fatal diagnostic may be issued. The behavior is still
undefined at run time. Similar diagnostics may be raised for other languages.
Another feature of LTO is that it is possible to apply interprocedural optimiza-
tions on files written in different languages:

gcc -c -flto foo.c

g++ -c -flto bar.cc

gfortran -c -flto baz.f90

g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran

Notice that the final link is done with g++ to get the C++ runtime libraries and
‘-lgfortran’ is added to get the Fortran runtime libraries. In general, when
mixing languages in LTO mode, you should use the same link command options
as when mixing languages in a regular (non-LTO) compilation.
If object files containing GIMPLE bytecode are stored in a library archive, say
‘libfoo.a’, it is possible to extract and use them in an LTO link if you are
using a linker with plugin support. To create static libraries suitable for LTO,
use gcc-ar and gcc-ranlib instead of ar and ranlib; to show the symbols
of object files with GIMPLE bytecode, use gcc-nm. Those commands require
that ar, ranlib and nm have been compiled with plugin support. At link time,
use the the flag ‘-fuse-linker-plugin’ to ensure that the library participates
in the LTO optimization process:

gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo

With the linker plugin enabled, the linker extracts the needed GIMPLE files
from ‘libfoo.a’ and passes them on to the running GCC to make them part
of the aggregated GIMPLE image to be optimized.
If you are not using a linker with plugin support and/or do not enable the linker
plugin, then the objects inside ‘libfoo.a’ are extracted and linked as usual,

130 Using the GNU Compiler Collection (GCC)

but they do not participate in the LTO optimization process. In order to make
a static library suitable for both LTO optimization and usual linkage, compile
its object files with ‘-flto’ -ffat-lto-objects.
Link-time optimizations do not require the presence of the whole program to
operate. If the program does not require any symbols to be exported, it is pos-
sible to combine ‘-flto’ and ‘-fwhole-program’ to allow the interprocedural
optimizers to use more aggressive assumptions which may lead to improved op-
timization opportunities. Use of ‘-fwhole-program’ is not needed when linker
plugin is active (see ‘-fuse-linker-plugin’).
The current implementation of LTO makes no attempt to generate bytecode
that is portable between different types of hosts. The bytecode files are ver-
sioned and there is a strict version check, so bytecode files generated in one
version of GCC will not work with an older or newer version of GCC.
Link-time optimization does not work well with generation of debugging infor-
mation. Combining ‘-flto’ with ‘-g’ is currently experimental and expected
to produce unexpected results.
If you specify the optional n, the optimization and code generation done at link
time is executed in parallel using n parallel jobs by utilizing an installed make
program. The environment variable MAKE may be used to override the program
used. The default value for n is 1.
You can also specify ‘-flto=jobserver’ to use GNU make’s job server mode to
determine the number of parallel jobs. This is useful when the Makefile calling
GCC is already executing in parallel. You must prepend a ‘+’ to the command
recipe in the parent Makefile for this to work. This option likely only works if
MAKE is GNU make.

-flto-partition=alg
Specify the partitioning algorithm used by the link-time optimizer. The value
is either 1to1 to specify a partitioning mirroring the original source files or
balanced to specify partitioning into equally sized chunks (whenever possible)
or max to create new partition for every symbol where possible. Specifying none
as an algorithm disables partitioning and streaming completely. The default
value is balanced. While 1to1 can be used as an workaround for various code
ordering issues, the max partitioning is intended for internal testing only.

-flto-compression-level=n
This option specifies the level of compression used for intermediate language
written to LTO object files, and is only meaningful in conjunction with LTO
mode (‘-flto’). Valid values are 0 (no compression) to 9 (maximum compres-
sion). Values outside this range are clamped to either 0 or 9. If the option is
not given, a default balanced compression setting is used.

-flto-report
Prints a report with internal details on the workings of the link-time optimizer.
The contents of this report vary from version to version. It is meant to be useful
to GCC developers when processing object files in LTO mode (via ‘-flto’).
Disabled by default.

Chapter 3: GCC Command Options 131

-flto-report-wpa
Like ‘-flto-report’, but only print for the WPA phase of Link Time Opti-
mization.

-fuse-linker-plugin
Enables the use of a linker plugin during link-time optimization. This option
relies on plugin support in the linker, which is available in gold or in GNU ld
2.21 or newer.

This option enables the extraction of object files with GIMPLE bytecode out
of library archives. This improves the quality of optimization by exposing more
code to the link-time optimizer. This information specifies what symbols can be
accessed externally (by non-LTO object or during dynamic linking). Resulting
code quality improvements on binaries (and shared libraries that use hidden
visibility) are similar to -fwhole-program. See ‘-flto’ for a description of the
effect of this flag and how to use it.

This option is enabled by default when LTO support in GCC is enabled and
GCC was configured for use with a linker supporting plugins (GNU ld 2.21 or
newer or gold).

-ffat-lto-objects
Fat LTO objects are object files that contain both the intermediate language
and the object code. This makes them usable for both LTO linking and normal
linking. This option is effective only when compiling with ‘-flto’ and is ignored
at link time.

‘-fno-fat-lto-objects’ improves compilation time over plain LTO, but re-
quires the complete toolchain to be aware of LTO. It requires a linker with linker
plugin support for basic functionality. Additionally, nm, ar and ranlib need
to support linker plugins to allow a full-featured build environment (capable of
building static libraries etc). GCC provides the gcc-ar, gcc-nm, gcc-ranlib
wrappers to pass the right options to these tools. With non fat LTO makefiles
need to be modified to use them.

The default is ‘-fno-fat-lto-objects’ on targets with linker plugin support.

-fcompare-elim
After register allocation and post-register allocation instruction splitting, iden-
tify arithmetic instructions that compute processor flags similar to a comparison
operation based on that arithmetic. If possible, eliminate the explicit compar-
ison operation.

This pass only applies to certain targets that cannot explicitly represent the
comparison operation before register allocation is complete.

Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fuse-ld=bfd
Use the bfd linker instead of the default linker.

-fuse-ld=gold
Use the gold linker instead of the default linker.

132 Using the GNU Compiler Collection (GCC)

-fcprop-registers
After register allocation and post-register allocation instruction splitting, per-
form a copy-propagation pass to try to reduce scheduling dependencies and
occasionally eliminate the copy.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fprofile-correction
Profiles collected using an instrumented binary for multi-threaded programs
may be inconsistent due to missed counter updates. When this option is spec-
ified, GCC uses heuristics to correct or smooth out such inconsistencies. By
default, GCC emits an error message when an inconsistent profile is detected.

-fprofile-dir=path
Set the directory to search for the profile data files in to path. This
option affects only the profile data generated by ‘-fprofile-generate’,
‘-ftest-coverage’, ‘-fprofile-arcs’ and used by ‘-fprofile-use’ and
‘-fbranch-probabilities’ and its related options. Both absolute and relative
paths can be used. By default, GCC uses the current directory as path, thus
the profile data file appears in the same directory as the object file.

-fprofile-generate
-fprofile-generate=path

Enable options usually used for instrumenting application to produce profile
useful for later recompilation with profile feedback based optimization. You
must use ‘-fprofile-generate’ both when compiling and when linking your
program.
The following options are enabled: -fprofile-arcs, -fprofile-values, -
fvpt.
If path is specified, GCC looks at the path to find the profile feedback data
files. See ‘-fprofile-dir’.

-fprofile-use
-fprofile-use=path

Enable profile feedback directed optimizations, and optimizations generally
profitable only with profile feedback available.
The following options are enabled: -fbranch-probabilities, -fvpt,
-funroll-loops, -fpeel-loops, -ftracer, -ftree-vectorize,
ftree-loop-distribute-patterns

By default, GCC emits an error message if the feedback profiles do not
match the source code. This error can be turned into a warning by using
‘-Wcoverage-mismatch’. Note this may result in poorly optimized code.
If path is specified, GCC looks at the path to find the profile feedback data
files. See ‘-fprofile-dir’.

The following options control compiler behavior regarding floating-point arithmetic.
These options trade off between speed and correctness. All must be specifically enabled.

-ffloat-store
Do not store floating-point variables in registers, and inhibit other options that
might change whether a floating-point value is taken from a register or memory.

Chapter 3: GCC Command Options 133

This option prevents undesirable excess precision on machines such as the 68000
where the floating registers (of the 68881) keep more precision than a double
is supposed to have. Similarly for the x86 architecture. For most programs,
the excess precision does only good, but a few programs rely on the precise
definition of IEEE floating point. Use ‘-ffloat-store’ for such programs, after
modifying them to store all pertinent intermediate computations into variables.

-fexcess-precision=style
This option allows further control over excess precision on machines where
floating-point registers have more precision than the IEEE float and double
types and the processor does not support operations rounding to those types.
By default, ‘-fexcess-precision=fast’ is in effect; this means that operations
are carried out in the precision of the registers and that it is unpredictable when
rounding to the types specified in the source code takes place. When compiling
C, if ‘-fexcess-precision=standard’ is specified then excess precision fol-
lows the rules specified in ISO C99; in particular, both casts and assignments
cause values to be rounded to their semantic types (whereas ‘-ffloat-store’
only affects assignments). This option is enabled by default for C if a strict
conformance option such as ‘-std=c99’ is used.
‘-fexcess-precision=standard’ is not implemented for languages other than
C, and has no effect if ‘-funsafe-math-optimizations’ or ‘-ffast-math’
is specified. On the x86, it also has no effect if ‘-mfpmath=sse’ or
‘-mfpmath=sse+387’ is specified; in the former case, IEEE semantics apply
without excess precision, and in the latter, rounding is unpredictable.

-ffast-math
Sets ‘-fno-math-errno’, ‘-funsafe-math-optimizations’, ‘-ffinite-math-only’,
‘-fno-rounding-math’, ‘-fno-signaling-nans’ and ‘-fcx-limited-range’.
This option causes the preprocessor macro __FAST_MATH__ to be defined.
This option is not turned on by any ‘-O’ option besides ‘-Ofast’ since it can
result in incorrect output for programs that depend on an exact implementation
of IEEE or ISO rules/specifications for math functions. It may, however, yield
faster code for programs that do not require the guarantees of these specifica-
tions.

-fno-math-errno
Do not set errno after calling math functions that are executed with a single
instruction, e.g., sqrt. A program that relies on IEEE exceptions for math
error handling may want to use this flag for speed while maintaining IEEE
arithmetic compatibility.
This option is not turned on by any ‘-O’ option since it can result in incorrect
output for programs that depend on an exact implementation of IEEE or ISO
rules/specifications for math functions. It may, however, yield faster code for
programs that do not require the guarantees of these specifications.
The default is ‘-fmath-errno’.
On Darwin systems, the math library never sets errno. There is therefore
no reason for the compiler to consider the possibility that it might, and
‘-fno-math-errno’ is the default.

134 Using the GNU Compiler Collection (GCC)

-funsafe-math-optimizations
Allow optimizations for floating-point arithmetic that (a) assume that argu-
ments and results are valid and (b) may violate IEEE or ANSI standards.
When used at link-time, it may include libraries or startup files that change the
default FPU control word or other similar optimizations.

This option is not turned on by any ‘-O’ option since it can result in incor-
rect output for programs that depend on an exact implementation of IEEE
or ISO rules/specifications for math functions. It may, however, yield faster
code for programs that do not require the guarantees of these specifications.
Enables ‘-fno-signed-zeros’, ‘-fno-trapping-math’, ‘-fassociative-math’
and ‘-freciprocal-math’.

The default is ‘-fno-unsafe-math-optimizations’.

-fassociative-math
Allow re-association of operands in series of floating-point operations. This vi-
olates the ISO C and C++ language standard by possibly changing computation
result. NOTE: re-ordering may change the sign of zero as well as ignore NaNs
and inhibit or create underflow or overflow (and thus cannot be used on code
that relies on rounding behavior like (x + 2**52) - 2**52. May also reorder
floating-point comparisons and thus may not be used when ordered compar-
isons are required. This option requires that both ‘-fno-signed-zeros’ and
‘-fno-trapping-math’ be in effect. Moreover, it doesn’t make much sense with
‘-frounding-math’. For Fortran the option is automatically enabled when both
‘-fno-signed-zeros’ and ‘-fno-trapping-math’ are in effect.

The default is ‘-fno-associative-math’.

-freciprocal-math
Allow the reciprocal of a value to be used instead of dividing by the value if
this enables optimizations. For example x / y can be replaced with x * (1/y),
which is useful if (1/y) is subject to common subexpression elimination. Note
that this loses precision and increases the number of flops operating on the
value.

The default is ‘-fno-reciprocal-math’.

-ffinite-math-only
Allow optimizations for floating-point arithmetic that assume that arguments
and results are not NaNs or +-Infs.

This option is not turned on by any ‘-O’ option since it can result in incorrect
output for programs that depend on an exact implementation of IEEE or ISO
rules/specifications for math functions. It may, however, yield faster code for
programs that do not require the guarantees of these specifications.

The default is ‘-fno-finite-math-only’.

-fno-signed-zeros
Allow optimizations for floating-point arithmetic that ignore the signedness of
zero. IEEE arithmetic specifies the behavior of distinct +0.0 and −0.0 values,
which then prohibits simplification of expressions such as x+0.0 or 0.0*x (even

Chapter 3: GCC Command Options 135

with ‘-ffinite-math-only’). This option implies that the sign of a zero result
isn’t significant.
The default is ‘-fsigned-zeros’.

-fno-trapping-math
Compile code assuming that floating-point operations cannot generate user-
visible traps. These traps include division by zero, overflow, underflow, inexact
result and invalid operation. This option requires that ‘-fno-signaling-nans’
be in effect. Setting this option may allow faster code if one relies on “non-stop”
IEEE arithmetic, for example.
This option should never be turned on by any ‘-O’ option since it can result
in incorrect output for programs that depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.
The default is ‘-ftrapping-math’.

-frounding-math
Disable transformations and optimizations that assume default floating-point
rounding behavior. This is round-to-zero for all floating point to integer con-
versions, and round-to-nearest for all other arithmetic truncations. This option
should be specified for programs that change the FP rounding mode dynami-
cally, or that may be executed with a non-default rounding mode. This option
disables constant folding of floating-point expressions at compile time (which
may be affected by rounding mode) and arithmetic transformations that are
unsafe in the presence of sign-dependent rounding modes.
The default is ‘-fno-rounding-math’.
This option is experimental and does not currently guarantee to disable all GCC
optimizations that are affected by rounding mode. Future versions of GCC may
provide finer control of this setting using C99’s FENV_ACCESS pragma. This
command-line option will be used to specify the default state for FENV_ACCESS.

-fsignaling-nans
Compile code assuming that IEEE signaling NaNs may generate user-visible
traps during floating-point operations. Setting this option disables optimiza-
tions that may change the number of exceptions visible with signaling NaNs.
This option implies ‘-ftrapping-math’.
This option causes the preprocessor macro __SUPPORT_SNAN__ to be defined.
The default is ‘-fno-signaling-nans’.
This option is experimental and does not currently guarantee to disable all
GCC optimizations that affect signaling NaN behavior.

-fsingle-precision-constant
Treat floating-point constants as single precision instead of implicitly converting
them to double-precision constants.

-fcx-limited-range
When enabled, this option states that a range reduction step is not needed when
performing complex division. Also, there is no checking whether the result of
a complex multiplication or division is NaN + I*NaN, with an attempt to rescue

136 Using the GNU Compiler Collection (GCC)

the situation in that case. The default is ‘-fno-cx-limited-range’, but is
enabled by ‘-ffast-math’.
This option controls the default setting of the ISO C99 CX_LIMITED_RANGE
pragma. Nevertheless, the option applies to all languages.

-fcx-fortran-rules
Complex multiplication and division follow Fortran rules. Range reduction is
done as part of complex division, but there is no checking whether the result of
a complex multiplication or division is NaN + I*NaN, with an attempt to rescue
the situation in that case.
The default is ‘-fno-cx-fortran-rules’.

The following options control optimizations that may improve performance, but are not
enabled by any ‘-O’ options. This section includes experimental options that may produce
broken code.

-fbranch-probabilities
After running a program compiled with ‘-fprofile-arcs’ (see Section 3.9 [Op-
tions for Debugging Your Program or gcc], page 78), you can compile it a
second time using ‘-fbranch-probabilities’, to improve optimizations based
on the number of times each branch was taken. When a program compiled
with ‘-fprofile-arcs’ exits, it saves arc execution counts to a file called
‘sourcename.gcda’ for each source file. The information in this data file is
very dependent on the structure of the generated code, so you must use the
same source code and the same optimization options for both compilations.
With ‘-fbranch-probabilities’, GCC puts a ‘REG_BR_PROB’ note on each
‘JUMP_INSN’ and ‘CALL_INSN’. These can be used to improve optimization.
Currently, they are only used in one place: in ‘reorg.c’, instead of guessing
which path a branch is most likely to take, the ‘REG_BR_PROB’ values are used
to exactly determine which path is taken more often.

-fprofile-values
If combined with ‘-fprofile-arcs’, it adds code so that some data about
values of expressions in the program is gathered.
With ‘-fbranch-probabilities’, it reads back the data gathered from profil-
ing values of expressions for usage in optimizations.
Enabled with ‘-fprofile-generate’ and ‘-fprofile-use’.

-fprofile-reorder-functions
Function reordering based on profile instrumentation collects first time of exe-
cution of a function and orders these functions in ascending order.
Enabled with ‘-fprofile-use’.

-fvpt If combined with ‘-fprofile-arcs’, this option instructs the compiler to add
code to gather information about values of expressions.
With ‘-fbranch-probabilities’, it reads back the data gathered and actually
performs the optimizations based on them. Currently the optimizations include
specialization of division operations using the knowledge about the value of the
denominator.

Chapter 3: GCC Command Options 137

-frename-registers
Attempt to avoid false dependencies in scheduled code by making use of registers
left over after register allocation. This optimization most benefits processors
with lots of registers. Depending on the debug information format adopted by
the target, however, it can make debugging impossible, since variables no longer
stay in a “home register”.
Enabled by default with ‘-funroll-loops’ and ‘-fpeel-loops’.

-ftracer Perform tail duplication to enlarge superblock size. This transformation simpli-
fies the control flow of the function allowing other optimizations to do a better
job.
Enabled with ‘-fprofile-use’.

-funroll-loops
Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘-funroll-loops’ implies ‘-frerun-cse-after-loop’,
‘-fweb’ and ‘-frename-registers’. It also turns on complete loop peeling (i.e.
complete removal of loops with a small constant number of iterations). This
option makes code larger, and may or may not make it run faster.
Enabled with ‘-fprofile-use’.

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘-funroll-all-loops’
implies the same options as ‘-funroll-loops’.

-fpeel-loops
Peels loops for which there is enough information that they do not roll much
(from profile feedback). It also turns on complete loop peeling (i.e. complete
removal of loops with small constant number of iterations).
Enabled with ‘-fprofile-use’.

-fmove-loop-invariants
Enables the loop invariant motion pass in the RTL loop optimizer. Enabled at
level ‘-O1’

-funswitch-loops
Move branches with loop invariant conditions out of the loop, with duplicates
of the loop on both branches (modified according to result of the condition).

-ffunction-sections
-fdata-sections

Place each function or data item into its own section in the output file if the
target supports arbitrary sections. The name of the function or the name of
the data item determines the section’s name in the output file.
Use these options on systems where the linker can perform optimizations to
improve locality of reference in the instruction space. Most systems using the
ELF object format and SPARC processors running Solaris 2 have linkers with
such optimizations. AIX may have these optimizations in the future.

138 Using the GNU Compiler Collection (GCC)

Only use these options when there are significant benefits from doing so. When
you specify these options, the assembler and linker create larger object and
executable files and are also slower. You cannot use gprof on all systems if you
specify this option, and you may have problems with debugging if you specify
both this option and ‘-g’.

-fbranch-target-load-optimize
Perform branch target register load optimization before prologue / epilogue
threading. The use of target registers can typically be exposed only during
reload, thus hoisting loads out of loops and doing inter-block scheduling needs
a separate optimization pass.

-fbranch-target-load-optimize2
Perform branch target register load optimization after prologue / epilogue
threading.

-fbtr-bb-exclusive
When performing branch target register load optimization, don’t reuse branch
target registers within any basic block.

-fstack-protector
Emit extra code to check for buffer overflows, such as stack smashing attacks.
This is done by adding a guard variable to functions with vulnerable objects.
This includes functions that call alloca, and functions with buffers larger than
8 bytes. The guards are initialized when a function is entered and then checked
when the function exits. If a guard check fails, an error message is printed and
the program exits.

-fstack-protector-all
Like ‘-fstack-protector’ except that all functions are protected.

-fstack-protector-strong
Like ‘-fstack-protector’ but includes additional functions to be protected
— those that have local array definitions, or have references to local frame
addresses.

-fsection-anchors
Try to reduce the number of symbolic address calculations by using shared
“anchor” symbols to address nearby objects. This transformation can help to
reduce the number of GOT entries and GOT accesses on some targets.
For example, the implementation of the following function foo:

static int a, b, c;

int foo (void) { return a + b + c; }

usually calculates the addresses of all three variables, but if you compile it with
‘-fsection-anchors’, it accesses the variables from a common anchor point
instead. The effect is similar to the following pseudocode (which isn’t valid C):

int foo (void)

{

register int *xr = &x;

return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];

}

Not all targets support this option.

Chapter 3: GCC Command Options 139

--param name=value
In some places, GCC uses various constants to control the amount of optimiza-
tion that is done. For example, GCC does not inline functions that contain
more than a certain number of instructions. You can control some of these
constants on the command line using the ‘--param’ option.

The names of specific parameters, and the meaning of the values, are tied to
the internals of the compiler, and are subject to change without notice in future
releases.

In each case, the value is an integer. The allowable choices for name are:

predictable-branch-outcome
When branch is predicted to be taken with probability lower than
this threshold (in percent), then it is considered well predictable.
The default is 10.

max-crossjump-edges
The maximum number of incoming edges to consider for cross-
jumping. The algorithm used by ‘-fcrossjumping’ is O(N 2) in
the number of edges incoming to each block. Increasing values
mean more aggressive optimization, making the compilation time
increase with probably small improvement in executable size.

min-crossjump-insns
The minimum number of instructions that must be matched at the
end of two blocks before cross-jumping is performed on them. This
value is ignored in the case where all instructions in the block being
cross-jumped from are matched. The default value is 5.

max-grow-copy-bb-insns
The maximum code size expansion factor when copying basic blocks
instead of jumping. The expansion is relative to a jump instruction.
The default value is 8.

max-goto-duplication-insns
The maximum number of instructions to duplicate to a block that
jumps to a computed goto. To avoid O(N 2) behavior in a number
of passes, GCC factors computed gotos early in the compilation
process, and unfactors them as late as possible. Only computed
jumps at the end of a basic blocks with no more than max-goto-
duplication-insns are unfactored. The default value is 8.

max-delay-slot-insn-search
The maximum number of instructions to consider when looking for
an instruction to fill a delay slot. If more than this arbitrary number
of instructions are searched, the time savings from filling the delay
slot are minimal, so stop searching. Increasing values mean more
aggressive optimization, making the compilation time increase with
probably small improvement in execution time.

140 Using the GNU Compiler Collection (GCC)

max-delay-slot-live-search
When trying to fill delay slots, the maximum number of instruc-
tions to consider when searching for a block with valid live register
information. Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compilation time. This pa-
rameter should be removed when the delay slot code is rewritten
to maintain the control-flow graph.

max-gcse-memory
The approximate maximum amount of memory that can be allo-
cated in order to perform the global common subexpression elim-
ination optimization. If more memory than specified is required,
the optimization is not done.

max-gcse-insertion-ratio
If the ratio of expression insertions to deletions is larger than this
value for any expression, then RTL PRE inserts or removes the
expression and thus leaves partially redundant computations in the
instruction stream. The default value is 20.

max-pending-list-length
The maximum number of pending dependencies scheduling allows
before flushing the current state and starting over. Large functions
with few branches or calls can create excessively large lists which
needlessly consume memory and resources.

max-modulo-backtrack-attempts
The maximum number of backtrack attempts the scheduler should
make when modulo scheduling a loop. Larger values can exponen-
tially increase compilation time.

max-inline-insns-single
Several parameters control the tree inliner used in GCC. This num-
ber sets the maximum number of instructions (counted in GCC’s
internal representation) in a single function that the tree inliner
considers for inlining. This only affects functions declared inline
and methods implemented in a class declaration (C++). The de-
fault value is 400.

max-inline-insns-auto
When you use ‘-finline-functions’ (included in ‘-O3’), a lot of
functions that would otherwise not be considered for inlining by
the compiler are investigated. To those functions, a different (more
restrictive) limit compared to functions declared inline can be ap-
plied. The default value is 40.

inline-min-speedup
When estimated performance improvement of caller + callee run-
time exceeds this threshold (in precent), the function can be inlined
regardless the limit on ‘--param max-inline-insns-single’ and
‘--param max-inline-insns-auto’.

Chapter 3: GCC Command Options 141

large-function-insns
The limit specifying really large functions. For functions larger
than this limit after inlining, inlining is constrained by ‘--param
large-function-growth’. This parameter is useful primarily to
avoid extreme compilation time caused by non-linear algorithms
used by the back end. The default value is 2700.

large-function-growth
Specifies maximal growth of large function caused by inlining in per-
cents. The default value is 100 which limits large function growth
to 2.0 times the original size.

large-unit-insns
The limit specifying large translation unit. Growth caused by
inlining of units larger than this limit is limited by ‘--param
inline-unit-growth’. For small units this might be too tight.
For example, consider a unit consisting of function A that is
inline and B that just calls A three times. If B is small relative
to A, the growth of unit is 300\% and yet such inlining is
very sane. For very large units consisting of small inlineable
functions, however, the overall unit growth limit is needed to avoid
exponential explosion of code size. Thus for smaller units, the
size is increased to ‘--param large-unit-insns’ before applying
‘--param inline-unit-growth’. The default is 10000.

inline-unit-growth
Specifies maximal overall growth of the compilation unit caused by
inlining. The default value is 30 which limits unit growth to 1.3
times the original size.

ipcp-unit-growth
Specifies maximal overall growth of the compilation unit caused
by interprocedural constant propagation. The default value is 10
which limits unit growth to 1.1 times the original size.

large-stack-frame
The limit specifying large stack frames. While inlining the algo-
rithm is trying to not grow past this limit too much. The default
value is 256 bytes.

large-stack-frame-growth
Specifies maximal growth of large stack frames caused by inlining in
percents. The default value is 1000 which limits large stack frame
growth to 11 times the original size.

max-inline-insns-recursive
max-inline-insns-recursive-auto

Specifies the maximum number of instructions an out-of-line copy of
a self-recursive inline function can grow into by performing recursive
inlining.

142 Using the GNU Compiler Collection (GCC)

For functions declared inline, ‘--param max-inline-insns-recursive’
is taken into account. For functions not declared inline, recursive
inlining happens only when ‘-finline-functions’ (included in
‘-O3’) is enabled and ‘--param max-inline-insns-recursive-auto’
is used. The default value is 450.

max-inline-recursive-depth
max-inline-recursive-depth-auto

Specifies the maximum recursion depth used for recursive inlining.

For functions declared inline, ‘--param max-inline-recursive-depth’
is taken into account. For functions not declared inline, recursive
inlining happens only when ‘-finline-functions’ (included in
‘-O3’) is enabled and ‘--param max-inline-recursive-depth-auto’
is used. The default value is 8.

min-inline-recursive-probability
Recursive inlining is profitable only for function having deep re-
cursion in average and can hurt for function having little recursion
depth by increasing the prologue size or complexity of function
body to other optimizers.

When profile feedback is available (see ‘-fprofile-generate’) the
actual recursion depth can be guessed from probability that func-
tion recurses via a given call expression. This parameter limits in-
lining only to call expressions whose probability exceeds the given
threshold (in percents). The default value is 10.

early-inlining-insns
Specify growth that the early inliner can make. In effect it increases
the amount of inlining for code having a large abstraction penalty.
The default value is 10.

max-early-inliner-iterations
max-early-inliner-iterations

Limit of iterations of the early inliner. This basically bounds the
number of nested indirect calls the early inliner can resolve. Deeper
chains are still handled by late inlining.

comdat-sharing-probability
comdat-sharing-probability

Probability (in percent) that C++ inline function with comdat vis-
ibility are shared across multiple compilation units. The default
value is 20.

min-vect-loop-bound
The minimum number of iterations under which loops are not vec-
torized when ‘-ftree-vectorize’ is used. The number of itera-
tions after vectorization needs to be greater than the value specified
by this option to allow vectorization. The default value is 0.

Chapter 3: GCC Command Options 143

gcse-cost-distance-ratio
Scaling factor in calculation of maximum distance an expression can
be moved by GCSE optimizations. This is currently supported only
in the code hoisting pass. The bigger the ratio, the more aggres-
sive code hoisting is with simple expressions, i.e., the expressions
that have cost less than ‘gcse-unrestricted-cost’. Specifying 0
disables hoisting of simple expressions. The default value is 10.

gcse-unrestricted-cost
Cost, roughly measured as the cost of a single typical machine
instruction, at which GCSE optimizations do not constrain the dis-
tance an expression can travel. This is currently supported only
in the code hoisting pass. The lesser the cost, the more aggres-
sive code hoisting is. Specifying 0 allows all expressions to travel
unrestricted distances. The default value is 3.

max-hoist-depth
The depth of search in the dominator tree for expressions to hoist.
This is used to avoid quadratic behavior in hoisting algorithm. The
value of 0 does not limit on the search, but may slow down compi-
lation of huge functions. The default value is 30.

max-tail-merge-comparisons
The maximum amount of similar bbs to compare a bb with. This is
used to avoid quadratic behavior in tree tail merging. The default
value is 10.

max-tail-merge-iterations
The maximum amount of iterations of the pass over the function.
This is used to limit compilation time in tree tail merging. The
default value is 2.

max-unrolled-insns
The maximum number of instructions that a loop may have to be
unrolled. If a loop is unrolled, this parameter also determines how
many times the loop code is unrolled.

max-average-unrolled-insns
The maximum number of instructions biased by probabilities of
their execution that a loop may have to be unrolled. If a loop is
unrolled, this parameter also determines how many times the loop
code is unrolled.

max-unroll-times
The maximum number of unrollings of a single loop.

max-peeled-insns
The maximum number of instructions that a loop may have to be
peeled. If a loop is peeled, this parameter also determines how
many times the loop code is peeled.

max-peel-times
The maximum number of peelings of a single loop.

144 Using the GNU Compiler Collection (GCC)

max-peel-branches
The maximum number of branches on the hot path through the
peeled sequence.

max-completely-peeled-insns
The maximum number of insns of a completely peeled loop.

max-completely-peel-times
The maximum number of iterations of a loop to be suitable for
complete peeling.

max-completely-peel-loop-nest-depth
The maximum depth of a loop nest suitable for complete peeling.

max-unswitch-insns
The maximum number of insns of an unswitched loop.

max-unswitch-level
The maximum number of branches unswitched in a single loop.

lim-expensive
The minimum cost of an expensive expression in the loop invariant
motion.

iv-consider-all-candidates-bound
Bound on number of candidates for induction variables, below
which all candidates are considered for each use in induction
variable optimizations. If there are more candidates than this,
only the most relevant ones are considered to avoid quadratic time
complexity.

iv-max-considered-uses
The induction variable optimizations give up on loops that contain
more induction variable uses.

iv-always-prune-cand-set-bound
If the number of candidates in the set is smaller than this value,
always try to remove unnecessary ivs from the set when adding a
new one.

scev-max-expr-size
Bound on size of expressions used in the scalar evolutions analyzer.
Large expressions slow the analyzer.

scev-max-expr-complexity
Bound on the complexity of the expressions in the scalar evolutions
analyzer. Complex expressions slow the analyzer.

omega-max-vars
The maximum number of variables in an Omega constraint system.
The default value is 128.

omega-max-geqs
The maximum number of inequalities in an Omega constraint sys-
tem. The default value is 256.

Chapter 3: GCC Command Options 145

omega-max-eqs
The maximum number of equalities in an Omega constraint system.
The default value is 128.

omega-max-wild-cards
The maximum number of wildcard variables that the Omega solver
is able to insert. The default value is 18.

omega-hash-table-size
The size of the hash table in the Omega solver. The default value
is 550.

omega-max-keys
The maximal number of keys used by the Omega solver. The de-
fault value is 500.

omega-eliminate-redundant-constraints
When set to 1, use expensive methods to eliminate all redundant
constraints. The default value is 0.

vect-max-version-for-alignment-checks
The maximum number of run-time checks that can be performed
when doing loop versioning for alignment in the vectorizer.

vect-max-version-for-alias-checks
The maximum number of run-time checks that can be performed
when doing loop versioning for alias in the vectorizer.

vect-max-peeling-for-alignment
The maximum number of loop peels to enhance access alignment
for vectorizer. Value -1 means ’no limit’.

max-iterations-to-track
The maximum number of iterations of a loop the brute-force algo-
rithm for analysis of the number of iterations of the loop tries to
evaluate.

hot-bb-count-ws-permille
A basic block profile count is considered hot if it contributes to the
given permillage (i.e. 0...1000) of the entire profiled execution.

hot-bb-frequency-fraction
Select fraction of the entry block frequency of executions of basic
block in function given basic block needs to have to be considered
hot.

max-predicted-iterations
The maximum number of loop iterations we predict statically. This
is useful in cases where a function contains a single loop with known
bound and another loop with unknown bound. The known number
of iterations is predicted correctly, while the unknown number of
iterations average to roughly 10. This means that the loop without
bounds appears artificially cold relative to the other one.

146 Using the GNU Compiler Collection (GCC)

builtin-expect-probability
Control the probability of the expression having the specified value.
This parameter takes a percentage (i.e. 0 ... 100) as input. The
default probability of 90 is obtained empirically.

align-threshold
Select fraction of the maximal frequency of executions of a basic
block in a function to align the basic block.

align-loop-iterations
A loop expected to iterate at least the selected number of iterations
is aligned.

tracer-dynamic-coverage
tracer-dynamic-coverage-feedback

This value is used to limit superblock formation once the given per-
centage of executed instructions is covered. This limits unnecessary
code size expansion.

The ‘tracer-dynamic-coverage-feedback’ is used only when pro-
file feedback is available. The real profiles (as opposed to statically
estimated ones) are much less balanced allowing the threshold to
be larger value.

tracer-max-code-growth
Stop tail duplication once code growth has reached given percent-
age. This is a rather artificial limit, as most of the duplicates are
eliminated later in cross jumping, so it may be set to much higher
values than is the desired code growth.

tracer-min-branch-ratio
Stop reverse growth when the reverse probability of best edge is
less than this threshold (in percent).

tracer-min-branch-ratio
tracer-min-branch-ratio-feedback

Stop forward growth if the best edge has probability lower than
this threshold.

Similarly to ‘tracer-dynamic-coverage’ two values are present,
one for compilation for profile feedback and one for compilation
without. The value for compilation with profile feedback needs to
be more conservative (higher) in order to make tracer effective.

max-cse-path-length
The maximum number of basic blocks on path that CSE considers.
The default is 10.

max-cse-insns
The maximum number of instructions CSE processes before flush-
ing. The default is 1000.

Chapter 3: GCC Command Options 147

ggc-min-expand
GCC uses a garbage collector to manage its own memory alloca-
tion. This parameter specifies the minimum percentage by which
the garbage collector’s heap should be allowed to expand between
collections. Tuning this may improve compilation speed; it has no
effect on code generation.
The default is 30% + 70% * (RAM/1GB) with an upper bound
of 100% when RAM >= 1GB. If getrlimit is available, the no-
tion of “RAM” is the smallest of actual RAM and RLIMIT_DATA or
RLIMIT_AS. If GCC is not able to calculate RAM on a particular
platform, the lower bound of 30% is used. Setting this parameter
and ‘ggc-min-heapsize’ to zero causes a full collection to occur
at every opportunity. This is extremely slow, but can be useful for
debugging.

ggc-min-heapsize
Minimum size of the garbage collector’s heap before it begins
bothering to collect garbage. The first collection occurs after the
heap expands by ‘ggc-min-expand’% beyond ‘ggc-min-heapsize’.
Again, tuning this may improve compilation speed, and has no
effect on code generation.
The default is the smaller of RAM/8, RLIMIT RSS, or a limit
that tries to ensure that RLIMIT DATA or RLIMIT AS are not
exceeded, but with a lower bound of 4096 (four megabytes) and
an upper bound of 131072 (128 megabytes). If GCC is not able
to calculate RAM on a particular platform, the lower bound is
used. Setting this parameter very large effectively disables garbage
collection. Setting this parameter and ‘ggc-min-expand’ to zero
causes a full collection to occur at every opportunity.

max-reload-search-insns
The maximum number of instruction reload should look backward
for equivalent register. Increasing values mean more aggressive op-
timization, making the compilation time increase with probably
slightly better performance. The default value is 100.

max-cselib-memory-locations
The maximum number of memory locations cselib should take into
account. Increasing values mean more aggressive optimization,
making the compilation time increase with probably slightly better
performance. The default value is 500.

reorder-blocks-duplicate
reorder-blocks-duplicate-feedback

Used by the basic block reordering pass to decide whether to use
unconditional branch or duplicate the code on its destination. Code
is duplicated when its estimated size is smaller than this value mul-
tiplied by the estimated size of unconditional jump in the hot spots
of the program.

148 Using the GNU Compiler Collection (GCC)

The ‘reorder-block-duplicate-feedback’ is used only when pro-
file feedback is available. It may be set to higher values than
‘reorder-block-duplicate’ since information about the hot spots
is more accurate.

max-sched-ready-insns
The maximum number of instructions ready to be issued the sched-
uler should consider at any given time during the first scheduling
pass. Increasing values mean more thorough searches, making the
compilation time increase with probably little benefit. The default
value is 100.

max-sched-region-blocks
The maximum number of blocks in a region to be considered for
interblock scheduling. The default value is 10.

max-pipeline-region-blocks
The maximum number of blocks in a region to be considered for
pipelining in the selective scheduler. The default value is 15.

max-sched-region-insns
The maximum number of insns in a region to be considered for
interblock scheduling. The default value is 100.

max-pipeline-region-insns
The maximum number of insns in a region to be considered for
pipelining in the selective scheduler. The default value is 200.

min-spec-prob
The minimum probability (in percents) of reaching a source block
for interblock speculative scheduling. The default value is 40.

max-sched-extend-regions-iters
The maximum number of iterations through CFG to extend regions.
A value of 0 (the default) disables region extensions.

max-sched-insn-conflict-delay
The maximum conflict delay for an insn to be considered for spec-
ulative motion. The default value is 3.

sched-spec-prob-cutoff
The minimal probability of speculation success (in percents), so
that speculative insns are scheduled. The default value is 40.

sched-spec-state-edge-prob-cutoff
The minimum probability an edge must have for the scheduler to
save its state across it. The default value is 10.

sched-mem-true-dep-cost
Minimal distance (in CPU cycles) between store and load targeting
same memory locations. The default value is 1.

Chapter 3: GCC Command Options 149

selsched-max-lookahead
The maximum size of the lookahead window of selective scheduling.
It is a depth of search for available instructions. The default value
is 50.

selsched-max-sched-times
The maximum number of times that an instruction is scheduled
during selective scheduling. This is the limit on the number of
iterations through which the instruction may be pipelined. The
default value is 2.

selsched-max-insns-to-rename
The maximum number of best instructions in the ready list that
are considered for renaming in the selective scheduler. The default
value is 2.

sms-min-sc
The minimum value of stage count that swing modulo scheduler
generates. The default value is 2.

max-last-value-rtl
The maximum size measured as number of RTLs that can be
recorded in an expression in combiner for a pseudo register as last
known value of that register. The default is 10000.

integer-share-limit
Small integer constants can use a shared data structure, reducing
the compiler’s memory usage and increasing its speed. This sets
the maximum value of a shared integer constant. The default value
is 256.

ssp-buffer-size
The minimum size of buffers (i.e. arrays) that receive stack smash-
ing protection when ‘-fstack-protection’ is used.

min-size-for-stack-sharing
The minimum size of variables taking part in stack slot sharing
when not optimizing. The default value is 32.

max-jump-thread-duplication-stmts
Maximum number of statements allowed in a block that needs to
be duplicated when threading jumps.

max-fields-for-field-sensitive
Maximum number of fields in a structure treated in a field sensitive
manner during pointer analysis. The default is zero for ‘-O0’ and
‘-O1’, and 100 for ‘-Os’, ‘-O2’, and ‘-O3’.

prefetch-latency
Estimate on average number of instructions that are executed be-
fore prefetch finishes. The distance prefetched ahead is propor-
tional to this constant. Increasing this number may also lead to
less streams being prefetched (see ‘simultaneous-prefetches’).

150 Using the GNU Compiler Collection (GCC)

simultaneous-prefetches
Maximum number of prefetches that can run at the same time.

l1-cache-line-size
The size of cache line in L1 cache, in bytes.

l1-cache-size
The size of L1 cache, in kilobytes.

l2-cache-size
The size of L2 cache, in kilobytes.

min-insn-to-prefetch-ratio
The minimum ratio between the number of instructions and the
number of prefetches to enable prefetching in a loop.

prefetch-min-insn-to-mem-ratio
The minimum ratio between the number of instructions and the
number of memory references to enable prefetching in a loop.

use-canonical-types
Whether the compiler should use the “canonical” type system. By
default, this should always be 1, which uses a more efficient internal
mechanism for comparing types in C++ and Objective-C++. How-
ever, if bugs in the canonical type system are causing compilation
failures, set this value to 0 to disable canonical types.

switch-conversion-max-branch-ratio
Switch initialization conversion refuses to create arrays that are big-
ger than ‘switch-conversion-max-branch-ratio’ times the num-
ber of branches in the switch.

max-partial-antic-length
Maximum length of the partial antic set computed during the tree
partial redundancy elimination optimization (‘-ftree-pre’) when
optimizing at ‘-O3’ and above. For some sorts of source code the en-
hanced partial redundancy elimination optimization can run away,
consuming all of the memory available on the host machine. This
parameter sets a limit on the length of the sets that are computed,
which prevents the runaway behavior. Setting a value of 0 for this
parameter allows an unlimited set length.

sccvn-max-scc-size
Maximum size of a strongly connected component (SCC) during
SCCVN processing. If this limit is hit, SCCVN processing for the
whole function is not done and optimizations depending on it are
disabled. The default maximum SCC size is 10000.

sccvn-max-alias-queries-per-access
Maximum number of alias-oracle queries we perform when look-
ing for redundancies for loads and stores. If this limit is hit the
search is aborted and the load or store is not considered redundant.

Chapter 3: GCC Command Options 151

The number of queries is algorithmically limited to the number of
stores on all paths from the load to the function entry. The default
maxmimum number of queries is 1000.

ira-max-loops-num
IRA uses regional register allocation by default. If a function con-
tains more loops than the number given by this parameter, only at
most the given number of the most frequently-executed loops form
regions for regional register allocation. The default value of the
parameter is 100.

ira-max-conflict-table-size
Although IRA uses a sophisticated algorithm to compress the con-
flict table, the table can still require excessive amounts of memory
for huge functions. If the conflict table for a function could be more
than the size in MB given by this parameter, the register allocator
instead uses a faster, simpler, and lower-quality algorithm that does
not require building a pseudo-register conflict table. The default
value of the parameter is 2000.

ira-loop-reserved-regs
IRA can be used to evaluate more accurate register pressure in
loops for decisions to move loop invariants (see ‘-O3’). The number
of available registers reserved for some other purposes is given by
this parameter. The default value of the parameter is 2, which
is the minimal number of registers needed by typical instructions.
This value is the best found from numerous experiments.

loop-invariant-max-bbs-in-loop
Loop invariant motion can be very expensive, both in compilation
time and in amount of needed compile-time memory, with very
large loops. Loops with more basic blocks than this parameter
won’t have loop invariant motion optimization performed on them.
The default value of the parameter is 1000 for ‘-O1’ and 10000 for
‘-O2’ and above.

loop-max-datarefs-for-datadeps
Building data dapendencies is expensive for very large loops. This
parameter limits the number of data references in loops that are
considered for data dependence analysis. These large loops are no
handled by the optimizations using loop data dependencies. The
default value is 1000.

max-vartrack-size
Sets a maximum number of hash table slots to use during variable
tracking dataflow analysis of any function. If this limit is exceeded
with variable tracking at assignments enabled, analysis for that
function is retried without it, after removing all debug insns from
the function. If the limit is exceeded even without debug insns, var
tracking analysis is completely disabled for the function. Setting
the parameter to zero makes it unlimited.

152 Using the GNU Compiler Collection (GCC)

max-vartrack-expr-depth
Sets a maximum number of recursion levels when attempting to
map variable names or debug temporaries to value expressions.
This trades compilation time for more complete debug information.
If this is set too low, value expressions that are available and could
be represented in debug information may end up not being used;
setting this higher may enable the compiler to find more complex
debug expressions, but compile time and memory use may grow.
The default is 12.

min-nondebug-insn-uid
Use uids starting at this parameter for nondebug insns. The range
below the parameter is reserved exclusively for debug insns created
by ‘-fvar-tracking-assignments’, but debug insns may get (non-
overlapping) uids above it if the reserved range is exhausted.

ipa-sra-ptr-growth-factor
IPA-SRA replaces a pointer to an aggregate with one or more
new parameters only when their cumulative size is less or equal
to ‘ipa-sra-ptr-growth-factor’ times the size of the original
pointer parameter.

tm-max-aggregate-size
When making copies of thread-local variables in a transaction, this
parameter specifies the size in bytes after which variables are saved
with the logging functions as opposed to save/restore code sequence
pairs. This option only applies when using ‘-fgnu-tm’.

graphite-max-nb-scop-params
To avoid exponential effects in the Graphite loop transforms, the
number of parameters in a Static Control Part (SCoP) is bounded.
The default value is 10 parameters. A variable whose value is un-
known at compilation time and defined outside a SCoP is a param-
eter of the SCoP.

graphite-max-bbs-per-function
To avoid exponential effects in the detection of SCoPs, the size of
the functions analyzed by Graphite is bounded. The default value
is 100 basic blocks.

loop-block-tile-size
Loop blocking or strip mining transforms, enabled with
‘-floop-block’ or ‘-floop-strip-mine’, strip mine each loop in
the loop nest by a given number of iterations. The strip length
can be changed using the ‘loop-block-tile-size’ parameter.
The default value is 51 iterations.

ipa-cp-value-list-size
IPA-CP attempts to track all possible values and types passed to a
function’s parameter in order to propagate them and perform devir-

Chapter 3: GCC Command Options 153

tualization. ‘ipa-cp-value-list-size’ is the maximum number
of values and types it stores per one formal parameter of a function.

lto-partitions
Specify desired number of partitions produced during WHOPR
compilation. The number of partitions should exceed the number
of CPUs used for compilation. The default value is 32.

lto-minpartition
Size of minimal partition for WHOPR (in estimated instructions).
This prevents expenses of splitting very small programs into too
many partitions.

cxx-max-namespaces-for-diagnostic-help
The maximum number of namespaces to consult for suggestions
when C++ name lookup fails for an identifier. The default is 1000.

sink-frequency-threshold
The maximum relative execution frequency (in percents) of the tar-
get block relative to a statement’s original block to allow statement
sinking of a statement. Larger numbers result in more aggressive
statement sinking. The default value is 75. A small positive ad-
justment is applied for statements with memory operands as those
are even more profitable so sink.

max-stores-to-sink
The maximum number of conditional stores paires that can be
sunk. Set to 0 if either vectorization (‘-ftree-vectorize’) or if-
conversion (‘-ftree-loop-if-convert’) is disabled. The default
is 2.

allow-load-data-races
Allow optimizers to introduce new data races on loads. Set to 1
to allow, otherwise to 0. This option is enabled by default unless
implicitly set by the ‘-fmemory-model=’ option.

allow-store-data-races
Allow optimizers to introduce new data races on stores. Set to 1
to allow, otherwise to 0. This option is enabled by default unless
implicitly set by the ‘-fmemory-model=’ option.

allow-packed-load-data-races
Allow optimizers to introduce new data races on packed data loads.
Set to 1 to allow, otherwise to 0. This option is enabled by default
unless implicitly set by the ‘-fmemory-model=’ option.

allow-packed-store-data-races
Allow optimizers to introduce new data races on packed data stores.
Set to 1 to allow, otherwise to 0. This option is enabled by default
unless implicitly set by the ‘-fmemory-model=’ option.

154 Using the GNU Compiler Collection (GCC)

case-values-threshold
The smallest number of different values for which it is best to use
a jump-table instead of a tree of conditional branches. If the value
is 0, use the default for the machine. The default is 0.

tree-reassoc-width
Set the maximum number of instructions executed in parallel in re-
associated tree. This parameter overrides target dependent heuris-
tics used by default if has non zero value.

sched-pressure-algorithm
Choose between the two available implementations of
‘-fsched-pressure’. Algorithm 1 is the original implementation
and is the more likely to prevent instructions from being reordered.
Algorithm 2 was designed to be a compromise between the
relatively conservative approach taken by algorithm 1 and the
rather aggressive approach taken by the default scheduler. It relies
more heavily on having a regular register file and accurate register
pressure classes. See ‘haifa-sched.c’ in the GCC sources for
more details.

The default choice depends on the target.

max-slsr-cand-scan
Set the maximum number of existing candidates that will be consid-
ered when seeking a basis for a new straight-line strength reduction
candidate.

asan-globals
Enable buffer overflow detection for global objects. This
kind of protection is enabled by default if you are using
‘-fsanitize=address’ option. To disable global objects
protection use ‘--param asan-globals=0’.

asan-stack
Enable buffer overflow detection for stack objects. This kind of
protection is enabled by default when using‘-fsanitize=address’.
To disable stack protection use ‘--param asan-stack=0’ option.

asan-instrument-reads
Enable buffer overflow detection for memory reads. This
kind of protection is enabled by default when using
‘-fsanitize=address’. To disable memory reads protection use
‘--param asan-instrument-reads=0’.

asan-instrument-writes
Enable buffer overflow detection for memory writes. This
kind of protection is enabled by default when using
‘-fsanitize=address’. To disable memory writes protection use
‘--param asan-instrument-writes=0’ option.

Chapter 3: GCC Command Options 155

asan-memintrin
Enable detection for built-in functions. This kind of protection is
enabled by default when using ‘-fsanitize=address’. To disable
built-in functions protection use ‘--param asan-memintrin=0’.

asan-use-after-return
Enable detection of use-after-return. This kind of protection
is enabled by default when using ‘-fsanitize=address’
option. To disable use-after-return detection use ‘--param
asan-use-after-return=0’.

3.11 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

If you use the ‘-E’ option, nothing is done except preprocessing. Some of these options
make sense only together with ‘-E’ because they cause the preprocessor output to be un-
suitable for actual compilation.

-Wp,option
You can use ‘-Wp,option’ to bypass the compiler driver and pass option directly
through to the preprocessor. If option contains commas, it is split into multiple
options at the commas. However, many options are modified, translated or
interpreted by the compiler driver before being passed to the preprocessor,
and ‘-Wp’ forcibly bypasses this phase. The preprocessor’s direct interface is
undocumented and subject to change, so whenever possible you should avoid
using ‘-Wp’ and let the driver handle the options instead.

-Xpreprocessor option

Pass option as an option to the preprocessor. You can use this to supply
system-specific preprocessor options that GCC does not recognize.
If you want to pass an option that takes an argument, you must use
‘-Xpreprocessor’ twice, once for the option and once for the argument.

-no-integrated-cpp
Perform preprocessing as a separate pass before compilation. By default, GCC
performs preprocessing as an integrated part of input tokenization and parsing.
If this option is provided, the appropriate language front end (cc1, cc1plus,
or cc1obj for C, C++, and Objective-C, respectively) is instead invoked twice,
once for preprocessing only and once for actual compilation of the preprocessed
input. This option may be useful in conjunction with the ‘-B’ or ‘-wrapper’
options to specify an alternate preprocessor or perform additional processing of
the program source between normal preprocessing and compilation.

-D name Predefine name as a macro, with definition 1.

-D name=definition
The contents of definition are tokenized and processed as if they appeared dur-
ing translation phase three in a ‘#define’ directive. In particular, the definition
will be truncated by embedded newline characters.

156 Using the GNU Compiler Collection (GCC)

If you are invoking the preprocessor from a shell or shell-like program you may
need to use the shell’s quoting syntax to protect characters such as spaces that
have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its
argument list with surrounding parentheses before the equals sign (if any).
Parentheses are meaningful to most shells, so you will need to quote the option.
With sh and csh, ‘-D’name(args...)=definition’’ works.

‘-D’ and ‘-U’ options are processed in the order they are given on the command
line. All ‘-imacros file’ and ‘-include file’ options are processed after all
‘-D’ and ‘-U’ options.

-U name Cancel any previous definition of name, either built in or provided with a ‘-D’
option.

-undef Do not predefine any system-specific or GCC-specific macros. The standard
predefined macros remain defined.

-I dir Add the directory dir to the list of directories to be searched for header files.
Directories named by ‘-I’ are searched before the standard system include di-
rectories. If the directory dir is a standard system include directory, the option
is ignored to ensure that the default search order for system directories and the
special treatment of system headers are not defeated . If dir begins with =, then
the = will be replaced by the sysroot prefix; see ‘--sysroot’ and ‘-isysroot’.

-o file Write output to file. This is the same as specifying file as the second non-option
argument to cpp. gcc has a different interpretation of a second non-option
argument, so you must use ‘-o’ to specify the output file.

-Wall Turns on all optional warnings which are desirable for normal code. At present
this is ‘-Wcomment’, ‘-Wtrigraphs’, ‘-Wmultichar’ and a warning about integer
promotion causing a change of sign in #if expressions. Note that many of the
preprocessor’s warnings are on by default and have no options to control them.

-Wcomment
-Wcomments

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a backslash-newline appears in a ‘//’ comment. (Both forms have
the same effect.)

-Wtrigraphs
Most trigraphs in comments cannot affect the meaning of the program. How-
ever, a trigraph that would form an escaped newline (‘??/’ at the end of a line)
can, by changing where the comment begins or ends. Therefore, only trigraphs
that would form escaped newlines produce warnings inside a comment.

This option is implied by ‘-Wall’. If ‘-Wall’ is not given, this option
is still enabled unless trigraphs are enabled. To get trigraph conversion
without warnings, but get the other ‘-Wall’ warnings, use ‘-trigraphs -Wall
-Wno-trigraphs’.

Chapter 3: GCC Command Options 157

-Wtraditional
Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and problematic constructs which should be avoided.

-Wundef Warn whenever an identifier which is not a macro is encountered in an ‘#if’
directive, outside of ‘defined’. Such identifiers are replaced with zero.

-Wunused-macros
Warn about macros defined in the main file that are unused. A macro is used if
it is expanded or tested for existence at least once. The preprocessor will also
warn if the macro has not been used at the time it is redefined or undefined.
Built-in macros, macros defined on the command line, and macros defined in
include files are not warned about.
Note: If a macro is actually used, but only used in skipped conditional blocks,
then CPP will report it as unused. To avoid the warning in such a case, you
might improve the scope of the macro’s definition by, for example, moving it
into the first skipped block. Alternatively, you could provide a dummy use with
something like:

#if defined the_macro_causing_the_warning

#endif

-Wendif-labels
Warn whenever an ‘#else’ or an ‘#endif’ are followed by text. This usually
happens in code of the form

#if FOO

...

#else FOO

...

#endif FOO

The second and third FOO should be in comments, but often are not in older
programs. This warning is on by default.

-Werror Make all warnings into hard errors. Source code which triggers warnings will
be rejected.

-Wsystem-headers
Issue warnings for code in system headers. These are normally unhelpful in
finding bugs in your own code, therefore suppressed. If you are responsible for
the system library, you may want to see them.

-w Suppress all warnings, including those which GNU CPP issues by default.

-pedantic
Issue all the mandatory diagnostics listed in the C standard. Some of them are
left out by default, since they trigger frequently on harmless code.

-pedantic-errors
Issue all the mandatory diagnostics, and make all mandatory diagnostics
into errors. This includes mandatory diagnostics that GCC issues without
‘-pedantic’ but treats as warnings.

158 Using the GNU Compiler Collection (GCC)

-M Instead of outputting the result of preprocessing, output a rule suitable for make
describing the dependencies of the main source file. The preprocessor outputs
one make rule containing the object file name for that source file, a colon, and
the names of all the included files, including those coming from ‘-include’ or
‘-imacros’ command line options.

Unless specified explicitly (with ‘-MT’ or ‘-MQ’), the object file name consists of
the name of the source file with any suffix replaced with object file suffix and
with any leading directory parts removed. If there are many included files then
the rule is split into several lines using ‘\’-newline. The rule has no commands.

This option does not suppress the preprocessor’s debug output, such as ‘-dM’.
To avoid mixing such debug output with the dependency rules you should ex-
plicitly specify the dependency output file with ‘-MF’, or use an environment
variable like DEPENDENCIES_OUTPUT (see Section 3.19 [Environment Variables],
page 333). Debug output will still be sent to the regular output stream as
normal.

Passing ‘-M’ to the driver implies ‘-E’, and suppresses warnings with an implicit
‘-w’.

-MM Like ‘-M’ but do not mention header files that are found in system header
directories, nor header files that are included, directly or indirectly, from such
a header.

This implies that the choice of angle brackets or double quotes in an ‘#include’
directive does not in itself determine whether that header will appear in ‘-MM’
dependency output. This is a slight change in semantics from GCC versions
3.0 and earlier.

-MF file When used with ‘-M’ or ‘-MM’, specifies a file to write the dependencies to. If
no ‘-MF’ switch is given the preprocessor sends the rules to the same place it
would have sent preprocessed output.

When used with the driver options ‘-MD’ or ‘-MMD’, ‘-MF’ overrides the default
dependency output file.

-MG In conjunction with an option such as ‘-M’ requesting dependency generation,
‘-MG’ assumes missing header files are generated files and adds them to the
dependency list without raising an error. The dependency filename is taken
directly from the #include directive without prepending any path. ‘-MG’ also
suppresses preprocessed output, as a missing header file renders this useless.

This feature is used in automatic updating of makefiles.

-MP This option instructs CPP to add a phony target for each dependency other
than the main file, causing each to depend on nothing. These dummy rules
work around errors make gives if you remove header files without updating the
‘Makefile’ to match.

This is typical output:
test.o: test.c test.h

test.h:

Chapter 3: GCC Command Options 159

-MT target

Change the target of the rule emitted by dependency generation. By default
CPP takes the name of the main input file, deletes any directory components
and any file suffix such as ‘.c’, and appends the platform’s usual object suffix.
The result is the target.

An ‘-MT’ option will set the target to be exactly the string you specify. If you
want multiple targets, you can specify them as a single argument to ‘-MT’, or
use multiple ‘-MT’ options.

For example, ‘-MT ’$(objpfx)foo.o’’ might give
$(objpfx)foo.o: foo.c

-MQ target

Same as ‘-MT’, but it quotes any characters which are special to Make.
‘-MQ ’$(objpfx)foo.o’’ gives

$$(objpfx)foo.o: foo.c

The default target is automatically quoted, as if it were given with ‘-MQ’.

-MD ‘-MD’ is equivalent to ‘-M -MF file’, except that ‘-E’ is not implied. The driver
determines file based on whether an ‘-o’ option is given. If it is, the driver uses
its argument but with a suffix of ‘.d’, otherwise it takes the name of the input
file, removes any directory components and suffix, and applies a ‘.d’ suffix.

If ‘-MD’ is used in conjunction with ‘-E’, any ‘-o’ switch is understood to specify
the dependency output file (see [-MF], page 158), but if used without ‘-E’, each
‘-o’ is understood to specify a target object file.

Since ‘-E’ is not implied, ‘-MD’ can be used to generate a dependency output
file as a side-effect of the compilation process.

-MMD Like ‘-MD’ except mention only user header files, not system header files.

-fpch-deps
When using precompiled headers (see Section 3.20 [Precompiled Headers],
page 336), this flag will cause the dependency-output flags to also list the
files from the precompiled header’s dependencies. If not specified only the
precompiled header would be listed and not the files that were used to create
it because those files are not consulted when a precompiled header is used.

-fpch-preprocess
This option allows use of a precompiled header (see Section 3.20 [Precompiled
Headers], page 336) together with ‘-E’. It inserts a special #pragma, #pragma
GCC pch_preprocess "filename" in the output to mark the place where the
precompiled header was found, and its filename. When ‘-fpreprocessed’ is in
use, GCC recognizes this #pragma and loads the PCH.

This option is off by default, because the resulting preprocessed output is only
really suitable as input to GCC. It is switched on by ‘-save-temps’.

You should not write this #pragma in your own code, but it is safe to edit the
filename if the PCH file is available in a different location. The filename may
be absolute or it may be relative to GCC’s current directory.

160 Using the GNU Compiler Collection (GCC)

-x c
-x c++
-x objective-c
-x assembler-with-cpp

Specify the source language: C, C++, Objective-C, or assembly. This has noth-
ing to do with standards conformance or extensions; it merely selects which
base syntax to expect. If you give none of these options, cpp will deduce the
language from the extension of the source file: ‘.c’, ‘.cc’, ‘.m’, or ‘.S’. Some
other common extensions for C++ and assembly are also recognized. If cpp does
not recognize the extension, it will treat the file as C; this is the most generic
mode.
Note: Previous versions of cpp accepted a ‘-lang’ option which selected both
the language and the standards conformance level. This option has been re-
moved, because it conflicts with the ‘-l’ option.

-std=standard
-ansi Specify the standard to which the code should conform. Currently CPP knows

about C and C++ standards; others may be added in the future.
standard may be one of:

c90
c89
iso9899:1990

The ISO C standard from 1990. ‘c90’ is the customary shorthand
for this version of the standard.
The ‘-ansi’ option is equivalent to ‘-std=c90’.

iso9899:199409
The 1990 C standard, as amended in 1994.

iso9899:1999
c99
iso9899:199x
c9x The revised ISO C standard, published in December 1999. Before

publication, this was known as C9X.

iso9899:2011
c11
c1x The revised ISO C standard, published in December 2011. Before

publication, this was known as C1X.

gnu90
gnu89 The 1990 C standard plus GNU extensions. This is the default.

gnu99
gnu9x The 1999 C standard plus GNU extensions.

gnu11
gnu1x The 2011 C standard plus GNU extensions.

c++98 The 1998 ISO C++ standard plus amendments.

Chapter 3: GCC Command Options 161

gnu++98 The same as ‘-std=c++98’ plus GNU extensions. This is the default
for C++ code.

-I- Split the include path. Any directories specified with ‘-I’ options before ‘-I-’
are searched only for headers requested with #include "file"; they are not
searched for #include <file>. If additional directories are specified with ‘-I’
options after the ‘-I-’, those directories are searched for all ‘#include’ direc-
tives.

In addition, ‘-I-’ inhibits the use of the directory of the current file direc-
tory as the first search directory for #include "file". This option has been
deprecated.

-nostdinc
Do not search the standard system directories for header files. Only the direc-
tories you have specified with ‘-I’ options (and the directory of the current file,
if appropriate) are searched.

-nostdinc++
Do not search for header files in the C++-specific standard directories, but do
still search the other standard directories. (This option is used when building
the C++ library.)

-include file

Process file as if #include "file" appeared as the first line of the primary
source file. However, the first directory searched for file is the preprocessor’s
working directory instead of the directory containing the main source file. If
not found there, it is searched for in the remainder of the #include "..."
search chain as normal.

If multiple ‘-include’ options are given, the files are included in the order they
appear on the command line.

-imacros file

Exactly like ‘-include’, except that any output produced by scanning file is
thrown away. Macros it defines remain defined. This allows you to acquire all
the macros from a header without also processing its declarations.

All files specified by ‘-imacros’ are processed before all files specified by
‘-include’.

-idirafter dir

Search dir for header files, but do it after all directories specified with ‘-I’
and the standard system directories have been exhausted. dir is treated as a
system include directory. If dir begins with =, then the = will be replaced by
the sysroot prefix; see ‘--sysroot’ and ‘-isysroot’.

-iprefix prefix

Specify prefix as the prefix for subsequent ‘-iwithprefix’ options. If the prefix
represents a directory, you should include the final ‘/’.

162 Using the GNU Compiler Collection (GCC)

-iwithprefix dir

-iwithprefixbefore dir

Append dir to the prefix specified previously with ‘-iprefix’, and add the
resulting directory to the include search path. ‘-iwithprefixbefore’ puts it
in the same place ‘-I’ would; ‘-iwithprefix’ puts it where ‘-idirafter’ would.

-isysroot dir

This option is like the ‘--sysroot’ option, but applies only to header files
(except for Darwin targets, where it applies to both header files and libraries).
See the ‘--sysroot’ option for more information.

-imultilib dir

Use dir as a subdirectory of the directory containing target-specific C++ headers.

-isystem dir

Search dir for header files, after all directories specified by ‘-I’ but before the
standard system directories. Mark it as a system directory, so that it gets the
same special treatment as is applied to the standard system directories. If dir
begins with =, then the = will be replaced by the sysroot prefix; see ‘--sysroot’
and ‘-isysroot’.

-iquote dir

Search dir only for header files requested with #include "file"; they are not
searched for #include <file>, before all directories specified by ‘-I’ and before
the standard system directories. If dir begins with =, then the = will be replaced
by the sysroot prefix; see ‘--sysroot’ and ‘-isysroot’.

-fdirectives-only
When preprocessing, handle directives, but do not expand macros.
The option’s behavior depends on the ‘-E’ and ‘-fpreprocessed’ options.
With ‘-E’, preprocessing is limited to the handling of directives such as #define,
#ifdef, and #error. Other preprocessor operations, such as macro expansion
and trigraph conversion are not performed. In addition, the ‘-dD’ option is
implicitly enabled.
With ‘-fpreprocessed’, predefinition of command line and most builtin macros
is disabled. Macros such as __LINE__, which are contextually dependent, are
handled normally. This enables compilation of files previously preprocessed
with -E -fdirectives-only.
With both ‘-E’ and ‘-fpreprocessed’, the rules for ‘-fpreprocessed’ take
precedence. This enables full preprocessing of files previously preprocessed
with -E -fdirectives-only.

-fdollars-in-identifiers
Accept ‘$’ in identifiers.

-fextended-identifiers
Accept universal character names in identifiers. This option is experimental; in
a future version of GCC, it will be enabled by default for C99 and C++.

-fno-canonical-system-headers
When preprocessing, do not shorten system header paths with canonicalization.

Chapter 3: GCC Command Options 163

-fpreprocessed
Indicate to the preprocessor that the input file has already been preprocessed.
This suppresses things like macro expansion, trigraph conversion, escaped new-
line splicing, and processing of most directives. The preprocessor still recognizes
and removes comments, so that you can pass a file preprocessed with ‘-C’ to the
compiler without problems. In this mode the integrated preprocessor is little
more than a tokenizer for the front ends.
‘-fpreprocessed’ is implicit if the input file has one of the extensions ‘.i’,
‘.ii’ or ‘.mi’. These are the extensions that GCC uses for preprocessed files
created by ‘-save-temps’.

-ftabstop=width
Set the distance between tab stops. This helps the preprocessor report correct
column numbers in warnings or errors, even if tabs appear on the line. If the
value is less than 1 or greater than 100, the option is ignored. The default is 8.

-fdebug-cpp
This option is only useful for debugging GCC. When used with ‘-E’, dumps
debugging information about location maps. Every token in the output is pre-
ceded by the dump of the map its location belongs to. The dump of the map
holding the location of a token would be:

{‘P’:‘/file/path’;‘F’:‘/includer/path’;‘L’:line_num;‘C’:col_num;‘S’:system_header_p;‘M’:map_address;‘E’:macro_expansion_p,‘loc’:location}

When used without ‘-E’, this option has no effect.

-ftrack-macro-expansion[=level]
Track locations of tokens across macro expansions. This allows the compiler to
emit diagnostic about the current macro expansion stack when a compilation
error occurs in a macro expansion. Using this option makes the preprocessor
and the compiler consume more memory. The level parameter can be used
to choose the level of precision of token location tracking thus decreasing the
memory consumption if necessary. Value ‘0’ of level de-activates this option
just as if no ‘-ftrack-macro-expansion’ was present on the command line.
Value ‘1’ tracks tokens locations in a degraded mode for the sake of minimal
memory overhead. In this mode all tokens resulting from the expansion of an
argument of a function-like macro have the same location. Value ‘2’ tracks
tokens locations completely. This value is the most memory hungry. When this
option is given no argument, the default parameter value is ‘2’.
Note that -ftrack-macro-expansion=2 is activated by default.

-fexec-charset=charset
Set the execution character set, used for string and character constants. The
default is UTF-8. charset can be any encoding supported by the system’s iconv
library routine.

-fwide-exec-charset=charset
Set the wide execution character set, used for wide string and character con-
stants. The default is UTF-32 or UTF-16, whichever corresponds to the width
of wchar_t. As with ‘-fexec-charset’, charset can be any encoding supported
by the system’s iconv library routine; however, you will have problems with
encodings that do not fit exactly in wchar_t.

164 Using the GNU Compiler Collection (GCC)

-finput-charset=charset
Set the input character set, used for translation from the character set of the
input file to the source character set used by GCC. If the locale does not specify,
or GCC cannot get this information from the locale, the default is UTF-8. This
can be overridden by either the locale or this command line option. Currently
the command line option takes precedence if there’s a conflict. charset can be
any encoding supported by the system’s iconv library routine.

-fworking-directory
Enable generation of linemarkers in the preprocessor output that will let the
compiler know the current working directory at the time of preprocessing.
When this option is enabled, the preprocessor will emit, after the initial line-
marker, a second linemarker with the current working directory followed by
two slashes. GCC will use this directory, when it’s present in the prepro-
cessed input, as the directory emitted as the current working directory in some
debugging information formats. This option is implicitly enabled if debug-
ging information is enabled, but this can be inhibited with the negated form
‘-fno-working-directory’. If the ‘-P’ flag is present in the command line,
this option has no effect, since no #line directives are emitted whatsoever.

-fno-show-column
Do not print column numbers in diagnostics. This may be necessary if diag-
nostics are being scanned by a program that does not understand the column
numbers, such as dejagnu.

-A predicate=answer
Make an assertion with the predicate predicate and answer answer. This form
is preferred to the older form ‘-A predicate(answer)’, which is still supported,
because it does not use shell special characters.

-A -predicate=answer
Cancel an assertion with the predicate predicate and answer answer.

-dCHARS CHARS is a sequence of one or more of the following characters, and must
not be preceded by a space. Other characters are interpreted by the compiler
proper, or reserved for future versions of GCC, and so are silently ignored. If
you specify characters whose behavior conflicts, the result is undefined.

‘M’ Instead of the normal output, generate a list of ‘#define’ directives
for all the macros defined during the execution of the preprocessor,
including predefined macros. This gives you a way of finding out
what is predefined in your version of the preprocessor. Assuming
you have no file ‘foo.h’, the command

touch foo.h; cpp -dM foo.h

will show all the predefined macros.
If you use ‘-dM’ without the ‘-E’ option, ‘-dM’ is interpreted as a
synonym for ‘-fdump-rtl-mach’. See Section “Debugging Options”
in gcc.

‘D’ Like ‘M’ except in two respects: it does not include the predefined
macros, and it outputs both the ‘#define’ directives and the result

Chapter 3: GCC Command Options 165

of preprocessing. Both kinds of output go to the standard output
file.

‘N’ Like ‘D’, but emit only the macro names, not their expansions.

‘I’ Output ‘#include’ directives in addition to the result of prepro-
cessing.

‘U’ Like ‘D’ except that only macros that are expanded, or whose de-
finedness is tested in preprocessor directives, are output; the output
is delayed until the use or test of the macro; and ‘#undef’ directives
are also output for macros tested but undefined at the time.

-P Inhibit generation of linemarkers in the output from the preprocessor. This
might be useful when running the preprocessor on something that is not C code,
and will be sent to a program which might be confused by the linemarkers.

-C Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the
directive.
You should be prepared for side effects when using ‘-C’; it causes the prepro-
cessor to treat comments as tokens in their own right. For example, comments
appearing at the start of what would be a directive line have the effect of turn-
ing that line into an ordinary source line, since the first token on the line is no
longer a ‘#’.

-CC Do not discard comments, including during macro expansion. This is like ‘-C’,
except that comments contained within macros are also passed through to the
output file where the macro is expanded.
In addition to the side-effects of the ‘-C’ option, the ‘-CC’ option causes all
C++-style comments inside a macro to be converted to C-style comments. This
is to prevent later use of that macro from inadvertently commenting out the
remainder of the source line.
The ‘-CC’ option is generally used to support lint comments.

-traditional-cpp
Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO
C preprocessors.

-trigraphs
Process trigraph sequences. These are three-character sequences, all starting
with ‘??’, that are defined by ISO C to stand for single characters. For example,
‘??/’ stands for ‘\’, so ‘’??/n’’ is a character constant for a newline. By default,
GCC ignores trigraphs, but in standard-conforming modes it converts them. See
the ‘-std’ and ‘-ansi’ options.
The nine trigraphs and their replacements are

Trigraph: ??(??) ??< ??> ??= ??/ ??’ ??! ??-

Replacement: [] { } # \ ^ | ~

-remap Enable special code to work around file systems which only permit very short
file names, such as MS-DOS.

166 Using the GNU Compiler Collection (GCC)

--help
--target-help

Print text describing all the command line options instead of preprocessing
anything.

-v Verbose mode. Print out GNU CPP’s version number at the beginning of
execution, and report the final form of the include path.

-H Print the name of each header file used, in addition to other normal activities.
Each name is indented to show how deep in the ‘#include’ stack it is. Precom-
piled header files are also printed, even if they are found to be invalid; an invalid
precompiled header file is printed with ‘...x’ and a valid one with ‘...!’ .

-version
--version

Print out GNU CPP’s version number. With one dash, proceed to preprocess
as normal. With two dashes, exit immediately.

3.12 Passing Options to the Assembler

You can pass options to the assembler.

-Wa,option
Pass option as an option to the assembler. If option contains commas, it is split
into multiple options at the commas.

-Xassembler option

Pass option as an option to the assembler. You can use this to supply system-
specific assembler options that GCC does not recognize.
If you want to pass an option that takes an argument, you must use
‘-Xassembler’ twice, once for the option and once for the argument.

3.13 Options for Linking

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler is not doing a link step.

object-file-name

A file name that does not end in a special recognized suffix is considered to
name an object file or library. (Object files are distinguished from libraries by
the linker according to the file contents.) If linking is done, these object files
are used as input to the linker.

-c
-S
-E If any of these options is used, then the linker is not run, and object file names

should not be used as arguments. See Section 3.2 [Overall Options], page 25.

-llibrary
-l library

Search the library named library when linking. (The second alternative with
the library as a separate argument is only for POSIX compliance and is not
recommended.)

Chapter 3: GCC Command Options 167

It makes a difference where in the command you write this option; the linker
searches and processes libraries and object files in the order they are speci-
fied. Thus, ‘foo.o -lz bar.o’ searches library ‘z’ after file ‘foo.o’ but before
‘bar.o’. If ‘bar.o’ refers to functions in ‘z’, those functions may not be loaded.
The linker searches a standard list of directories for the library, which is actually
a file named ‘liblibrary.a’. The linker then uses this file as if it had been
specified precisely by name.
The directories searched include several standard system directories plus any
that you specify with ‘-L’.
Normally the files found this way are library files—archive files whose members
are object files. The linker handles an archive file by scanning through it for
members which define symbols that have so far been referenced but not defined.
But if the file that is found is an ordinary object file, it is linked in the usual
fashion. The only difference between using an ‘-l’ option and specifying a file
name is that ‘-l’ surrounds library with ‘lib’ and ‘.a’ and searches several
directories.

-lobjc You need this special case of the ‘-l’ option in order to link an Objective-C or
Objective-C++ program.

-nostartfiles
Do not use the standard system startup files when linking. The standard system
libraries are used normally, unless ‘-nostdlib’ or ‘-nodefaultlibs’ is used.

-nodefaultlibs
Do not use the standard system libraries when linking. Only the libraries you
specify are passed to the linker, and options specifying linkage of the system
libraries, such as -static-libgcc or -shared-libgcc, are ignored. The stan-
dard startup files are used normally, unless ‘-nostartfiles’ is used.
The compiler may generate calls to memcmp, memset, memcpy and memmove.
These entries are usually resolved by entries in libc. These entry points should
be supplied through some other mechanism when this option is specified.

-nostdlib
Do not use the standard system startup files or libraries when linking. No
startup files and only the libraries you specify are passed to the linker, and
options specifying linkage of the system libraries, such as -static-libgcc or
-shared-libgcc, are ignored.
The compiler may generate calls to memcmp, memset, memcpy and memmove.
These entries are usually resolved by entries in libc. These entry points should
be supplied through some other mechanism when this option is specified.
One of the standard libraries bypassed by ‘-nostdlib’ and ‘-nodefaultlibs’
is ‘libgcc.a’, a library of internal subroutines which GCC uses to overcome
shortcomings of particular machines, or special needs for some languages. (See
Section “Interfacing to GCC Output” in GNU Compiler Collection (GCC) In-
ternals, for more discussion of ‘libgcc.a’.) In most cases, you need ‘libgcc.a’
even when you want to avoid other standard libraries. In other words, when you
specify ‘-nostdlib’ or ‘-nodefaultlibs’ you should usually specify ‘-lgcc’ as

168 Using the GNU Compiler Collection (GCC)

well. This ensures that you have no unresolved references to internal GCC
library subroutines. (An example of such an internal subroutine is ‘__main’,
used to ensure C++ constructors are called; see Section “collect2” in GNU
Compiler Collection (GCC) Internals.)

-pie Produce a position independent executable on targets that support it. For
predictable results, you must also specify the same set of options used for com-
pilation (‘-fpie’, ‘-fPIE’, or model suboptions) when you specify this linker
option.

-rdynamic
Pass the flag ‘-export-dynamic’ to the ELF linker, on targets that support
it. This instructs the linker to add all symbols, not only used ones, to the
dynamic symbol table. This option is needed for some uses of dlopen or to
allow obtaining backtraces from within a program.

-s Remove all symbol table and relocation information from the executable.

-static On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no effect.

-shared Produce a shared object which can then be linked with other objects to form
an executable. Not all systems support this option. For predictable results,
you must also specify the same set of options used for compilation (‘-fpic’,
‘-fPIC’, or model suboptions) when you specify this linker option.1

-shared-libgcc
-static-libgcc

On systems that provide ‘libgcc’ as a shared library, these options force the
use of either the shared or static version, respectively. If no shared version of
‘libgcc’ was built when the compiler was configured, these options have no
effect.
There are several situations in which an application should use the shared
‘libgcc’ instead of the static version. The most common of these is when
the application wishes to throw and catch exceptions across different shared li-
braries. In that case, each of the libraries as well as the application itself should
use the shared ‘libgcc’.
Therefore, the G++ and GCJ drivers automatically add ‘-shared-libgcc’
whenever you build a shared library or a main executable, because C++ and
Java programs typically use exceptions, so this is the right thing to do.
If, instead, you use the GCC driver to create shared libraries, you may find
that they are not always linked with the shared ‘libgcc’. If GCC finds, at its
configuration time, that you have a non-GNU linker or a GNU linker that does
not support option ‘--eh-frame-hdr’, it links the shared version of ‘libgcc’
into shared libraries by default. Otherwise, it takes advantage of the linker and

1 On some systems, ‘gcc -shared’ needs to build supplementary stub code for constructors to work. On
multi-libbed systems, ‘gcc -shared’ must select the correct support libraries to link against. Failing to
supply the correct flags may lead to subtle defects. Supplying them in cases where they are not necessary
is innocuous.

Chapter 3: GCC Command Options 169

optimizes away the linking with the shared version of ‘libgcc’, linking with the
static version of libgcc by default. This allows exceptions to propagate through
such shared libraries, without incurring relocation costs at library load time.

However, if a library or main executable is supposed to throw or catch excep-
tions, you must link it using the G++ or GCJ driver, as appropriate for the
languages used in the program, or using the option ‘-shared-libgcc’, such
that it is linked with the shared ‘libgcc’.

-static-libasan
When the ‘-fsanitize=address’ option is used to link a program, the GCC
driver automatically links against ‘libasan’. If ‘libasan’ is available as a
shared library, and the ‘-static’ option is not used, then this links against the
shared version of ‘libasan’. The ‘-static-libasan’ option directs the GCC
driver to link ‘libasan’ statically, without necessarily linking other libraries
statically.

-static-libtsan
When the ‘-fsanitize=thread’ option is used to link a program, the GCC
driver automatically links against ‘libtsan’. If ‘libtsan’ is available as a
shared library, and the ‘-static’ option is not used, then this links against the
shared version of ‘libtsan’. The ‘-static-libtsan’ option directs the GCC
driver to link ‘libtsan’ statically, without necessarily linking other libraries
statically.

-static-liblsan
When the ‘-fsanitize=leak’ option is used to link a program, the GCC driver
automatically links against ‘liblsan’. If ‘liblsan’ is available as a shared
library, and the ‘-static’ option is not used, then this links against the shared
version of ‘liblsan’. The ‘-static-liblsan’ option directs the GCC driver to
link ‘liblsan’ statically, without necessarily linking other libraries statically.

-static-libubsan
When the ‘-fsanitize=undefined’ option is used to link a program, the GCC
driver automatically links against ‘libubsan’. If ‘libubsan’ is available as a
shared library, and the ‘-static’ option is not used, then this links against the
shared version of ‘libubsan’. The ‘-static-libubsan’ option directs the GCC
driver to link ‘libubsan’ statically, without necessarily linking other libraries
statically.

-static-libstdc++
When the g++ program is used to link a C++ program, it normally automatically
links against ‘libstdc++’. If ‘libstdc++’ is available as a shared library, and
the ‘-static’ option is not used, then this links against the shared version of
‘libstdc++’. That is normally fine. However, it is sometimes useful to freeze
the version of ‘libstdc++’ used by the program without going all the way to
a fully static link. The ‘-static-libstdc++’ option directs the g++ driver to
link ‘libstdc++’ statically, without necessarily linking other libraries statically.

170 Using the GNU Compiler Collection (GCC)

-symbolic
Bind references to global symbols when building a shared object. Warn about
any unresolved references (unless overridden by the link editor option ‘-Xlinker
-z -Xlinker defs’). Only a few systems support this option.

-T script Use script as the linker script. This option is supported by most systems using
the GNU linker. On some targets, such as bare-board targets without an oper-
ating system, the ‘-T’ option may be required when linking to avoid references
to undefined symbols.

-Xlinker option

Pass option as an option to the linker. You can use this to supply system-specific
linker options that GCC does not recognize.
If you want to pass an option that takes a separate argument, you must use
‘-Xlinker’ twice, once for the option and once for the argument. For example,
to pass ‘-assert definitions’, you must write ‘-Xlinker -assert -Xlinker
definitions’. It does not work to write ‘-Xlinker "-assert definitions"’,
because this passes the entire string as a single argument, which is not what
the linker expects.
When using the GNU linker, it is usually more convenient to pass arguments to
linker options using the ‘option=value’ syntax than as separate arguments. For
example, you can specify ‘-Xlinker -Map=output.map’ rather than ‘-Xlinker
-Map -Xlinker output.map’. Other linkers may not support this syntax for
command-line options.

-Wl,option
Pass option as an option to the linker. If option contains commas, it is split into
multiple options at the commas. You can use this syntax to pass an argument
to the option. For example, ‘-Wl,-Map,output.map’ passes ‘-Map output.map’
to the linker. When using the GNU linker, you can also get the same effect
with ‘-Wl,-Map=output.map’.

-u symbol Pretend the symbol symbol is undefined, to force linking of library modules
to define it. You can use ‘-u’ multiple times with different symbols to force
loading of additional library modules.

3.14 Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of the
compiler:

-Idir Add the directory dir to the head of the list of directories to be searched for
header files. This can be used to override a system header file, substituting
your own version, since these directories are searched before the system header
file directories. However, you should not use this option to add directories that
contain vendor-supplied system header files (use ‘-isystem’ for that). If you
use more than one ‘-I’ option, the directories are scanned in left-to-right order;
the standard system directories come after.
If a standard system include directory, or a directory specified with ‘-isystem’,
is also specified with ‘-I’, the ‘-I’ option is ignored. The directory is still

Chapter 3: GCC Command Options 171

searched but as a system directory at its normal position in the system include
chain. This is to ensure that GCC’s procedure to fix buggy system headers and
the ordering for the include_next directive are not inadvertently changed.
If you really need to change the search order for system directories, use the
‘-nostdinc’ and/or ‘-isystem’ options.

-iplugindir=dir
Set the directory to search for plugins that are passed by ‘-fplugin=name’
instead of ‘-fplugin=path/name.so’. This option is not meant to be used by
the user, but only passed by the driver.

-iquotedir
Add the directory dir to the head of the list of directories to be searched for
header files only for the case of ‘#include "file"’; they are not searched for
‘#include <file>’, otherwise just like ‘-I’.

-Ldir Add directory dir to the list of directories to be searched for ‘-l’.

-Bprefix This option specifies where to find the executables, libraries, include files, and
data files of the compiler itself.
The compiler driver program runs one or more of the subprograms cpp, cc1,
as and ld. It tries prefix as a prefix for each program it tries to run, both with
and without ‘machine/version/’ (see Section 3.16 [Target Options], page 180).
For each subprogram to be run, the compiler driver first tries the ‘-B’ prefix, if
any. If that name is not found, or if ‘-B’ is not specified, the driver tries two
standard prefixes, ‘/usr/lib/gcc/’ and ‘/usr/local/lib/gcc/’. If neither of
those results in a file name that is found, the unmodified program name is
searched for using the directories specified in your PATH environment variable.
The compiler checks to see if the path provided by the ‘-B’ refers to a directory,
and if necessary it adds a directory separator character at the end of the path.
‘-B’ prefixes that effectively specify directory names also apply to libraries in
the linker, because the compiler translates these options into ‘-L’ options for
the linker. They also apply to include files in the preprocessor, because the
compiler translates these options into ‘-isystem’ options for the preprocessor.
In this case, the compiler appends ‘include’ to the prefix.
The runtime support file ‘libgcc.a’ can also be searched for using the ‘-B’
prefix, if needed. If it is not found there, the two standard prefixes above are
tried, and that is all. The file is left out of the link if it is not found by those
means.
Another way to specify a prefix much like the ‘-B’ prefix is to use the envi-
ronment variable GCC_EXEC_PREFIX. See Section 3.19 [Environment Variables],
page 333.
As a special kludge, if the path provided by ‘-B’ is ‘[dir/]stageN/’, where N
is a number in the range 0 to 9, then it is replaced by ‘[dir/]include’. This
is to help with boot-strapping the compiler.

-specs=file
Process file after the compiler reads in the standard ‘specs’ file, in order to
override the defaults which the gcc driver program uses when determining what

172 Using the GNU Compiler Collection (GCC)

switches to pass to cc1, cc1plus, as, ld, etc. More than one ‘-specs=file’
can be specified on the command line, and they are processed in order, from
left to right.

--sysroot=dir
Use dir as the logical root directory for headers and libraries. For example, if
the compiler normally searches for headers in ‘/usr/include’ and libraries in
‘/usr/lib’, it instead searches ‘dir/usr/include’ and ‘dir/usr/lib’.

If you use both this option and the ‘-isysroot’ option, then the ‘--sysroot’
option applies to libraries, but the ‘-isysroot’ option applies to header files.

The GNU linker (beginning with version 2.16) has the necessary support for
this option. If your linker does not support this option, the header file aspect
of ‘--sysroot’ still works, but the library aspect does not.

--no-sysroot-suffix
For some targets, a suffix is added to the root directory specified with
‘--sysroot’, depending on the other options used, so that headers may for ex-
ample be found in ‘dir/suffix/usr/include’ instead of ‘dir/usr/include’.
This option disables the addition of such a suffix.

-I- This option has been deprecated. Please use ‘-iquote’ instead for ‘-I’ direc-
tories before the ‘-I-’ and remove the ‘-I-’. Any directories you specify with
‘-I’ options before the ‘-I-’ option are searched only for the case of ‘#include
"file"’; they are not searched for ‘#include <file>’.

If additional directories are specified with ‘-I’ options after the ‘-I-’, these
directories are searched for all ‘#include’ directives. (Ordinarily all ‘-I’ direc-
tories are used this way.)

In addition, the ‘-I-’ option inhibits the use of the current directory (where
the current input file came from) as the first search directory for ‘#include
"file"’. There is no way to override this effect of ‘-I-’. With ‘-I.’ you can
specify searching the directory that is current when the compiler is invoked.
That is not exactly the same as what the preprocessor does by default, but it
is often satisfactory.

‘-I-’ does not inhibit the use of the standard system directories for header files.
Thus, ‘-I-’ and ‘-nostdinc’ are independent.

3.15 Specifying subprocesses and the switches to pass to
them

gcc is a driver program. It performs its job by invoking a sequence of other programs to do
the work of compiling, assembling and linking. GCC interprets its command-line parameters
and uses these to deduce which programs it should invoke, and which command-line options
it ought to place on their command lines. This behavior is controlled by spec strings. In
most cases there is one spec string for each program that GCC can invoke, but a few
programs have multiple spec strings to control their behavior. The spec strings built into
GCC can be overridden by using the ‘-specs=’ command-line switch to specify a spec file.

Chapter 3: GCC Command Options 173

Spec files are plaintext files that are used to construct spec strings. They consist of a
sequence of directives separated by blank lines. The type of directive is determined by the
first non-whitespace character on the line, which can be one of the following:

%command Issues a command to the spec file processor. The commands that can appear
here are:

%include <file>
Search for file and insert its text at the current point in the specs
file.

%include_noerr <file>
Just like ‘%include’, but do not generate an error message if the
include file cannot be found.

%rename old_name new_name

Rename the spec string old name to new name.

*[spec_name]:
This tells the compiler to create, override or delete the named spec string. All
lines after this directive up to the next directive or blank line are considered to
be the text for the spec string. If this results in an empty string then the spec
is deleted. (Or, if the spec did not exist, then nothing happens.) Otherwise, if
the spec does not currently exist a new spec is created. If the spec does exist
then its contents are overridden by the text of this directive, unless the first
character of that text is the ‘+’ character, in which case the text is appended
to the spec.

[suffix]:
Creates a new ‘[suffix] spec’ pair. All lines after this directive and up to the
next directive or blank line are considered to make up the spec string for the
indicated suffix. When the compiler encounters an input file with the named
suffix, it processes the spec string in order to work out how to compile that file.
For example:

.ZZ:

z-compile -input %i

This says that any input file whose name ends in ‘.ZZ’ should be passed to the
program ‘z-compile’, which should be invoked with the command-line switch
‘-input’ and with the result of performing the ‘%i’ substitution. (See below.)
As an alternative to providing a spec string, the text following a suffix directive
can be one of the following:

@language
This says that the suffix is an alias for a known language. This is
similar to using the ‘-x’ command-line switch to GCC to specify a
language explicitly. For example:

.ZZ:

@c++

Says that .ZZ files are, in fact, C++ source files.

#name This causes an error messages saying:

174 Using the GNU Compiler Collection (GCC)

name compiler not installed on this system.

GCC already has an extensive list of suffixes built into it. This directive adds
an entry to the end of the list of suffixes, but since the list is searched from
the end backwards, it is effectively possible to override earlier entries using this
technique.

GCC has the following spec strings built into it. Spec files can override these strings or
create their own. Note that individual targets can also add their own spec strings to this
list.

asm Options to pass to the assembler

asm_final Options to pass to the assembler post-processor

cpp Options to pass to the C preprocessor

cc1 Options to pass to the C compiler

cc1plus Options to pass to the C++ compiler

endfile Object files to include at the end of the link

link Options to pass to the linker

lib Libraries to include on the command line to the linker

libgcc Decides which GCC support library to pass to the linker

linker Sets the name of the linker

predefines Defines to be passed to the C preprocessor

signed_char Defines to pass to CPP to say whether char is signed

by default

startfile Object files to include at the start of the link

Here is a small example of a spec file:
%rename lib old_lib

*lib:

--start-group -lgcc -lc -leval1 --end-group %(old_lib)

This example renames the spec called ‘lib’ to ‘old_lib’ and then overrides the previous
definition of ‘lib’ with a new one. The new definition adds in some extra command-line
options before including the text of the old definition.

Spec strings are a list of command-line options to be passed to their corresponding pro-
gram. In addition, the spec strings can contain ‘%’-prefixed sequences to substitute variable
text or to conditionally insert text into the command line. Using these constructs it is
possible to generate quite complex command lines.

Here is a table of all defined ‘%’-sequences for spec strings. Note that spaces are not
generated automatically around the results of expanding these sequences. Therefore you
can concatenate them together or combine them with constant text in a single argument.

%% Substitute one ‘%’ into the program name or argument.

%i Substitute the name of the input file being processed.

%b Substitute the basename of the input file being processed. This is the substring
up to (and not including) the last period and not including the directory.

%B This is the same as ‘%b’, but include the file suffix (text after the last period).

%d Marks the argument containing or following the ‘%d’ as a temporary file name,
so that that file is deleted if GCC exits successfully. Unlike ‘%g’, this contributes
no text to the argument.

Chapter 3: GCC Command Options 175

%gsuffix Substitute a file name that has suffix suffix and is chosen once per compilation,
and mark the argument in the same way as ‘%d’. To reduce exposure to denial-
of-service attacks, the file name is now chosen in a way that is hard to predict
even when previously chosen file names are known. For example, ‘%g.s ...
%g.o ... %g.s’ might turn into ‘ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s’. suffix
matches the regexp ‘[.A-Za-z]*’ or the special string ‘%O’, which is treated
exactly as if ‘%O’ had been preprocessed. Previously, ‘%g’ was simply substituted
with a file name chosen once per compilation, without regard to any appended
suffix (which was therefore treated just like ordinary text), making such attacks
more likely to succeed.

%usuffix Like ‘%g’, but generates a new temporary file name each time it appears instead
of once per compilation.

%Usuffix Substitutes the last file name generated with ‘%usuffix’, generating a new
one if there is no such last file name. In the absence of any ‘%usuffix’, this
is just like ‘%gsuffix’, except they don’t share the same suffix space, so ‘%g.s
... %U.s ... %g.s ... %U.s’ involves the generation of two distinct file names,
one for each ‘%g.s’ and another for each ‘%U.s’. Previously, ‘%U’ was simply
substituted with a file name chosen for the previous ‘%u’, without regard to any
appended suffix.

%jsuffix Substitutes the name of the HOST_BIT_BUCKET, if any, and if it is writable, and
if ‘-save-temps’ is not used; otherwise, substitute the name of a temporary
file, just like ‘%u’. This temporary file is not meant for communication between
processes, but rather as a junk disposal mechanism.

%|suffix
%msuffix Like ‘%g’, except if ‘-pipe’ is in effect. In that case ‘%|’ substitutes a single

dash and ‘%m’ substitutes nothing at all. These are the two most common
ways to instruct a program that it should read from standard input or write
to standard output. If you need something more elaborate you can use an
‘%{pipe:X}’ construct: see for example ‘f/lang-specs.h’.

%.SUFFIX Substitutes .SUFFIX for the suffixes of a matched switch’s args when it is
subsequently output with ‘%*’. SUFFIX is terminated by the next space or %.

%w Marks the argument containing or following the ‘%w’ as the designated output
file of this compilation. This puts the argument into the sequence of arguments
that ‘%o’ substitutes.

%o Substitutes the names of all the output files, with spaces automatically placed
around them. You should write spaces around the ‘%o’ as well or the results are
undefined. ‘%o’ is for use in the specs for running the linker. Input files whose
names have no recognized suffix are not compiled at all, but they are included
among the output files, so they are linked.

%O Substitutes the suffix for object files. Note that this is handled specially when
it immediately follows ‘%g, %u, or %U’, because of the need for those to form
complete file names. The handling is such that ‘%O’ is treated exactly as if it
had already been substituted, except that ‘%g, %u, and %U’ do not currently

176 Using the GNU Compiler Collection (GCC)

support additional suffix characters following ‘%O’ as they do following, for
example, ‘.o’.

%p Substitutes the standard macro predefinitions for the current target machine.
Use this when running cpp.

%P Like ‘%p’, but puts ‘__’ before and after the name of each predefined macro,
except for macros that start with ‘__’ or with ‘_L’, where L is an uppercase
letter. This is for ISO C.

%I Substitute any of ‘-iprefix’ (made from GCC_EXEC_PREFIX), ‘-isysroot’
(made from TARGET_SYSTEM_ROOT), ‘-isystem’ (made from COMPILER_PATH
and ‘-B’ options) and ‘-imultilib’ as necessary.

%s Current argument is the name of a library or startup file of some sort. Search
for that file in a standard list of directories and substitute the full name found.
The current working directory is included in the list of directories scanned.

%T Current argument is the name of a linker script. Search for that file in the
current list of directories to scan for libraries. If the file is located insert a
‘--script’ option into the command line followed by the full path name found.
If the file is not found then generate an error message. Note: the current
working directory is not searched.

%estr Print str as an error message. str is terminated by a newline. Use this when
inconsistent options are detected.

%(name) Substitute the contents of spec string name at this point.

%x{option}
Accumulate an option for ‘%X’.

%X Output the accumulated linker options specified by ‘-Wl’ or a ‘%x’ spec string.

%Y Output the accumulated assembler options specified by ‘-Wa’.

%Z Output the accumulated preprocessor options specified by ‘-Wp’.

%a Process the asm spec. This is used to compute the switches to be passed to the
assembler.

%A Process the asm_final spec. This is a spec string for passing switches to an
assembler post-processor, if such a program is needed.

%l Process the link spec. This is the spec for computing the command line passed
to the linker. Typically it makes use of the ‘%L %G %S %D and %E’ sequences.

%D Dump out a ‘-L’ option for each directory that GCC believes might contain
startup files. If the target supports multilibs then the current multilib directory
is prepended to each of these paths.

%L Process the lib spec. This is a spec string for deciding which libraries are
included on the command line to the linker.

%G Process the libgcc spec. This is a spec string for deciding which GCC support
library is included on the command line to the linker.

Chapter 3: GCC Command Options 177

%S Process the startfile spec. This is a spec for deciding which object files are
the first ones passed to the linker. Typically this might be a file named ‘crt0.o’.

%E Process the endfile spec. This is a spec string that specifies the last object
files that are passed to the linker.

%C Process the cpp spec. This is used to construct the arguments to be passed to
the C preprocessor.

%1 Process the cc1 spec. This is used to construct the options to be passed to the
actual C compiler (‘cc1’).

%2 Process the cc1plus spec. This is used to construct the options to be passed
to the actual C++ compiler (‘cc1plus’).

%* Substitute the variable part of a matched option. See below. Note that each
comma in the substituted string is replaced by a single space.

%<S Remove all occurrences of -S from the command line. Note—this command is
position dependent. ‘%’ commands in the spec string before this one see -S, ‘%’
commands in the spec string after this one do not.

%:function(args)
Call the named function function, passing it args. args is first processed as a
nested spec string, then split into an argument vector in the usual fashion. The
function returns a string which is processed as if it had appeared literally as
part of the current spec.
The following built-in spec functions are provided:

getenv The getenv spec function takes two arguments: an environment
variable name and a string. If the environment variable is not
defined, a fatal error is issued. Otherwise, the return value is the
value of the environment variable concatenated with the string. For
example, if TOPDIR is defined as ‘/path/to/top’, then:

%:getenv(TOPDIR /include)

expands to ‘/path/to/top/include’.

if-exists
The if-exists spec function takes one argument, an absolute
pathname to a file. If the file exists, if-exists returns the path-
name. Here is a small example of its usage:

*startfile:

crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s

if-exists-else
The if-exists-else spec function is similar to the if-exists spec
function, except that it takes two arguments. The first argument is
an absolute pathname to a file. If the file exists, if-exists-else
returns the pathname. If it does not exist, it returns the second
argument. This way, if-exists-else can be used to select one
file or another, based on the existence of the first. Here is a small
example of its usage:

178 Using the GNU Compiler Collection (GCC)

*startfile:

crt0%O%s %:if-exists(crti%O%s) \

%:if-exists-else(crtbeginT%O%s crtbegin%O%s)

replace-outfile
The replace-outfile spec function takes two arguments. It looks
for the first argument in the outfiles array and replaces it with the
second argument. Here is a small example of its usage:

%{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)}

remove-outfile
The remove-outfile spec function takes one argument. It looks
for the first argument in the outfiles array and removes it. Here is
a small example its usage:

%:remove-outfile(-lm)

pass-through-libs
The pass-through-libs spec function takes any number of argu-
ments. It finds any ‘-l’ options and any non-options ending in
‘.a’ (which it assumes are the names of linker input library archive
files) and returns a result containing all the found arguments each
prepended by ‘-plugin-opt=-pass-through=’ and joined by spa-
ces. This list is intended to be passed to the LTO linker plugin.

%:pass-through-libs(%G %L %G)

print-asm-header
The print-asm-header function takes no arguments and simply
prints a banner like:

Assembler options

=================

Use "-Wa,OPTION" to pass "OPTION" to the assembler.

It is used to separate compiler options from assembler options in
the ‘--target-help’ output.

%{S} Substitutes the -S switch, if that switch is given to GCC. If that switch is
not specified, this substitutes nothing. Note that the leading dash is omitted
when specifying this option, and it is automatically inserted if the substitution
is performed. Thus the spec string ‘%{foo}’ matches the command-line option
‘-foo’ and outputs the command-line option ‘-foo’.

%W{S} Like %{S} but mark last argument supplied within as a file to be deleted on
failure.

%{S*} Substitutes all the switches specified to GCC whose names start with -S, but
which also take an argument. This is used for switches like ‘-o’, ‘-D’, ‘-I’, etc.
GCC considers ‘-o foo’ as being one switch whose name starts with ‘o’. %{o*}
substitutes this text, including the space. Thus two arguments are generated.

%{S*&T*} Like %{S*}, but preserve order of S and T options (the order of S and T in
the spec is not significant). There can be any number of ampersand-separated
variables; for each the wild card is optional. Useful for CPP as ‘%{D*&U*&A*}’.

Chapter 3: GCC Command Options 179

%{S:X} Substitutes X, if the ‘-S’ switch is given to GCC.

%{!S:X} Substitutes X, if the ‘-S’ switch is not given to GCC.

%{S*:X} Substitutes X if one or more switches whose names start with -S are specified to
GCC. Normally X is substituted only once, no matter how many such switches
appeared. However, if %* appears somewhere in X, then X is substituted once for
each matching switch, with the %* replaced by the part of that switch matching
the *.
If %* appears as the last part of a spec sequence then a space will be added after
the end of the last substitution. If there is more text in the sequence however
then a space will not be generated. This allows the %* substitution to be used
as part of a larger string. For example, a spec string like this:

%{mcu=*:--script=%*/memory.ld}

when matching an option like -mcu=newchip will produce:
--script=newchip/memory.ld

%{.S:X} Substitutes X, if processing a file with suffix S.

%{!.S:X} Substitutes X, if not processing a file with suffix S.

%{,S:X} Substitutes X, if processing a file for language S.

%{!,S:X} Substitutes X, if not processing a file for language S.

%{S|P:X} Substitutes X if either -S or -P is given to GCC. This may be combined with
‘!’, ‘.’, ‘,’, and * sequences as well, although they have a stronger binding than
the ‘|’. If %* appears in X, all of the alternatives must be starred, and only the
first matching alternative is substituted.
For example, a spec string like this:

%{.c:-foo} %{!.c:-bar} %{.c|d:-baz} %{!.c|d:-boggle}

outputs the following command-line options from the following input command-
line options:

fred.c -foo -baz

jim.d -bar -boggle

-d fred.c -foo -baz -boggle

-d jim.d -bar -baz -boggle

%{S:X; T:Y; :D}
If S is given to GCC, substitutes X; else if T is given to GCC, substitutes Y;
else substitutes D. There can be as many clauses as you need. This may be
combined with ., ,, !, |, and * as needed.

The conditional text X in a %{S:X} or similar construct may contain other nested ‘%’
constructs or spaces, or even newlines. They are processed as usual, as described above.
Trailing white space in X is ignored. White space may also appear anywhere on the left side
of the colon in these constructs, except between . or * and the corresponding word.

The ‘-O’, ‘-f’, ‘-m’, and ‘-W’ switches are handled specifically in these constructs. If
another value of ‘-O’ or the negated form of a ‘-f’, ‘-m’, or ‘-W’ switch is found later in
the command line, the earlier switch value is ignored, except with {S*} where S is just one
letter, which passes all matching options.

180 Using the GNU Compiler Collection (GCC)

The character ‘|’ at the beginning of the predicate text is used to indicate that a command
should be piped to the following command, but only if ‘-pipe’ is specified.

It is built into GCC which switches take arguments and which do not. (You might think
it would be useful to generalize this to allow each compiler’s spec to say which switches
take arguments. But this cannot be done in a consistent fashion. GCC cannot even decide
which input files have been specified without knowing which switches take arguments, and
it must know which input files to compile in order to tell which compilers to run).

GCC also knows implicitly that arguments starting in ‘-l’ are to be treated as compiler
output files, and passed to the linker in their proper position among the other output files.

3.16 Specifying Target Machine and Compiler Version

The usual way to run GCC is to run the executable called gcc, or machine-gcc when cross-
compiling, or machine-gcc-version to run a version other than the one that was installed
last.

3.17 Hardware Models and Configurations

Each target machine types can have its own special options, starting with ‘-m’, to choose
among various hardware models or configurations—for example, 68010 vs 68020, floating
coprocessor or none. A single installed version of the compiler can compile for any model
or configuration, according to the options specified.

Some configurations of the compiler also support additional special options, usually for
compatibility with other compilers on the same platform.

3.17.1 AArch64 Options

These options are defined for AArch64 implementations:

-mabi=name
Generate code for the specified data model. Permissible values are ‘ilp32’ for
SysV-like data model where int, long int and pointer are 32-bit, and ‘lp64’ for
SysV-like data model where int is 32-bit, but long int and pointer are 64-bit.
The default depends on the specific target configuration. Note that the LP64
and ILP32 ABIs are not link-compatible; you must compile your entire program
with the same ABI, and link with a compatible set of libraries.

-mbig-endian
Generate big-endian code. This is the default when GCC is configured for an
‘aarch64_be-*-*’ target.

-mgeneral-regs-only
Generate code which uses only the general registers.

-mlittle-endian
Generate little-endian code. This is the default when GCC is configured for an
‘aarch64-*-*’ but not an ‘aarch64_be-*-*’ target.

-mcmodel=tiny
Generate code for the tiny code model. The program and its statically defined
symbols must be within 1GB of each other. Pointers are 64 bits. Programs can

Chapter 3: GCC Command Options 181

be statically or dynamically linked. This model is not fully implemented and
mostly treated as ‘small’.

-mcmodel=small
Generate code for the small code model. The program and its statically defined
symbols must be within 4GB of each other. Pointers are 64 bits. Programs can
be statically or dynamically linked. This is the default code model.

-mcmodel=large
Generate code for the large code model. This makes no assumptions about
addresses and sizes of sections. Pointers are 64 bits. Programs can be statically
linked only.

-mstrict-align
Do not assume that unaligned memory references will be handled by the system.

-momit-leaf-frame-pointer
-mno-omit-leaf-frame-pointer

Omit or keep the frame pointer in leaf functions. The former behaviour is the
default.

-mtls-dialect=desc
Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
of TLS variables. This is the default.

-mtls-dialect=traditional
Use traditional TLS as the thread-local storage mechanism for dynamic accesses
of TLS variables.

-march=name
Specify the name of the target architecture, optionally suffixed by one or more
feature modifiers. This option has the form ‘-march=arch{+[no]feature}*’,
where the only permissible value for arch is ‘armv8-a’. The permissible values
for feature are documented in the sub-section below.
Where conflicting feature modifiers are specified, the right-most feature is used.
GCC uses this name to determine what kind of instructions it can emit when
generating assembly code.
Where ‘-march’ is specified without either of ‘-mtune’ or ‘-mcpu’ also being
specified, the code will be tuned to perform well across a range of target pro-
cessors implementing the target architecture.

-mtune=name
Specify the name of the target processor for which GCC should tune the
performance of the code. Permissible values for this option are: ‘generic’,
‘cortex-a53’, ‘cortex-a57’.
Additionally, this option can specify that GCC should tune the performance
of the code for a big.LITTLE system. The only permissible value is
‘cortex-a57.cortex-a53’.
Where none of ‘-mtune=’, ‘-mcpu=’ or ‘-march=’ are specified, the code will be
tuned to perform well across a range of target processors.
This option cannot be suffixed by feature modifiers.

182 Using the GNU Compiler Collection (GCC)

-mcpu=name
Specify the name of the target processor, optionally suffixed by one or more
feature modifiers. This option has the form ‘-mcpu=cpu{+[no]feature}*’, where
the permissible values for cpu are the same as those available for ‘-mtune’.
The permissible values for feature are documented in the sub-section below.
Where conflicting feature modifiers are specified, the right-most feature is used.
GCC uses this name to determine what kind of instructions it can emit when
generating assembly code (as if by ‘-march’) and to determine the target pro-
cessor for which to tune for performance (as if by ‘-mtune’). Where this option
is used in conjunction with ‘-march’ or ‘-mtune’, those options take precedence
over the appropriate part of this option.

3.17.1.1 ‘-march’ and ‘-mcpu’ feature modifiers

Feature modifiers used with ‘-march’ and ‘-mcpu’ can be one the following:

‘crc’ Enable CRC extension.

‘crypto’ Enable Crypto extension. This implies Advanced SIMD is enabled.

‘fp’ Enable floating-point instructions.

‘simd’ Enable Advanced SIMD instructions. This implies floating-point instructions
are enabled. This is the default for all current possible values for options
‘-march’ and ‘-mcpu=’.

3.17.2 Adapteva Epiphany Options

These ‘-m’ options are defined for Adapteva Epiphany:

-mhalf-reg-file
Don’t allocate any register in the range r32. . .r63. That allows code to run
on hardware variants that lack these registers.

-mprefer-short-insn-regs
Preferrentially allocate registers that allow short instruction generation. This
can result in increased instruction count, so this may either reduce or increase
overall code size.

-mbranch-cost=num
Set the cost of branches to roughly num “simple” instructions. This cost is only
a heuristic and is not guaranteed to produce consistent results across releases.

-mcmove Enable the generation of conditional moves.

-mnops=num
Emit num NOPs before every other generated instruction.

-mno-soft-cmpsf
For single-precision floating-point comparisons, emit an fsub instruction and
test the flags. This is faster than a software comparison, but can get incorrect re-
sults in the presence of NaNs, or when two different small numbers are compared
such that their difference is calculated as zero. The default is ‘-msoft-cmpsf’,
which uses slower, but IEEE-compliant, software comparisons.

Chapter 3: GCC Command Options 183

-mstack-offset=num
Set the offset between the top of the stack and the stack pointer. E.g., a value
of 8 means that the eight bytes in the range sp+0...sp+7 can be used by leaf
functions without stack allocation. Values other than ‘8’ or ‘16’ are untested
and unlikely to work. Note also that this option changes the ABI; compiling
a program with a different stack offset than the libraries have been compiled
with generally does not work. This option can be useful if you want to evaluate
if a different stack offset would give you better code, but to actually use a
different stack offset to build working programs, it is recommended to configure
the toolchain with the appropriate ‘--with-stack-offset=num’ option.

-mno-round-nearest
Make the scheduler assume that the rounding mode has been set to truncating.
The default is ‘-mround-nearest’.

-mlong-calls
If not otherwise specified by an attribute, assume all calls might be beyond the
offset range of the b / bl instructions, and therefore load the function address
into a register before performing a (otherwise direct) call. This is the default.

-mshort-calls
If not otherwise specified by an attribute, assume all direct calls are in the range
of the b / bl instructions, so use these instructions for direct calls. The default
is ‘-mlong-calls’.

-msmall16
Assume addresses can be loaded as 16-bit unsigned values. This does not apply
to function addresses for which ‘-mlong-calls’ semantics are in effect.

-mfp-mode=mode
Set the prevailing mode of the floating-point unit. This determines the floating-
point mode that is provided and expected at function call and return time.
Making this mode match the mode you predominantly need at function start can
make your programs smaller and faster by avoiding unnecessary mode switches.

mode can be set to one the following values:

‘caller’ Any mode at function entry is valid, and retained or restored when
the function returns, and when it calls other functions. This mode
is useful for compiling libraries or other compilation units you might
want to incorporate into different programs with different prevail-
ing FPU modes, and the convenience of being able to use a single
object file outweighs the size and speed overhead for any extra
mode switching that might be needed, compared with what would
be needed with a more specific choice of prevailing FPU mode.

‘truncate’
This is the mode used for floating-point calculations with truncating
(i.e. round towards zero) rounding mode. That includes conversion
from floating point to integer.

184 Using the GNU Compiler Collection (GCC)

‘round-nearest’
This is the mode used for floating-point calculations with round-
to-nearest-or-even rounding mode.

‘int’ This is the mode used to perform integer calculations in the FPU,
e.g. integer multiply, or integer multiply-and-accumulate.

The default is ‘-mfp-mode=caller’

-mnosplit-lohi
-mno-postinc
-mno-postmodify

Code generation tweaks that disable, respectively, splitting of 32-bit loads, gen-
eration of post-increment addresses, and generation of post-modify addresses.
The defaults are ‘msplit-lohi’, ‘-mpost-inc’, and ‘-mpost-modify’.

-mnovect-double
Change the preferred SIMD mode to SImode. The default is ‘-mvect-double’,
which uses DImode as preferred SIMD mode.

-max-vect-align=num
The maximum alignment for SIMD vector mode types. num may be 4 or 8.
The default is 8. Note that this is an ABI change, even though many library
function interfaces are unaffected if they don’t use SIMD vector modes in places
that affect size and/or alignment of relevant types.

-msplit-vecmove-early
Split vector moves into single word moves before reload. In theory this can give
better register allocation, but so far the reverse seems to be generally the case.

-m1reg-reg
Specify a register to hold the constant −1, which makes loading small negative
constants and certain bitmasks faster. Allowable values for reg are ‘r43’ and
‘r63’, which specify use of that register as a fixed register, and ‘none’, which
means that no register is used for this purpose. The default is ‘-m1reg-none’.

3.17.3 ARC Options

The following options control the architecture variant for which code is being compiled:

-mbarrel-shifter
Generate instructions supported by barrel shifter. This is the default unless
‘-mcpu=ARC601’ is in effect.

-mcpu=cpu
Set architecture type, register usage, and instruction scheduling parameters for
cpu. There are also shortcut alias options available for backward compatibility
and convenience. Supported values for cpu are

‘ARC600’ Compile for ARC600. Aliases: ‘-mA6’, ‘-mARC600’.

‘ARC601’ Compile for ARC601. Alias: ‘-mARC601’.

‘ARC700’ Compile for ARC700. Aliases: ‘-mA7’, ‘-mARC700’. This is the
default when configured with ‘--with-cpu=arc700’.

Chapter 3: GCC Command Options 185

-mdpfp
-mdpfp-compact

FPX: Generate Double Precision FPX instructions, tuned for the compact im-
plementation.

-mdpfp-fast
FPX: Generate Double Precision FPX instructions, tuned for the fast imple-
mentation.

-mno-dpfp-lrsr
Disable LR and SR instructions from using FPX extension aux registers.

-mea Generate Extended arithmetic instructions. Currently only divaw, adds, subs,
and sat16 are supported. This is always enabled for ‘-mcpu=ARC700’.

-mno-mpy Do not generate mpy instructions for ARC700.

-mmul32x16
Generate 32x16 bit multiply and mac instructions.

-mmul64 Generate mul64 and mulu64 instructions. Only valid for ‘-mcpu=ARC600’.

-mnorm Generate norm instruction. This is the default if ‘-mcpu=ARC700’ is in effect.

-mspfp
-mspfp-compact

FPX: Generate Single Precision FPX instructions, tuned for the compact im-
plementation.

-mspfp-fast
FPX: Generate Single Precision FPX instructions, tuned for the fast implemen-
tation.

-msimd Enable generation of ARC SIMD instructions via target-specific builtins. Only
valid for ‘-mcpu=ARC700’.

-msoft-float
This option ignored; it is provided for compatibility purposes only. Software
floating point code is emitted by default, and this default can overridden by
FPX options; ‘mspfp’, ‘mspfp-compact’, or ‘mspfp-fast’ for single precision,
and ‘mdpfp’, ‘mdpfp-compact’, or ‘mdpfp-fast’ for double precision.

-mswap Generate swap instructions.

The following options are passed through to the assembler, and also define preprocessor
macro symbols.

-mdsp-packa
Passed down to the assembler to enable the DSP Pack A extensions. Also sets
the preprocessor symbol __Xdsp_packa.

-mdvbf Passed down to the assembler to enable the dual viterbi butterfly extension.
Also sets the preprocessor symbol __Xdvbf.

-mlock Passed down to the assembler to enable the Locked Load/Store Conditional
extension. Also sets the preprocessor symbol __Xlock.

186 Using the GNU Compiler Collection (GCC)

-mmac-d16
Passed down to the assembler. Also sets the preprocessor symbol __Xxmac_d16.

-mmac-24 Passed down to the assembler. Also sets the preprocessor symbol __Xxmac_24.

-mrtsc Passed down to the assembler to enable the 64-bit Time-Stamp Counter exten-
sion instruction. Also sets the preprocessor symbol __Xrtsc.

-mswape Passed down to the assembler to enable the swap byte ordering extension in-
struction. Also sets the preprocessor symbol __Xswape.

-mtelephony
Passed down to the assembler to enable dual and single operand instructions
for telephony. Also sets the preprocessor symbol __Xtelephony.

-mxy Passed down to the assembler to enable the XY Memory extension. Also sets
the preprocessor symbol __Xxy.

The following options control how the assembly code is annotated:

-misize Annotate assembler instructions with estimated addresses.

-mannotate-align
Explain what alignment considerations lead to the decision to make an instruc-
tion short or long.

The following options are passed through to the linker:

-marclinux
Passed through to the linker, to specify use of the arclinux emulation. This
option is enabled by default in tool chains built for arc-linux-uclibc and
arceb-linux-uclibc targets when profiling is not requested.

-marclinux_prof
Passed through to the linker, to specify use of the arclinux_prof emulation.
This option is enabled by default in tool chains built for arc-linux-uclibc
and arceb-linux-uclibc targets when profiling is requested.

The following options control the semantics of generated code:

-mepilogue-cfi
Enable generation of call frame information for epilogues.

-mno-epilogue-cfi
Disable generation of call frame information for epilogues.

-mlong-calls
Generate call insns as register indirect calls, thus providing access to the full
32-bit address range.

-mmedium-calls
Don’t use less than 25 bit addressing range for calls, which is the offset avail-
able for an unconditional branch-and-link instruction. Conditional execution
of function calls is suppressed, to allow use of the 25-bit range, rather than
the 21-bit range with conditional branch-and-link. This is the default for tool
chains built for arc-linux-uclibc and arceb-linux-uclibc targets.

Chapter 3: GCC Command Options 187

-mno-sdata
Do not generate sdata references. This is the default for tool chains built for
arc-linux-uclibc and arceb-linux-uclibc targets.

-mucb-mcount
Instrument with mcount calls as used in UCB code. I.e. do the counting in the
callee, not the caller. By default ARC instrumentation counts in the caller.

-mvolatile-cache
Use ordinarily cached memory accesses for volatile references. This is the de-
fault.

-mno-volatile-cache
Enable cache bypass for volatile references.

The following options fine tune code generation:

-malign-call
Do alignment optimizations for call instructions.

-mauto-modify-reg
Enable the use of pre/post modify with register displacement.

-mbbit-peephole
Enable bbit peephole2.

-mno-brcc
This option disables a target-specific pass in ‘arc_reorg’ to generate BRcc
instructions. It has no effect on BRcc generation driven by the combiner pass.

-mcase-vector-pcrel
Use pc-relative switch case tables - this enables case table shortening. This is
the default for ‘-Os’.

-mcompact-casesi
Enable compact casesi pattern. This is the default for ‘-Os’.

-mno-cond-exec
Disable ARCompact specific pass to generate conditional execution instructions.
Due to delay slot scheduling and interactions between operand numbers, literal
sizes, instruction lengths, and the support for conditional execution, the target-
independent pass to generate conditional execution is often lacking, so the ARC
port has kept a special pass around that tries to find more conditional execution
generating opportunities after register allocation, branch shortening, and delay
slot scheduling have been done. This pass generally, but not always, improves
performance and code size, at the cost of extra compilation time, which is why
there is an option to switch it off. If you have a problem with call instructions
exceeding their allowable offset range because they are conditionalized, you
should consider using ‘-mmedium-calls’ instead.

-mearly-cbranchsi
Enable pre-reload use of the cbranchsi pattern.

-mexpand-adddi
Expand adddi3 and subdi3 at rtl generation time into add.f, adc etc.

188 Using the GNU Compiler Collection (GCC)

-mindexed-loads
Enable the use of indexed loads. This can be problematic because some opti-
mizers will then assume the that indexed stores exist, which is not the case.

-mlra Enable Local Register Allocation. This is still experimental for ARC, so by
default the compiler uses standard reload (i.e. ‘-mno-lra’).

-mlra-priority-none
Don’t indicate any priority for target registers.

-mlra-priority-compact
Indicate target register priority for r0..r3 / r12..r15.

-mlra-priority-noncompact
Reduce target regsiter priority for r0..r3 / r12..r15.

-mno-millicode
When optimizing for size (using ‘-Os’), prologues and epilogues that have to
save or restore a large number of registers are often shortened by using call
to a special function in libgcc; this is referred to as a millicode call. As these
calls can pose performance issues, and/or cause linking issues when linking in a
nonstandard way, this option is provided to turn off millicode call generation.

-mmixed-code
Tweak register allocation to help 16-bit instruction generation. This generally
has the effect of decreasing the average instruction size while increasing the
instruction count.

-mq-class
Enable ’q’ instruction alternatives. This is the default for ‘-Os’.

-mRcq Enable Rcq constraint handling - most short code generation depends on this.
This is the default.

-mRcw Enable Rcw constraint handling - ccfsm condexec mostly depends on this. This
is the default.

-msize-level=level
Fine-tune size optimization with regards to instruction lengths and alignment.
The recognized values for level are:

‘0’ No size optimization. This level is deprecated and treated like ‘1’.

‘1’ Short instructions are used opportunistically.

‘2’ In addition, alignment of loops and of code after barriers are
dropped.

‘3’ In addition, optional data alignment is dropped, and the option
‘Os’ is enabled.

This defaults to ‘3’ when ‘-Os’ is in effect. Otherwise, the behavior when this
is not set is equivalent to level ‘1’.

-mtune=cpu
Set instruction scheduling parameters for cpu, overriding any implied by
‘-mcpu=’.

Chapter 3: GCC Command Options 189

Supported values for cpu are

‘ARC600’ Tune for ARC600 cpu.

‘ARC601’ Tune for ARC601 cpu.

‘ARC700’ Tune for ARC700 cpu with standard multiplier block.

‘ARC700-xmac’
Tune for ARC700 cpu with XMAC block.

‘ARC725D’ Tune for ARC725D cpu.

‘ARC750D’ Tune for ARC750D cpu.

-mmultcost=num
Cost to assume for a multiply instruction, with ‘4’ being equal to a normal
instruction.

-munalign-prob-threshold=probability
Set probability threshold for unaligning branches. When tuning for ‘ARC700’
and optimizing for speed, branches without filled delay slot are preferably emit-
ted unaligned and long, unless profiling indicates that the probability for the
branch to be taken is below probability. See Section 10.5 [Cross-profiling],
page 743. The default is (REG BR PROB BASE/2), i.e. 5000.

The following options are maintained for backward compatibility, but are now deprecated
and will be removed in a future release:

-margonaut
Obsolete FPX.

-mbig-endian
-EB Compile code for big endian targets. Use of these options is now

deprecated. Users wanting big-endian code, should use the arceb-elf32
and arceb-linux-uclibc targets when building the tool chain, for which
big-endian is the default.

-mlittle-endian
-EL Compile code for little endian targets. Use of these options is now

deprecated. Users wanting little-endian code should use the arc-elf32
and arc-linux-uclibc targets when building the tool chain, for which
little-endian is the default.

-mbarrel_shifter
Replaced by ‘-mbarrel-shifter’

-mdpfp_compact
Replaced by ‘-mdpfp-compact’

-mdpfp_fast
Replaced by ‘-mdpfp-fast’

-mdsp_packa
Replaced by ‘-mdsp-packa’

-mEA Replaced by ‘-mea’

190 Using the GNU Compiler Collection (GCC)

-mmac_24 Replaced by ‘-mmac-24’

-mmac_d16
Replaced by ‘-mmac-d16’

-mspfp_compact
Replaced by ‘-mspfp-compact’

-mspfp_fast
Replaced by ‘-mspfp-fast’

-mtune=cpu
Values ‘arc600’, ‘arc601’, ‘arc700’ and ‘arc700-xmac’ for cpu are replaced by
‘ARC600’, ‘ARC601’, ‘ARC700’ and ‘ARC700-xmac’ respectively

-multcost=num
Replaced by ‘-mmultcost’.

3.17.4 ARM Options

These ‘-m’ options are defined for Advanced RISC Machines (ARM) architectures:

-mabi=name
Generate code for the specified ABI. Permissible values are: ‘apcs-gnu’,
‘atpcs’, ‘aapcs’, ‘aapcs-linux’ and ‘iwmmxt’.

-mapcs-frame
Generate a stack frame that is compliant with the ARM Procedure Call Stan-
dard for all functions, even if this is not strictly necessary for correct execution of
the code. Specifying ‘-fomit-frame-pointer’ with this option causes the stack
frames not to be generated for leaf functions. The default is ‘-mno-apcs-frame’.

-mapcs This is a synonym for ‘-mapcs-frame’.

-mthumb-interwork
Generate code that supports calling between the ARM and Thumb
instruction sets. Without this option, on pre-v5 architectures, the two
instruction sets cannot be reliably used inside one program. The default
is ‘-mno-thumb-interwork’, since slightly larger code is generated when
‘-mthumb-interwork’ is specified. In AAPCS configurations this option is
meaningless.

-mno-sched-prolog
Prevent the reordering of instructions in the function prologue, or the merging
of those instruction with the instructions in the function’s body. This means
that all functions start with a recognizable set of instructions (or in fact one of
a choice from a small set of different function prologues), and this information
can be used to locate the start of functions inside an executable piece of code.
The default is ‘-msched-prolog’.

-mfloat-abi=name
Specifies which floating-point ABI to use. Permissible values are: ‘soft’,
‘softfp’ and ‘hard’.

Chapter 3: GCC Command Options 191

Specifying ‘soft’ causes GCC to generate output containing library calls for
floating-point operations. ‘softfp’ allows the generation of code using hard-
ware floating-point instructions, but still uses the soft-float calling conventions.
‘hard’ allows generation of floating-point instructions and uses FPU-specific
calling conventions.
The default depends on the specific target configuration. Note that the hard-
float and soft-float ABIs are not link-compatible; you must compile your entire
program with the same ABI, and link with a compatible set of libraries.

-mlittle-endian
Generate code for a processor running in little-endian mode. This is the default
for all standard configurations.

-mbig-endian
Generate code for a processor running in big-endian mode; the default is to
compile code for a little-endian processor.

-mwords-little-endian
This option only applies when generating code for big-endian processors. Gen-
erate code for a little-endian word order but a big-endian byte order. That is,
a byte order of the form ‘32107654’. Note: this option should only be used if
you require compatibility with code for big-endian ARM processors generated
by versions of the compiler prior to 2.8. This option is now deprecated.

-march=name
This specifies the name of the target ARM architecture. GCC uses this name to
determine what kind of instructions it can emit when generating assembly code.
This option can be used in conjunction with or instead of the ‘-mcpu=’ option.
Permissible names are: ‘armv2’, ‘armv2a’, ‘armv3’, ‘armv3m’, ‘armv4’, ‘armv4t’,
‘armv5’, ‘armv5t’, ‘armv5e’, ‘armv5te’, ‘armv6’, ‘armv6j’, ‘armv6t2’, ‘armv6z’,
‘armv6zk’, ‘armv6-m’, ‘armv7’, ‘armv7-a’, ‘armv7-r’, ‘armv7-m’, ‘armv7e-m’,
‘armv7ve’, ‘armv8-a’, ‘armv8-a+crc’, ‘iwmmxt’, ‘iwmmxt2’, ‘ep9312’.
‘-march=armv7ve’ is the armv7-a architecture with virtualization extensions.
‘-march=armv8-a+crc’ enables code generation for the ARMv8-A architecture
together with the optional CRC32 extensions.
‘-march=native’ causes the compiler to auto-detect the architecture of the
build computer. At present, this feature is only supported on Linux, and not
all architectures are recognized. If the auto-detect is unsuccessful the option
has no effect.

-mtune=name
This option specifies the name of the target ARM processor for which GCC
should tune the performance of the code. For some ARM implementations
better performance can be obtained by using this option. Permissible
names are: ‘arm2’, ‘arm250’, ‘arm3’, ‘arm6’, ‘arm60’, ‘arm600’, ‘arm610’,
‘arm620’, ‘arm7’, ‘arm7m’, ‘arm7d’, ‘arm7dm’, ‘arm7di’, ‘arm7dmi’, ‘arm70’,
‘arm700’, ‘arm700i’, ‘arm710’, ‘arm710c’, ‘arm7100’, ‘arm720’, ‘arm7500’,
‘arm7500fe’, ‘arm7tdmi’, ‘arm7tdmi-s’, ‘arm710t’, ‘arm720t’, ‘arm740t’,
‘strongarm’, ‘strongarm110’, ‘strongarm1100’, ‘strongarm1110’, ‘arm8’,

192 Using the GNU Compiler Collection (GCC)

‘arm810’, ‘arm9’, ‘arm9e’, ‘arm920’, ‘arm920t’, ‘arm922t’, ‘arm946e-s’,
‘arm966e-s’, ‘arm968e-s’, ‘arm926ej-s’, ‘arm940t’, ‘arm9tdmi’, ‘arm10tdmi’,
‘arm1020t’, ‘arm1026ej-s’, ‘arm10e’, ‘arm1020e’, ‘arm1022e’, ‘arm1136j-s’,
‘arm1136jf-s’, ‘mpcore’, ‘mpcorenovfp’, ‘arm1156t2-s’, ‘arm1156t2f-s’,
‘arm1176jz-s’, ‘arm1176jzf-s’, ‘cortex-a5’, ‘cortex-a7’, ‘cortex-a8’,
‘cortex-a9’, ‘cortex-a12’, ‘cortex-a15’, ‘cortex-a53’, ‘cortex-a57’,
‘cortex-r4’, ‘cortex-r4f’, ‘cortex-r5’, ‘cortex-r7’, ‘cortex-m4’,
‘cortex-m3’, ‘cortex-m1’, ‘cortex-m0’, ‘cortex-m0plus’, ‘marvell-pj4’,
‘xscale’, ‘iwmmxt’, ‘iwmmxt2’, ‘ep9312’, ‘fa526’, ‘fa626’, ‘fa606te’,
‘fa626te’, ‘fmp626’, ‘fa726te’.
Additionally, this option can specify that GCC should tune the perfor-
mance of the code for a big.LITTLE system. Permissible names are:
‘cortex-a15.cortex-a7’, ‘cortex-a57.cortex-a53’.
‘-mtune=generic-arch’ specifies that GCC should tune the performance for a
blend of processors within architecture arch. The aim is to generate code that
run well on the current most popular processors, balancing between optimiza-
tions that benefit some CPUs in the range, and avoiding performance pitfalls
of other CPUs. The effects of this option may change in future GCC versions
as CPU models come and go.
‘-mtune=native’ causes the compiler to auto-detect the CPU of the build com-
puter. At present, this feature is only supported on Linux, and not all archi-
tectures are recognized. If the auto-detect is unsuccessful the option has no
effect.

-mcpu=name
This specifies the name of the target ARM processor. GCC uses this name to
derive the name of the target ARM architecture (as if specified by ‘-march’) and
the ARM processor type for which to tune for performance (as if specified by
‘-mtune’). Where this option is used in conjunction with ‘-march’ or ‘-mtune’,
those options take precedence over the appropriate part of this option.
Permissible names for this option are the same as those for ‘-mtune’.
‘-mcpu=generic-arch’ is also permissible, and is equivalent to ‘-march=arch
-mtune=generic-arch’. See ‘-mtune’ for more information.
‘-mcpu=native’ causes the compiler to auto-detect the CPU of the build com-
puter. At present, this feature is only supported on Linux, and not all archi-
tectures are recognized. If the auto-detect is unsuccessful the option has no
effect.

-mfpu=name
This specifies what floating-point hardware (or hardware emulation) is
available on the target. Permissible names are: ‘vfp’, ‘vfpv3’, ‘vfpv3-fp16’,
‘vfpv3-d16’, ‘vfpv3-d16-fp16’, ‘vfpv3xd’, ‘vfpv3xd-fp16’, ‘neon’,
‘neon-fp16’, ‘vfpv4’, ‘vfpv4-d16’, ‘fpv4-sp-d16’, ‘neon-vfpv4’, ‘fp-armv8’,
‘neon-fp-armv8’, and ‘crypto-neon-fp-armv8’.
If ‘-msoft-float’ is specified this specifies the format of floating-point values.
If the selected floating-point hardware includes the NEON extension (e.g.
‘-mfpu’=‘neon’), note that floating-point operations are not generated by

Chapter 3: GCC Command Options 193

GCC’s auto-vectorization pass unless ‘-funsafe-math-optimizations’ is
also specified. This is because NEON hardware does not fully implement the
IEEE 754 standard for floating-point arithmetic (in particular denormal values
are treated as zero), so the use of NEON instructions may lead to a loss of
precision.

-mfp16-format=name
Specify the format of the __fp16 half-precision floating-point type. Permissible
names are ‘none’, ‘ieee’, and ‘alternative’; the default is ‘none’, in which case
the __fp16 type is not defined. See Section 6.12 [Half-Precision], page 359, for
more information.

-mstructure-size-boundary=n
The sizes of all structures and unions are rounded up to a multiple of the
number of bits set by this option. Permissible values are 8, 32 and 64. The
default value varies for different toolchains. For the COFF targeted toolchain
the default value is 8. A value of 64 is only allowed if the underlying ABI
supports it.

Specifying a larger number can produce faster, more efficient code, but can also
increase the size of the program. Different values are potentially incompatible.
Code compiled with one value cannot necessarily expect to work with code
or libraries compiled with another value, if they exchange information using
structures or unions.

-mabort-on-noreturn
Generate a call to the function abort at the end of a noreturn function. It is
executed if the function tries to return.

-mlong-calls
-mno-long-calls

Tells the compiler to perform function calls by first loading the address of the
function into a register and then performing a subroutine call on this register.
This switch is needed if the target function lies outside of the 64-megabyte
addressing range of the offset-based version of subroutine call instruction.

Even if this switch is enabled, not all function calls are turned into long calls.
The heuristic is that static functions, functions that have the ‘short-call’
attribute, functions that are inside the scope of a ‘#pragma no_long_calls’
directive, and functions whose definitions have already been compiled within
the current compilation unit are not turned into long calls. The exceptions
to this rule are that weak function definitions, functions with the ‘long-call’
attribute or the ‘section’ attribute, and functions that are within the scope of
a ‘#pragma long_calls’ directive are always turned into long calls.

This feature is not enabled by default. Specifying ‘-mno-long-calls’ restores
the default behavior, as does placing the function calls within the scope of a
‘#pragma long_calls_off’ directive. Note these switches have no effect on
how the compiler generates code to handle function calls via function pointers.

194 Using the GNU Compiler Collection (GCC)

-msingle-pic-base
Treat the register used for PIC addressing as read-only, rather than loading
it in the prologue for each function. The runtime system is responsible for
initializing this register with an appropriate value before execution begins.

-mpic-register=reg
Specify the register to be used for PIC addressing. For standard PIC base case,
the default will be any suitable register determined by compiler. For single
PIC base case, the default is ‘R9’ if target is EABI based or stack-checking is
enabled, otherwise the default is ‘R10’.

-mpic-data-is-text-relative
Assume that each data segments are relative to text segment at load time.
Therefore, it permits addressing data using PC-relative operations. This option
is on by default for targets other than VxWorks RTP.

-mpoke-function-name
Write the name of each function into the text section, directly preceding the
function prologue. The generated code is similar to this:

t0

.ascii "arm_poke_function_name", 0

.align

t1

.word 0xff000000 + (t1 - t0)

arm_poke_function_name

mov ip, sp

stmfd sp!, {fp, ip, lr, pc}

sub fp, ip, #4

When performing a stack backtrace, code can inspect the value of pc stored at
fp + 0. If the trace function then looks at location pc - 12 and the top 8 bits
are set, then we know that there is a function name embedded immediately
preceding this location and has length ((pc[-3]) & 0xff000000).

-mthumb
-marm

Select between generating code that executes in ARM and Thumb states.
The default for most configurations is to generate code that executes in
ARM state, but the default can be changed by configuring GCC with the
‘--with-mode=’state configure option.

-mtpcs-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Stan-
dard for all non-leaf functions. (A leaf function is one that does not call any
other functions.) The default is ‘-mno-tpcs-frame’.

-mtpcs-leaf-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Stan-
dard for all leaf functions. (A leaf function is one that does not call any other
functions.) The default is ‘-mno-apcs-leaf-frame’.

-mcallee-super-interworking
Gives all externally visible functions in the file being compiled an ARM in-
struction set header which switches to Thumb mode before executing the rest

Chapter 3: GCC Command Options 195

of the function. This allows these functions to be called from non-interworking
code. This option is not valid in AAPCS configurations because interworking
is enabled by default.

-mcaller-super-interworking
Allows calls via function pointers (including virtual functions) to execute cor-
rectly regardless of whether the target code has been compiled for interworking
or not. There is a small overhead in the cost of executing a function pointer
if this option is enabled. This option is not valid in AAPCS configurations
because interworking is enabled by default.

-mtp=name
Specify the access model for the thread local storage pointer. The valid models
are ‘soft’, which generates calls to __aeabi_read_tp, ‘cp15’, which fetches the
thread pointer from cp15 directly (supported in the arm6k architecture), and
‘auto’, which uses the best available method for the selected processor. The
default setting is ‘auto’.

-mtls-dialect=dialect
Specify the dialect to use for accessing thread local storage. Two dialects are
supported—‘gnu’ and ‘gnu2’. The ‘gnu’ dialect selects the original GNU scheme
for supporting local and global dynamic TLS models. The ‘gnu2’ dialect selects
the GNU descriptor scheme, which provides better performance for shared li-
braries. The GNU descriptor scheme is compatible with the original scheme,
but does require new assembler, linker and library support. Initial and local
exec TLS models are unaffected by this option and always use the original
scheme.

-mword-relocations
Only generate absolute relocations on word-sized values (i.e. R ARM ABS32).
This is enabled by default on targets (uClinux, SymbianOS) where the runtime
loader imposes this restriction, and when ‘-fpic’ or ‘-fPIC’ is specified.

-mfix-cortex-m3-ldrd
Some Cortex-M3 cores can cause data corruption when ldrd instructions
with overlapping destination and base registers are used. This option
avoids generating these instructions. This option is enabled by default when
‘-mcpu=cortex-m3’ is specified.

-munaligned-access
-mno-unaligned-access

Enables (or disables) reading and writing of 16- and 32- bit values from ad-
dresses that are not 16- or 32- bit aligned. By default unaligned access is
disabled for all pre-ARMv6 and all ARMv6-M architectures, and enabled for
all other architectures. If unaligned access is not enabled then words in packed
data structures will be accessed a byte at a time.
The ARM attribute Tag_CPU_unaligned_access will be set in the generated
object file to either true or false, depending upon the setting of this option.
If unaligned access is enabled then the preprocessor symbol __ARM_FEATURE_
UNALIGNED will also be defined.

196 Using the GNU Compiler Collection (GCC)

-mneon-for-64bits
Enables using Neon to handle scalar 64-bits operations. This is disabled by
default since the cost of moving data from core registers to Neon is high.

-mslow-flash-data
Assume loading data from flash is slower than fetching instruction. Therefore
literal load is minimized for better performance. This option is only supported
when compiling for ARMv7 M-profile and off by default.

-mrestrict-it
Restricts generation of IT blocks to conform to the rules of ARMv8. IT blocks
can only contain a single 16-bit instruction from a select set of instructions.
This option is on by default for ARMv8 Thumb mode.

3.17.5 AVR Options

These options are defined for AVR implementations:

-mmcu=mcu
Specify Atmel AVR instruction set architectures (ISA) or MCU type.
The default for this option is avr2.
GCC supports the following AVR devices and ISAs:

avr2 “Classic” devices with up to 8 KiB of program memory.
mcu = attiny22, attiny26, at90c8534, at90s2313, at90s2323,
at90s2333, at90s2343, at90s4414, at90s4433, at90s4434,
at90s8515, at90s8535.

avr25 “Classic” devices with up to 8 KiB of program memory and with
the MOVW instruction.
mcu = ata5272, ata6289, attiny13, attiny13a, attiny2313,
attiny2313a, attiny24, attiny24a, attiny25, attiny261,
attiny261a, attiny43u, attiny4313, attiny44, attiny44a,
attiny45, attiny461, attiny461a, attiny48, attiny84,
attiny84a, attiny85, attiny861, attiny861a, attiny87,
attiny88, at86rf401.

avr3 “Classic” devices with 16 KiB up to 64 KiB of program memory.
mcu = at43usb355, at76c711.

avr31 “Classic” devices with 128 KiB of program memory.
mcu = atmega103, at43usb320.

avr35 “Classic” devices with 16 KiB up to 64 KiB of program memory
and with the MOVW instruction.
mcu = ata5505, atmega16u2, atmega32u2, atmega8u2,
attiny1634, attiny167, at90usb162, at90usb82.

avr4 “Enhanced” devices with up to 8 KiB of program memory.
mcu = ata6285, ata6286, atmega48, atmega48a, atmega48p,
atmega48pa, atmega8, atmega8a, atmega8hva, atmega8515,
atmega8535, atmega88, atmega88a, atmega88p, atmega88pa,

Chapter 3: GCC Command Options 197

at90pwm1, at90pwm2, at90pwm2b, at90pwm3, at90pwm3b,
at90pwm81.

avr5 “Enhanced” devices with 16 KiB up to 64 KiB of program
memory.
mcu = ata5790, ata5790n, ata5795, atmega16, atmega16a,
atmega16hva, atmega16hva2, atmega16hvb, atmega16hvbrevb,
atmega16m1, atmega16u4, atmega161, atmega162, atmega163,
atmega164a, atmega164p, atmega164pa, atmega165,
atmega165a, atmega165p, atmega165pa, atmega168,
atmega168a, atmega168p, atmega168pa, atmega169, atmega169a,
atmega169p, atmega169pa, atmega26hvg, atmega32, atmega32a,
atmega32c1, atmega32hvb, atmega32hvbrevb, atmega32m1,
atmega32u4, atmega32u6, atmega323, atmega324a, atmega324p,
atmega324pa, atmega325, atmega325a, atmega325p, atmega3250,
atmega3250a, atmega3250p, atmega3250pa, atmega328,
atmega328p, atmega329, atmega329a, atmega329p, atmega329pa,
atmega3290, atmega3290a, atmega3290p, atmega3290pa,
atmega406, atmega48hvf, atmega64, atmega64a, atmega64c1,
atmega64hve, atmega64m1, atmega64rfa2, atmega64rfr2,
atmega640, atmega644, atmega644a, atmega644p, atmega644pa,
atmega645, atmega645a, atmega645p, atmega6450, atmega6450a,
atmega6450p, atmega649, atmega649a, atmega649p, atmega6490,
atmega6490a, atmega6490p, at90can32, at90can64, at90pwm161,
at90pwm216, at90pwm316, at90scr100, at90usb646, at90usb647,
at94k, m3000.

avr51 “Enhanced” devices with 128 KiB of program memory.
mcu = atmega128, atmega128a, atmega128rfa1, atmega1280,
atmega1281, atmega1284, atmega1284p, at90can128,
at90usb1286, at90usb1287.

avr6 “Enhanced” devices with 3-byte PC, i.e. with more than 128 KiB
of program memory.
mcu = atmega2560, atmega2561.

avrxmega2
“XMEGA” devices with more than 8 KiB and up to 64 KiB of
program memory.
mcu = atmxt112sl, atmxt224, atmxt224e, atmxt336s,
atxmega16a4, atxmega16a4u, atxmega16c4, atxmega16d4,
atxmega32a4, atxmega32a4u, atxmega32c4, atxmega32d4,
atxmega32e5, atxmega32x1.

avrxmega4
“XMEGA” devices with more than 64 KiB and up to 128 KiB of
program memory.
mcu = atxmega64a3, atxmega64a3u, atxmega64a4u,
atxmega64b1, atxmega64b3, atxmega64c3, atxmega64d3,
atxmega64d4.

198 Using the GNU Compiler Collection (GCC)

avrxmega5
“XMEGA” devices with more than 64 KiB and up to 128 KiB of
program memory and more than 64 KiB of RAM.
mcu = atxmega64a1, atxmega64a1u.

avrxmega6
“XMEGA” devices with more than 128 KiB of program memory.
mcu = atmxt540s, atmxt540sreva, atxmega128a3,
atxmega128a3u, atxmega128b1, atxmega128b3, atxmega128c3,
atxmega128d3, atxmega128d4, atxmega192a3, atxmega192a3u,
atxmega192c3, atxmega192d3, atxmega256a3, atxmega256a3b,
atxmega256a3bu, atxmega256a3u, atxmega256c3, atxmega256d3,
atxmega384c3, atxmega384d3.

avrxmega7
“XMEGA” devices with more than 128 KiB of program memory
and more than 64 KiB of RAM.
mcu = atxmega128a1, atxmega128a1u, atxmega128a4u.

avr1 This ISA is implemented by the minimal AVR core and supported
for assembler only.
mcu = attiny11, attiny12, attiny15, attiny28, at90s1200.

-maccumulate-args
Accumulate outgoing function arguments and acquire/release the needed stack
space for outgoing function arguments once in function prologue/epilogue.
Without this option, outgoing arguments are pushed before calling a function
and popped afterwards.
Popping the arguments after the function call can be expensive on AVR so
that accumulating the stack space might lead to smaller executables because
arguments need not to be removed from the stack after such a function call.
This option can lead to reduced code size for functions that perform several
calls to functions that get their arguments on the stack like calls to printf-like
functions.

-mbranch-cost=cost
Set the branch costs for conditional branch instructions to cost. Reasonable
values for cost are small, non-negative integers. The default branch cost is 0.

-mcall-prologues
Functions prologues/epilogues are expanded as calls to appropriate subroutines.
Code size is smaller.

-mint8 Assume int to be 8-bit integer. This affects the sizes of all types: a char is 1
byte, an int is 1 byte, a long is 2 bytes, and long long is 4 bytes. Please note
that this option does not conform to the C standards, but it results in smaller
code size.

-mno-interrupts
Generated code is not compatible with hardware interrupts. Code size is
smaller.

Chapter 3: GCC Command Options 199

-mrelax Try to replace CALL resp. JMP instruction by the shorter RCALL resp. RJMP in-
struction if applicable. Setting -mrelax just adds the --relax option to the
linker command line when the linker is called.
Jump relaxing is performed by the linker because jump offsets are not known
before code is located. Therefore, the assembler code generated by the compiler
is the same, but the instructions in the executable may differ from instructions
in the assembler code.
Relaxing must be turned on if linker stubs are needed, see the section on EIND
and linker stubs below.

-msp8 Treat the stack pointer register as an 8-bit register, i.e. assume the high byte of
the stack pointer is zero. In general, you don’t need to set this option by hand.
This option is used internally by the compiler to select and build multilibs for
architectures avr2 and avr25. These architectures mix devices with and with-
out SPH. For any setting other than -mmcu=avr2 or -mmcu=avr25 the compiler
driver will add or remove this option from the compiler proper’s command line,
because the compiler then knows if the device or architecture has an 8-bit stack
pointer and thus no SPH register or not.

-mstrict-X
Use address register X in a way proposed by the hardware. This means that X
is only used in indirect, post-increment or pre-decrement addressing.
Without this option, the X register may be used in the same way as Y or Z which
then is emulated by additional instructions. For example, loading a value with
X+const addressing with a small non-negative const < 64 to a register Rn is
performed as

adiw r26, const ; X += const
ld Rn, X ; Rn = *X
sbiw r26, const ; X -= const

-mtiny-stack
Only change the lower 8 bits of the stack pointer.

-Waddr-space-convert
Warn about conversions between address spaces in the case where the resulting
address space is not contained in the incoming address space.

3.17.5.1 EIND and Devices with more than 128 Ki Bytes of Flash

Pointers in the implementation are 16 bits wide. The address of a function or label is
represented as word address so that indirect jumps and calls can target any code address
in the range of 64 Ki words.

In order to facilitate indirect jump on devices with more than 128 Ki bytes of program
memory space, there is a special function register called EIND that serves as most significant
part of the target address when EICALL or EIJMP instructions are used.

Indirect jumps and calls on these devices are handled as follows by the compiler and are
subject to some limitations:
• The compiler never sets EIND.

200 Using the GNU Compiler Collection (GCC)

• The compiler uses EIND implicitely in EICALL/EIJMP instructions or might read EIND
directly in order to emulate an indirect call/jump by means of a RET instruction.

• The compiler assumes that EIND never changes during the startup code or during the
application. In particular, EIND is not saved/restored in function or interrupt service
routine prologue/epilogue.

• For indirect calls to functions and computed goto, the linker generates stubs. Stubs are
jump pads sometimes also called trampolines. Thus, the indirect call/jump jumps to
such a stub. The stub contains a direct jump to the desired address.

• Linker relaxation must be turned on so that the linker will generate the stubs correctly
an all situaltion. See the compiler option -mrelax and the linler option --relax. There
are corner cases where the linker is supposed to generate stubs but aborts without
relaxation and without a helpful error message.

• The default linker script is arranged for code with EIND = 0. If code is supposed to
work for a setup with EIND != 0, a custom linker script has to be used in order to place
the sections whose name start with .trampolines into the segment where EIND points
to.

• The startup code from libgcc never sets EIND. Notice that startup code is a blend
of code from libgcc and AVR-LibC. For the impact of AVR-LibC on EIND, see the
AVR-LibC user manual.

• It is legitimate for user-specific startup code to set up EIND early, for example by means
of initialization code located in section .init3. Such code runs prior to general startup
code that initializes RAM and calls constructors, but after the bit of startup code from
AVR-LibC that sets EIND to the segment where the vector table is located.

#include <avr/io.h>

static void
__attribute__((section(".init3"),naked,used,no_instrument_function))
init3_set_eind (void)
{
__asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"

"out %i0,r24" :: "n" (&EIND) : "r24","memory");
}

The __trampolines_start symbol is defined in the linker script.
• Stubs are generated automatically by the linker if the following two conditions are met:

− The address of a label is taken by means of the gs modifier (short for generate
stubs) like so:

LDI r24, lo8(gs(func))
LDI r25, hi8(gs(func))

− The final location of that label is in a code segment outside the segment where the
stubs are located.

• The compiler emits such gs modifiers for code labels in the following situations:
− Taking address of a function or code label.
− Computed goto.
− If prologue-save function is used, see ‘-mcall-prologues’ command-line option.

http://nongnu.org/avr-libc/user-manual/

Chapter 3: GCC Command Options 201

− Switch/case dispatch tables. If you do not want such dispatch tables you can
specify the ‘-fno-jump-tables’ command-line option.

− C and C++ constructors/destructors called during startup/shutdown.
− If the tools hit a gs() modifier explained above.

• Jumping to non-symbolic addresses like so is not supported:
int main (void)
{

/* Call function at word address 0x2 */
return ((int(*)(void)) 0x2)();

}

Instead, a stub has to be set up, i.e. the function has to be called through a symbol
(func_4 in the example):

int main (void)
{

extern int func_4 (void);

/* Call function at byte address 0x4 */
return func_4();

}

and the application be linked with -Wl,--defsym,func_4=0x4. Alternatively, func_4
can be defined in the linker script.

3.17.5.2 Handling of the RAMPD, RAMPX, RAMPY and RAMPZ Special
Function Registers

Some AVR devices support memories larger than the 64 KiB range that can be accessed with
16-bit pointers. To access memory locations outside this 64 KiB range, the contentent of a
RAMP register is used as high part of the address: The X, Y, Z address register is concatenated
with the RAMPX, RAMPY, RAMPZ special function register, respectively, to get a wide address.
Similarly, RAMPD is used together with direct addressing.
• The startup code initializes the RAMP special function registers with zero.
• If a [AVR Named Address Spaces], page 362 other than generic or __flash is used,

then RAMPZ is set as needed before the operation.
• If the device supports RAM larger than 64 KiB and the compiler needs to change RAMPZ

to accomplish an operation, RAMPZ is reset to zero after the operation.
• If the device comes with a specific RAMP register, the ISR prologue/epilogue

saves/restores that SFR and initializes it with zero in case the ISR code might
(implicitly) use it.

• RAM larger than 64 KiB is not supported by GCC for AVR targets. If you use inline
assembler to read from locations outside the 16-bit address range and change one of
the RAMP registers, you must reset it to zero after the access.

3.17.5.3 AVR Built-in Macros

GCC defines several built-in macros so that the user code can test for the presence or
absence of features. Almost any of the following built-in macros are deduced from device
capabilities and thus triggered by the -mmcu= command-line option.

202 Using the GNU Compiler Collection (GCC)

For even more AVR-specific built-in macros see [AVR Named Address Spaces], page 362
and Section 6.57.8 [AVR Built-in Functions], page 595.

__AVR_ARCH__
Build-in macro that resolves to a decimal number that identifies the architecture
and depends on the -mmcu=mcu option. Possible values are:

2, 25, 3, 31, 35, 4, 5, 51, 6, 102, 104, 105, 106, 107

for mcu=avr2, avr25, avr3, avr31, avr35, avr4, avr5, avr51, avr6,
avrxmega2, avrxmega4, avrxmega5, avrxmega6, avrxmega7, respectively. If
mcu specifies a device, this built-in macro is set accordingly. For example,
with -mmcu=atmega8 the macro will be defined to 4.

__AVR_Device__
Setting -mmcu=device defines this built-in macro which reflects the
device’s name. For example, -mmcu=atmega8 defines the built-in macro
__AVR_ATmega8__, -mmcu=attiny261a defines __AVR_ATtiny261A__, etc.

The built-in macros’ names follow the scheme __AVR_Device__ where Device is
the device name as from the AVR user manual. The difference between Device
in the built-in macro and device in -mmcu=device is that the latter is always
lowercase.

If device is not a device but only a core architecture like avr51, this macro will
not be defined.

__AVR_XMEGA__
The device / architecture belongs to the XMEGA family of devices.

__AVR_HAVE_ELPM__
The device has the the ELPM instruction.

__AVR_HAVE_ELPMX__
The device has the ELPM Rn,Z and ELPM Rn,Z+ instructions.

__AVR_HAVE_MOVW__
The device has the MOVW instruction to perform 16-bit register-register moves.

__AVR_HAVE_LPMX__
The device has the LPM Rn,Z and LPM Rn,Z+ instructions.

__AVR_HAVE_MUL__
The device has a hardware multiplier.

__AVR_HAVE_JMP_CALL__
The device has the JMP and CALL instructions. This is the case for devices with
at least 16 KiB of program memory.

__AVR_HAVE_EIJMP_EICALL__
__AVR_3_BYTE_PC__

The device has the EIJMP and EICALL instructions. This is the case for devices
with more than 128 KiB of program memory. This also means that the program
counter (PC) is 3 bytes wide.

Chapter 3: GCC Command Options 203

__AVR_2_BYTE_PC__
The program counter (PC) is 2 bytes wide. This is the case for devices with up
to 128 KiB of program memory.

__AVR_HAVE_8BIT_SP__
__AVR_HAVE_16BIT_SP__

The stack pointer (SP) register is treated as 8-bit respectively 16-bit register
by the compiler. The definition of these macros is affected by -mtiny-stack.

__AVR_HAVE_SPH__
__AVR_SP8__

The device has the SPH (high part of stack pointer) special function register
or has an 8-bit stack pointer, respectively. The definition of these macros is
affected by -mmcu= and in the cases of -mmcu=avr2 and -mmcu=avr25 also by
-msp8.

__AVR_HAVE_RAMPD__
__AVR_HAVE_RAMPX__
__AVR_HAVE_RAMPY__
__AVR_HAVE_RAMPZ__

The device has the RAMPD, RAMPX, RAMPY, RAMPZ special function register, re-
spectively.

__NO_INTERRUPTS__
This macro reflects the -mno-interrupts command line option.

__AVR_ERRATA_SKIP__
__AVR_ERRATA_SKIP_JMP_CALL__

Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit instructions
because of a hardware erratum. Skip instructions are SBRS, SBRC, SBIS, SBIC
and CPSE. The second macro is only defined if __AVR_HAVE_JMP_CALL__ is also
set.

__AVR_ISA_RMW__
The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).

__AVR_SFR_OFFSET__=offset
Instructions that can address I/O special function registers directly like IN, OUT,
SBI, etc. may use a different address as if addressed by an instruction to access
RAM like LD or STS. This offset depends on the device architecture and has to
be subtracted from the RAM address in order to get the respective I/O address.

__WITH_AVRLIBC__
The compiler is configured to be used together with AVR-Libc. See the --
with-avrlibc configure option.

3.17.6 Blackfin Options

-mcpu=cpu[-sirevision]
Specifies the name of the target Blackfin processor. Currently, cpu can be
one of ‘bf512’, ‘bf514’, ‘bf516’, ‘bf518’, ‘bf522’, ‘bf523’, ‘bf524’, ‘bf525’,
‘bf526’, ‘bf527’, ‘bf531’, ‘bf532’, ‘bf533’, ‘bf534’, ‘bf536’, ‘bf537’, ‘bf538’,

204 Using the GNU Compiler Collection (GCC)

‘bf539’, ‘bf542’, ‘bf544’, ‘bf547’, ‘bf548’, ‘bf549’, ‘bf542m’, ‘bf544m’,
‘bf547m’, ‘bf548m’, ‘bf549m’, ‘bf561’, ‘bf592’.

The optional sirevision specifies the silicon revision of the target Blackfin pro-
cessor. Any workarounds available for the targeted silicon revision are en-
abled. If sirevision is ‘none’, no workarounds are enabled. If sirevision is
‘any’, all workarounds for the targeted processor are enabled. The __SILICON_
REVISION__ macro is defined to two hexadecimal digits representing the major
and minor numbers in the silicon revision. If sirevision is ‘none’, the __SILICON_
REVISION__ is not defined. If sirevision is ‘any’, the __SILICON_REVISION__ is
defined to be 0xffff. If this optional sirevision is not used, GCC assumes the
latest known silicon revision of the targeted Blackfin processor.

GCC defines a preprocessor macro for the specified cpu. For the ‘bfin-elf’
toolchain, this option causes the hardware BSP provided by libgloss to be linked
in if ‘-msim’ is not given.

Without this option, ‘bf532’ is used as the processor by default.

Note that support for ‘bf561’ is incomplete. For ‘bf561’, only the preprocessor
macro is defined.

-msim Specifies that the program will be run on the simulator. This causes the simu-
lator BSP provided by libgloss to be linked in. This option has effect only for
‘bfin-elf’ toolchain. Certain other options, such as ‘-mid-shared-library’
and ‘-mfdpic’, imply ‘-msim’.

-momit-leaf-frame-pointer
Don’t keep the frame pointer in a register for leaf functions. This avoids the
instructions to save, set up and restore frame pointers and makes an extra reg-
ister available in leaf functions. The option ‘-fomit-frame-pointer’ removes
the frame pointer for all functions, which might make debugging harder.

-mspecld-anomaly
When enabled, the compiler ensures that the generated code does not contain
speculative loads after jump instructions. If this option is used, __WORKAROUND_
SPECULATIVE_LOADS is defined.

-mno-specld-anomaly
Don’t generate extra code to prevent speculative loads from occurring.

-mcsync-anomaly
When enabled, the compiler ensures that the generated code does not contain
CSYNC or SSYNC instructions too soon after conditional branches. If this
option is used, __WORKAROUND_SPECULATIVE_SYNCS is defined.

-mno-csync-anomaly
Don’t generate extra code to prevent CSYNC or SSYNC instructions from
occurring too soon after a conditional branch.

-mlow-64k
When enabled, the compiler is free to take advantage of the knowledge that the
entire program fits into the low 64k of memory.

Chapter 3: GCC Command Options 205

-mno-low-64k
Assume that the program is arbitrarily large. This is the default.

-mstack-check-l1
Do stack checking using information placed into L1 scratchpad memory by the
uClinux kernel.

-mid-shared-library
Generate code that supports shared libraries via the library ID method. This
allows for execute in place and shared libraries in an environment without vir-
tual memory management. This option implies ‘-fPIC’. With a ‘bfin-elf’
target, this option implies ‘-msim’.

-mno-id-shared-library
Generate code that doesn’t assume ID-based shared libraries are being used.
This is the default.

-mleaf-id-shared-library
Generate code that supports shared libraries via the library ID method, but
assumes that this library or executable won’t link against any other ID shared
libraries. That allows the compiler to use faster code for jumps and calls.

-mno-leaf-id-shared-library
Do not assume that the code being compiled won’t link against any ID shared
libraries. Slower code is generated for jump and call insns.

-mshared-library-id=n
Specifies the identification number of the ID-based shared library being com-
piled. Specifying a value of 0 generates more compact code; specifying other
values forces the allocation of that number to the current library but is no more
space- or time-efficient than omitting this option.

-msep-data
Generate code that allows the data segment to be located in a different area of
memory from the text segment. This allows for execute in place in an environ-
ment without virtual memory management by eliminating relocations against
the text section.

-mno-sep-data
Generate code that assumes that the data segment follows the text segment.
This is the default.

-mlong-calls
-mno-long-calls

Tells the compiler to perform function calls by first loading the address of the
function into a register and then performing a subroutine call on this register.
This switch is needed if the target function lies outside of the 24-bit addressing
range of the offset-based version of subroutine call instruction.
This feature is not enabled by default. Specifying ‘-mno-long-calls’ restores
the default behavior. Note these switches have no effect on how the compiler
generates code to handle function calls via function pointers.

206 Using the GNU Compiler Collection (GCC)

-mfast-fp
Link with the fast floating-point library. This library relaxes some of the
IEEE floating-point standard’s rules for checking inputs against Not-a-Number
(NAN), in the interest of performance.

-minline-plt
Enable inlining of PLT entries in function calls to functions that are not known
to bind locally. It has no effect without ‘-mfdpic’.

-mmulticore
Build a standalone application for multicore Blackfin processors. This
option causes proper start files and link scripts supporting multicore to be
used, and defines the macro __BFIN_MULTICORE. It can only be used with
‘-mcpu=bf561[-sirevision]’.
This option can be used with ‘-mcorea’ or ‘-mcoreb’, which selects the one-
application-per-core programming model. Without ‘-mcorea’ or ‘-mcoreb’, the
single-application/dual-core programming model is used. In this model, the
main function of Core B should be named as coreb_main.
If this option is not used, the single-core application programming model is
used.

-mcorea Build a standalone application for Core A of BF561 when using the one-
application-per-core programming model. Proper start files and link scripts
are used to support Core A, and the macro __BFIN_COREA is defined. This
option can only be used in conjunction with ‘-mmulticore’.

-mcoreb Build a standalone application for Core B of BF561 when using the
one-application-per-core programming model. Proper start files and link
scripts are used to support Core B, and the macro __BFIN_COREB is defined.
When this option is used, coreb_main should be used instead of main. This
option can only be used in conjunction with ‘-mmulticore’.

-msdram Build a standalone application for SDRAM. Proper start files and link scripts
are used to put the application into SDRAM, and the macro __BFIN_SDRAM is
defined. The loader should initialize SDRAM before loading the application.

-micplb Assume that ICPLBs are enabled at run time. This has an effect on certain
anomaly workarounds. For Linux targets, the default is to assume ICPLBs are
enabled; for standalone applications the default is off.

3.17.7 C6X Options

-march=name
This specifies the name of the target architecture. GCC uses this name to
determine what kind of instructions it can emit when generating assembly code.
Permissible names are: ‘c62x’, ‘c64x’, ‘c64x+’, ‘c67x’, ‘c67x+’, ‘c674x’.

-mbig-endian
Generate code for a big-endian target.

-mlittle-endian
Generate code for a little-endian target. This is the default.

Chapter 3: GCC Command Options 207

-msim Choose startup files and linker script suitable for the simulator.

-msdata=default
Put small global and static data in the ‘.neardata’ section, which is pointed
to by register B14. Put small uninitialized global and static data in the ‘.bss’
section, which is adjacent to the ‘.neardata’ section. Put small read-only data
into the ‘.rodata’ section. The corresponding sections used for large pieces of
data are ‘.fardata’, ‘.far’ and ‘.const’.

-msdata=all
Put all data, not just small objects, into the sections reserved for small data,
and use addressing relative to the B14 register to access them.

-msdata=none
Make no use of the sections reserved for small data, and use absolute addresses
to access all data. Put all initialized global and static data in the ‘.fardata’
section, and all uninitialized data in the ‘.far’ section. Put all constant data
into the ‘.const’ section.

3.17.8 CRIS Options

These options are defined specifically for the CRIS ports.

-march=architecture-type
-mcpu=architecture-type

Generate code for the specified architecture. The choices for architecture-
type are ‘v3’, ‘v8’ and ‘v10’ for respectively ETRAX 4, ETRAX 100, and
ETRAX 100 LX. Default is ‘v0’ except for cris-axis-linux-gnu, where the de-
fault is ‘v10’.

-mtune=architecture-type
Tune to architecture-type everything applicable about the generated code,
except for the ABI and the set of available instructions. The choices for
architecture-type are the same as for ‘-march=architecture-type’.

-mmax-stack-frame=n
Warn when the stack frame of a function exceeds n bytes.

-metrax4
-metrax100

The options ‘-metrax4’ and ‘-metrax100’ are synonyms for ‘-march=v3’ and
‘-march=v8’ respectively.

-mmul-bug-workaround
-mno-mul-bug-workaround

Work around a bug in the muls and mulu instructions for CPU models where
it applies. This option is active by default.

-mpdebug Enable CRIS-specific verbose debug-related information in the assembly code.
This option also has the effect of turning off the ‘#NO_APP’ formatted-code
indicator to the assembler at the beginning of the assembly file.

208 Using the GNU Compiler Collection (GCC)

-mcc-init
Do not use condition-code results from previous instruction; always emit com-
pare and test instructions before use of condition codes.

-mno-side-effects
Do not emit instructions with side effects in addressing modes other than post-
increment.

-mstack-align
-mno-stack-align
-mdata-align
-mno-data-align
-mconst-align
-mno-const-align

These options (‘no-’ options) arrange (eliminate arrangements) for the stack
frame, individual data and constants to be aligned for the maximum single
data access size for the chosen CPU model. The default is to arrange for 32-
bit alignment. ABI details such as structure layout are not affected by these
options.

-m32-bit
-m16-bit
-m8-bit Similar to the stack- data- and const-align options above, these options arrange

for stack frame, writable data and constants to all be 32-bit, 16-bit or 8-bit
aligned. The default is 32-bit alignment.

-mno-prologue-epilogue
-mprologue-epilogue

With ‘-mno-prologue-epilogue’, the normal function prologue and epilogue
which set up the stack frame are omitted and no return instructions or return
sequences are generated in the code. Use this option only together with visual
inspection of the compiled code: no warnings or errors are generated when
call-saved registers must be saved, or storage for local variables needs to be
allocated.

-mno-gotplt
-mgotplt With ‘-fpic’ and ‘-fPIC’, don’t generate (do generate) instruction sequences

that load addresses for functions from the PLT part of the GOT rather than
(traditional on other architectures) calls to the PLT. The default is ‘-mgotplt’.

-melf Legacy no-op option only recognized with the cris-axis-elf and cris-axis-linux-
gnu targets.

-mlinux Legacy no-op option only recognized with the cris-axis-linux-gnu target.

-sim This option, recognized for the cris-axis-elf, arranges to link with input-output
functions from a simulator library. Code, initialized data and zero-initialized
data are allocated consecutively.

-sim2 Like ‘-sim’, but pass linker options to locate initialized data at 0x40000000 and
zero-initialized data at 0x80000000.

Chapter 3: GCC Command Options 209

3.17.9 CR16 Options

These options are defined specifically for the CR16 ports.

-mmac Enable the use of multiply-accumulate instructions. Disabled by default.

-mcr16cplus
-mcr16c Generate code for CR16C or CR16C+ architecture. CR16C+ architecture is

default.

-msim Links the library libsim.a which is in compatible with simulator. Applicable to
ELF compiler only.

-mint32 Choose integer type as 32-bit wide.

-mbit-ops
Generates sbit/cbit instructions for bit manipulations.

-mdata-model=model
Choose a data model. The choices for model are ‘near’, ‘far’ or ‘medium’.
‘medium’ is default. However, ‘far’ is not valid with ‘-mcr16c’, as the CR16C
architecture does not support the far data model.

3.17.10 Darwin Options

These options are defined for all architectures running the Darwin operating system.
FSF GCC on Darwin does not create “fat” object files; it creates an object file for the

single architecture that GCC was built to target. Apple’s GCC on Darwin does create
“fat” files if multiple ‘-arch’ options are used; it does so by running the compiler or linker
multiple times and joining the results together with ‘lipo’.

The subtype of the file created (like ‘ppc7400’ or ‘ppc970’ or ‘i686’) is determined
by the flags that specify the ISA that GCC is targeting, like ‘-mcpu’ or ‘-march’. The
‘-force_cpusubtype_ALL’ option can be used to override this.

The Darwin tools vary in their behavior when presented with an ISA mismatch. The
assembler, ‘as’, only permits instructions to be used that are valid for the subtype of the
file it is generating, so you cannot put 64-bit instructions in a ‘ppc750’ object file. The
linker for shared libraries, ‘/usr/bin/libtool’, fails and prints an error if asked to create
a shared library with a less restrictive subtype than its input files (for instance, trying to
put a ‘ppc970’ object file in a ‘ppc7400’ library). The linker for executables, ld, quietly
gives the executable the most restrictive subtype of any of its input files.

-Fdir Add the framework directory dir to the head of the list of directories to be
searched for header files. These directories are interleaved with those specified
by ‘-I’ options and are scanned in a left-to-right order.
A framework directory is a directory with frameworks in it. A framework is
a directory with a ‘Headers’ and/or ‘PrivateHeaders’ directory contained
directly in it that ends in ‘.framework’. The name of a framework is the
name of this directory excluding the ‘.framework’. Headers associated with
the framework are found in one of those two directories, with ‘Headers’
being searched first. A subframework is a framework directory that is in a
framework’s ‘Frameworks’ directory. Includes of subframework headers can

210 Using the GNU Compiler Collection (GCC)

only appear in a header of a framework that contains the subframework,
or in a sibling subframework header. Two subframeworks are siblings
if they occur in the same framework. A subframework should not have
the same name as a framework; a warning is issued if this is violated.
Currently a subframework cannot have subframeworks; in the future, the
mechanism may be extended to support this. The standard frameworks can
be found in ‘/System/Library/Frameworks’ and ‘/Library/Frameworks’.
An example include looks like #include <Framework/header.h>, where
‘Framework’ denotes the name of the framework and ‘header.h’ is found in
the ‘PrivateHeaders’ or ‘Headers’ directory.

-iframeworkdir
Like ‘-F’ except the directory is a treated as a system directory. The main
difference between this ‘-iframework’ and ‘-F’ is that with ‘-iframework’ the
compiler does not warn about constructs contained within header files found
via dir. This option is valid only for the C family of languages.

-gused Emit debugging information for symbols that are used. For stabs debugging
format, this enables ‘-feliminate-unused-debug-symbols’. This is by default
ON.

-gfull Emit debugging information for all symbols and types.

-mmacosx-version-min=version
The earliest version of MacOS X that this executable will run on is version.
Typical values of version include 10.1, 10.2, and 10.3.9.

If the compiler was built to use the system’s headers by default, then the default
for this option is the system version on which the compiler is running, otherwise
the default is to make choices that are compatible with as many systems and
code bases as possible.

-mkernel Enable kernel development mode. The ‘-mkernel’ option sets
‘-static’, ‘-fno-common’, ‘-fno-cxa-atexit’, ‘-fno-exceptions’,
‘-fno-non-call-exceptions’, ‘-fapple-kext’, ‘-fno-weak’ and ‘-fno-rtti’
where applicable. This mode also sets ‘-mno-altivec’, ‘-msoft-float’,
‘-fno-builtin’ and ‘-mlong-branch’ for PowerPC targets.

-mone-byte-bool
Override the defaults for ‘bool’ so that ‘sizeof(bool)==1’. By default
‘sizeof(bool)’ is ‘4’ when compiling for Darwin/PowerPC and ‘1’ when
compiling for Darwin/x86, so this option has no effect on x86.

Warning: The ‘-mone-byte-bool’ switch causes GCC to generate code that
is not binary compatible with code generated without that switch. Using this
switch may require recompiling all other modules in a program, including sys-
tem libraries. Use this switch to conform to a non-default data model.

Chapter 3: GCC Command Options 211

-mfix-and-continue
-ffix-and-continue
-findirect-data

Generate code suitable for fast turnaround development, such as to allow GDB
to dynamically load .o files into already-running programs. ‘-findirect-data’
and ‘-ffix-and-continue’ are provided for backwards compatibility.

-all_load
Loads all members of static archive libraries. See man ld(1) for more informa-
tion.

-arch_errors_fatal
Cause the errors having to do with files that have the wrong architecture to be
fatal.

-bind_at_load
Causes the output file to be marked such that the dynamic linker will bind all
undefined references when the file is loaded or launched.

-bundle Produce a Mach-o bundle format file. See man ld(1) for more information.

-bundle_loader executable

This option specifies the executable that will load the build output file being
linked. See man ld(1) for more information.

-dynamiclib
When passed this option, GCC produces a dynamic library instead of an exe-
cutable when linking, using the Darwin ‘libtool’ command.

-force_cpusubtype_ALL
This causes GCC’s output file to have the ALL subtype, instead of one con-
trolled by the ‘-mcpu’ or ‘-march’ option.

-allowable_client client_name

-client_name
-compatibility_version
-current_version
-dead_strip
-dependency-file
-dylib_file
-dylinker_install_name
-dynamic
-exported_symbols_list
-filelist

212 Using the GNU Compiler Collection (GCC)

-flat_namespace
-force_flat_namespace
-headerpad_max_install_names
-image_base
-init
-install_name
-keep_private_externs
-multi_module
-multiply_defined
-multiply_defined_unused
-noall_load
-no_dead_strip_inits_and_terms
-nofixprebinding
-nomultidefs
-noprebind
-noseglinkedit
-pagezero_size
-prebind
-prebind_all_twolevel_modules
-private_bundle
-read_only_relocs
-sectalign
-sectobjectsymbols
-whyload
-seg1addr
-sectcreate
-sectobjectsymbols
-sectorder
-segaddr
-segs_read_only_addr
-segs_read_write_addr
-seg_addr_table
-seg_addr_table_filename
-seglinkedit
-segprot
-segs_read_only_addr
-segs_read_write_addr
-single_module
-static
-sub_library

Chapter 3: GCC Command Options 213

-sub_umbrella
-twolevel_namespace
-umbrella
-undefined
-unexported_symbols_list
-weak_reference_mismatches
-whatsloaded

These options are passed to the Darwin linker. The Darwin linker man page
describes them in detail.

3.17.11 DEC Alpha Options

These ‘-m’ options are defined for the DEC Alpha implementations:

-mno-soft-float
-msoft-float

Use (do not use) the hardware floating-point instructions for floating-point op-
erations. When ‘-msoft-float’ is specified, functions in ‘libgcc.a’ are used
to perform floating-point operations. Unless they are replaced by routines that
emulate the floating-point operations, or compiled in such a way as to call such
emulations routines, these routines issue floating-point operations. If you are
compiling for an Alpha without floating-point operations, you must ensure that
the library is built so as not to call them.

Note that Alpha implementations without floating-point operations are required
to have floating-point registers.

-mfp-reg
-mno-fp-regs

Generate code that uses (does not use) the floating-point register set.
‘-mno-fp-regs’ implies ‘-msoft-float’. If the floating-point register set is
not used, floating-point operands are passed in integer registers as if they were
integers and floating-point results are passed in $0 instead of $f0. This is a
non-standard calling sequence, so any function with a floating-point argument
or return value called by code compiled with ‘-mno-fp-regs’ must also be
compiled with that option.

A typical use of this option is building a kernel that does not use, and hence
need not save and restore, any floating-point registers.

-mieee The Alpha architecture implements floating-point hardware optimized for max-
imum performance. It is mostly compliant with the IEEE floating-point stan-
dard. However, for full compliance, software assistance is required. This option
generates code fully IEEE-compliant code except that the inexact-flag is not
maintained (see below). If this option is turned on, the preprocessor macro
_IEEE_FP is defined during compilation. The resulting code is less efficient but
is able to correctly support denormalized numbers and exceptional IEEE values
such as not-a-number and plus/minus infinity. Other Alpha compilers call this
option ‘-ieee_with_no_inexact’.

214 Using the GNU Compiler Collection (GCC)

-mieee-with-inexact
This is like ‘-mieee’ except the generated code also maintains the IEEE inexact-
flag. Turning on this option causes the generated code to implement fully-
compliant IEEE math. In addition to _IEEE_FP, _IEEE_FP_EXACT is defined as
a preprocessor macro. On some Alpha implementations the resulting code may
execute significantly slower than the code generated by default. Since there is
very little code that depends on the inexact-flag, you should normally not spec-
ify this option. Other Alpha compilers call this option ‘-ieee_with_inexact’.

-mfp-trap-mode=trap-mode
This option controls what floating-point related traps are enabled. Other Alpha
compilers call this option ‘-fptm trap-mode’. The trap mode can be set to one
of four values:

‘n’ This is the default (normal) setting. The only traps that are en-
abled are the ones that cannot be disabled in software (e.g., division
by zero trap).

‘u’ In addition to the traps enabled by ‘n’, underflow traps are enabled
as well.

‘su’ Like ‘u’, but the instructions are marked to be safe for software
completion (see Alpha architecture manual for details).

‘sui’ Like ‘su’, but inexact traps are enabled as well.

-mfp-rounding-mode=rounding-mode
Selects the IEEE rounding mode. Other Alpha compilers call this option ‘-fprm
rounding-mode’. The rounding-mode can be one of:

‘n’ Normal IEEE rounding mode. Floating-point numbers are rounded
towards the nearest machine number or towards the even machine
number in case of a tie.

‘m’ Round towards minus infinity.

‘c’ Chopped rounding mode. Floating-point numbers are rounded to-
wards zero.

‘d’ Dynamic rounding mode. A field in the floating-point control reg-
ister (fpcr, see Alpha architecture reference manual) controls the
rounding mode in effect. The C library initializes this register for
rounding towards plus infinity. Thus, unless your program modifies
the fpcr, ‘d’ corresponds to round towards plus infinity.

-mtrap-precision=trap-precision
In the Alpha architecture, floating-point traps are imprecise. This means with-
out software assistance it is impossible to recover from a floating trap and
program execution normally needs to be terminated. GCC can generate code
that can assist operating system trap handlers in determining the exact loca-
tion that caused a floating-point trap. Depending on the requirements of an
application, different levels of precisions can be selected:

Chapter 3: GCC Command Options 215

‘p’ Program precision. This option is the default and means a trap
handler can only identify which program caused a floating-point
exception.

‘f’ Function precision. The trap handler can determine the function
that caused a floating-point exception.

‘i’ Instruction precision. The trap handler can determine the exact
instruction that caused a floating-point exception.

Other Alpha compilers provide the equivalent options called ‘-scope_safe’ and
‘-resumption_safe’.

-mieee-conformant
This option marks the generated code as IEEE conformant. You must not
use this option unless you also specify ‘-mtrap-precision=i’ and either
‘-mfp-trap-mode=su’ or ‘-mfp-trap-mode=sui’. Its only effect is to emit the
line ‘.eflag 48’ in the function prologue of the generated assembly file.

-mbuild-constants
Normally GCC examines a 32- or 64-bit integer constant to see if it can construct
it from smaller constants in two or three instructions. If it cannot, it outputs
the constant as a literal and generates code to load it from the data segment
at run time.
Use this option to require GCC to construct all integer constants using code,
even if it takes more instructions (the maximum is six).
You typically use this option to build a shared library dynamic loader. Itself a
shared library, it must relocate itself in memory before it can find the variables
and constants in its own data segment.

-mbwx
-mno-bwx
-mcix
-mno-cix
-mfix
-mno-fix
-mmax
-mno-max Indicate whether GCC should generate code to use the optional BWX, CIX, FIX

and MAX instruction sets. The default is to use the instruction sets supported
by the CPU type specified via ‘-mcpu=’ option or that of the CPU on which
GCC was built if none is specified.

-mfloat-vax
-mfloat-ieee

Generate code that uses (does not use) VAX F and G floating-point arithmetic
instead of IEEE single and double precision.

-mexplicit-relocs
-mno-explicit-relocs

Older Alpha assemblers provided no way to generate symbol relocations except
via assembler macros. Use of these macros does not allow optimal instruction

216 Using the GNU Compiler Collection (GCC)

scheduling. GNU binutils as of version 2.12 supports a new syntax that al-
lows the compiler to explicitly mark which relocations should apply to which
instructions. This option is mostly useful for debugging, as GCC detects the
capabilities of the assembler when it is built and sets the default accordingly.

-msmall-data
-mlarge-data

When ‘-mexplicit-relocs’ is in effect, static data is accessed via gp-relative
relocations. When ‘-msmall-data’ is used, objects 8 bytes long or smaller are
placed in a small data area (the .sdata and .sbss sections) and are accessed
via 16-bit relocations off of the $gp register. This limits the size of the small
data area to 64KB, but allows the variables to be directly accessed via a single
instruction.
The default is ‘-mlarge-data’. With this option the data area is limited to just
below 2GB. Programs that require more than 2GB of data must use malloc or
mmap to allocate the data in the heap instead of in the program’s data segment.
When generating code for shared libraries, ‘-fpic’ implies ‘-msmall-data’ and
‘-fPIC’ implies ‘-mlarge-data’.

-msmall-text
-mlarge-text

When ‘-msmall-text’ is used, the compiler assumes that the code of the entire
program (or shared library) fits in 4MB, and is thus reachable with a branch in-
struction. When ‘-msmall-data’ is used, the compiler can assume that all local
symbols share the same $gp value, and thus reduce the number of instructions
required for a function call from 4 to 1.
The default is ‘-mlarge-text’.

-mcpu=cpu_type
Set the instruction set and instruction scheduling parameters for machine type
cpu type. You can specify either the ‘EV’ style name or the corresponding chip
number. GCC supports scheduling parameters for the EV4, EV5 and EV6
family of processors and chooses the default values for the instruction set from
the processor you specify. If you do not specify a processor type, GCC defaults
to the processor on which the compiler was built.
Supported values for cpu type are

‘ev4’
‘ev45’
‘21064’ Schedules as an EV4 and has no instruction set extensions.

‘ev5’
‘21164’ Schedules as an EV5 and has no instruction set extensions.

‘ev56’
‘21164a’ Schedules as an EV5 and supports the BWX extension.

‘pca56’
‘21164pc’
‘21164PC’ Schedules as an EV5 and supports the BWX and MAX extensions.

Chapter 3: GCC Command Options 217

‘ev6’
‘21264’ Schedules as an EV6 and supports the BWX, FIX, and MAX ex-

tensions.

‘ev67’
‘21264a’ Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX

extensions.

Native toolchains also support the value ‘native’, which selects the best ar-
chitecture option for the host processor. ‘-mcpu=native’ has no effect if GCC
does not recognize the processor.

-mtune=cpu_type
Set only the instruction scheduling parameters for machine type cpu type. The
instruction set is not changed.
Native toolchains also support the value ‘native’, which selects the best archi-
tecture option for the host processor. ‘-mtune=native’ has no effect if GCC
does not recognize the processor.

-mmemory-latency=time
Sets the latency the scheduler should assume for typical memory references
as seen by the application. This number is highly dependent on the memory
access patterns used by the application and the size of the external cache on
the machine.
Valid options for time are

‘number’ A decimal number representing clock cycles.

‘L1’
‘L2’
‘L3’
‘main’ The compiler contains estimates of the number of clock cycles for

“typical” EV4 & EV5 hardware for the Level 1, 2 & 3 caches (also
called Dcache, Scache, and Bcache), as well as to main memory.
Note that L3 is only valid for EV5.

3.17.12 FR30 Options

These options are defined specifically for the FR30 port.

-msmall-model
Use the small address space model. This can produce smaller code, but it does
assume that all symbolic values and addresses fit into a 20-bit range.

-mno-lsim
Assume that runtime support has been provided and so there is no need to
include the simulator library (‘libsim.a’) on the linker command line.

3.17.13 FRV Options

-mgpr-32

Only use the first 32 general-purpose registers.

218 Using the GNU Compiler Collection (GCC)

-mgpr-64

Use all 64 general-purpose registers.

-mfpr-32

Use only the first 32 floating-point registers.

-mfpr-64

Use all 64 floating-point registers.

-mhard-float
Use hardware instructions for floating-point operations.

-msoft-float
Use library routines for floating-point operations.

-malloc-cc
Dynamically allocate condition code registers.

-mfixed-cc
Do not try to dynamically allocate condition code registers, only use icc0 and
fcc0.

-mdword

Change ABI to use double word insns.

-mno-dword
Do not use double word instructions.

-mdouble

Use floating-point double instructions.

-mno-double
Do not use floating-point double instructions.

-mmedia

Use media instructions.

-mno-media
Do not use media instructions.

-mmuladd

Use multiply and add/subtract instructions.

-mno-muladd
Do not use multiply and add/subtract instructions.

-mfdpic

Select the FDPIC ABI, which uses function descriptors to represent pointers
to functions. Without any PIC/PIE-related options, it implies ‘-fPIE’. With
‘-fpic’ or ‘-fpie’, it assumes GOT entries and small data are within a 12-bit
range from the GOT base address; with ‘-fPIC’ or ‘-fPIE’, GOT offsets are
computed with 32 bits. With a ‘bfin-elf’ target, this option implies ‘-msim’.

Chapter 3: GCC Command Options 219

-minline-plt
Enable inlining of PLT entries in function calls to functions that are not known
to bind locally. It has no effect without ‘-mfdpic’. It’s enabled by default if
optimizing for speed and compiling for shared libraries (i.e., ‘-fPIC’ or ‘-fpic’),
or when an optimization option such as ‘-O3’ or above is present in the command
line.

-mTLS

Assume a large TLS segment when generating thread-local code.

-mtls

Do not assume a large TLS segment when generating thread-local code.

-mgprel-ro
Enable the use of GPREL relocations in the FDPIC ABI for data that is known to
be in read-only sections. It’s enabled by default, except for ‘-fpic’ or ‘-fpie’:
even though it may help make the global offset table smaller, it trades 1 in-
struction for 4. With ‘-fPIC’ or ‘-fPIE’, it trades 3 instructions for 4, one of
which may be shared by multiple symbols, and it avoids the need for a GOT
entry for the referenced symbol, so it’s more likely to be a win. If it is not,
‘-mno-gprel-ro’ can be used to disable it.

-multilib-library-pic
Link with the (library, not FD) pic libraries. It’s implied by ‘-mlibrary-pic’,
as well as by ‘-fPIC’ and ‘-fpic’ without ‘-mfdpic’. You should never have to
use it explicitly.

-mlinked-fp
Follow the EABI requirement of always creating a frame pointer whenever a
stack frame is allocated. This option is enabled by default and can be disabled
with ‘-mno-linked-fp’.

-mlong-calls
Use indirect addressing to call functions outside the current compilation unit.
This allows the functions to be placed anywhere within the 32-bit address space.

-malign-labels
Try to align labels to an 8-byte boundary by inserting NOPs into the previous
packet. This option only has an effect when VLIW packing is enabled. It
doesn’t create new packets; it merely adds NOPs to existing ones.

-mlibrary-pic
Generate position-independent EABI code.

-macc-4

Use only the first four media accumulator registers.

-macc-8

Use all eight media accumulator registers.

-mpack

Pack VLIW instructions.

220 Using the GNU Compiler Collection (GCC)

-mno-pack
Do not pack VLIW instructions.

-mno-eflags
Do not mark ABI switches in e flags.

-mcond-move
Enable the use of conditional-move instructions (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-cond-move
Disable the use of conditional-move instructions.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mscc

Enable the use of conditional set instructions (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-scc

Disable the use of conditional set instructions.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mcond-exec
Enable the use of conditional execution (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-cond-exec
Disable the use of conditional execution.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mvliw-branch
Run a pass to pack branches into VLIW instructions (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-vliw-branch
Do not run a pass to pack branches into VLIW instructions.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mmulti-cond-exec
Enable optimization of && and || in conditional execution (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

Chapter 3: GCC Command Options 221

-mno-multi-cond-exec
Disable optimization of && and || in conditional execution.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mnested-cond-exec
Enable nested conditional execution optimizations (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-nested-cond-exec
Disable nested conditional execution optimizations.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-moptimize-membar
This switch removes redundant membar instructions from the compiler-
generated code. It is enabled by default.

-mno-optimize-membar
This switch disables the automatic removal of redundant membar instructions
from the generated code.

-mtomcat-stats
Cause gas to print out tomcat statistics.

-mcpu=cpu
Select the processor type for which to generate code. Possible values are ‘frv’,
‘fr550’, ‘tomcat’, ‘fr500’, ‘fr450’, ‘fr405’, ‘fr400’, ‘fr300’ and ‘simple’.

3.17.14 GNU/Linux Options

These ‘-m’ options are defined for GNU/Linux targets:

-mglibc Use the GNU C library. This is the default except on ‘*-*-linux-*uclibc*’
and ‘*-*-linux-*android*’ targets.

-muclibc Use uClibc C library. This is the default on ‘*-*-linux-*uclibc*’ targets.

-mbionic Use Bionic C library. This is the default on ‘*-*-linux-*android*’ targets.

-mandroid
Compile code compatible with Android platform. This is the default on
‘*-*-linux-*android*’ targets.
When compiling, this option enables ‘-mbionic’, ‘-fPIC’, ‘-fno-exceptions’
and ‘-fno-rtti’ by default. When linking, this option makes the GCC driver
pass Android-specific options to the linker. Finally, this option causes the
preprocessor macro __ANDROID__ to be defined.

-tno-android-cc
Disable compilation effects of ‘-mandroid’, i.e., do not enable ‘-mbionic’,
‘-fPIC’, ‘-fno-exceptions’ and ‘-fno-rtti’ by default.

222 Using the GNU Compiler Collection (GCC)

-tno-android-ld
Disable linking effects of ‘-mandroid’, i.e., pass standard Linux linking options
to the linker.

3.17.15 H8/300 Options

These ‘-m’ options are defined for the H8/300 implementations:

-mrelax Shorten some address references at link time, when possible; uses the linker
option ‘-relax’. See Section “ld and the H8/300” in Using ld, for a fuller
description.

-mh Generate code for the H8/300H.

-ms Generate code for the H8S.

-mn Generate code for the H8S and H8/300H in the normal mode. This switch must
be used either with ‘-mh’ or ‘-ms’.

-ms2600 Generate code for the H8S/2600. This switch must be used with ‘-ms’.

-mexr Extended registers are stored on stack before execution of function with monitor
attribute. Default option is ‘-mexr’. This option is valid only for H8S targets.

-mno-exr Extended registers are not stored on stack before execution of function with
monitor attribute. Default option is ‘-mno-exr’. This option is valid only for
H8S targets.

-mint32 Make int data 32 bits by default.

-malign-300
On the H8/300H and H8S, use the same alignment rules as for the H8/300.
The default for the H8/300H and H8S is to align longs and floats on 4-byte
boundaries. ‘-malign-300’ causes them to be aligned on 2-byte boundaries.
This option has no effect on the H8/300.

3.17.16 HPPA Options

These ‘-m’ options are defined for the HPPA family of computers:

-march=architecture-type
Generate code for the specified architecture. The choices for architecture-type
are ‘1.0’ for PA 1.0, ‘1.1’ for PA 1.1, and ‘2.0’ for PA 2.0 processors. Refer
to ‘/usr/lib/sched.models’ on an HP-UX system to determine the proper
architecture option for your machine. Code compiled for lower numbered archi-
tectures runs on higher numbered architectures, but not the other way around.

-mpa-risc-1-0
-mpa-risc-1-1
-mpa-risc-2-0

Synonyms for ‘-march=1.0’, ‘-march=1.1’, and ‘-march=2.0’ respectively.

-mjump-in-delay
Fill delay slots of function calls with unconditional jump instructions by modi-
fying the return pointer for the function call to be the target of the conditional
jump.

Chapter 3: GCC Command Options 223

-mdisable-fpregs
Prevent floating-point registers from being used in any manner. This is neces-
sary for compiling kernels that perform lazy context switching of floating-point
registers. If you use this option and attempt to perform floating-point opera-
tions, the compiler aborts.

-mdisable-indexing
Prevent the compiler from using indexing address modes. This avoids some
rather obscure problems when compiling MIG generated code under MACH.

-mno-space-regs
Generate code that assumes the target has no space registers. This allows GCC
to generate faster indirect calls and use unscaled index address modes.
Such code is suitable for level 0 PA systems and kernels.

-mfast-indirect-calls
Generate code that assumes calls never cross space boundaries. This allows
GCC to emit code that performs faster indirect calls.
This option does not work in the presence of shared libraries or nested functions.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed regis-
ter is one that the register allocator cannot use. This is useful when compiling
kernel code. A register range is specified as two registers separated by a dash.
Multiple register ranges can be specified separated by a comma.

-mlong-load-store
Generate 3-instruction load and store sequences as sometimes required by the
HP-UX 10 linker. This is equivalent to the ‘+k’ option to the HP compilers.

-mportable-runtime
Use the portable calling conventions proposed by HP for ELF systems.

-mgas Enable the use of assembler directives only GAS understands.

-mschedule=cpu-type
Schedule code according to the constraints for the machine type cpu-type. The
choices for cpu-type are ‘700’ ‘7100’, ‘7100LC’, ‘7200’, ‘7300’ and ‘8000’. Refer
to ‘/usr/lib/sched.models’ on an HP-UX system to determine the proper
scheduling option for your machine. The default scheduling is ‘8000’.

-mlinker-opt
Enable the optimization pass in the HP-UX linker. Note this makes symbolic
debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
linkers in which they give bogus error messages when linking some programs.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all HPPA targets. Normally the facilities of
the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation.

224 Using the GNU Compiler Collection (GCC)

‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile ‘libgcc.a’, the library that comes with GCC, with
‘-msoft-float’ in order for this to work.

-msio Generate the predefine, _SIO, for server IO. The default is ‘-mwsio’. This gen-
erates the predefines, __hp9000s700, __hp9000s700__ and _WSIO, for worksta-
tion IO. These options are available under HP-UX and HI-UX.

-mgnu-ld Use options specific to GNU ld. This passes ‘-shared’ to ld when building a
shared library. It is the default when GCC is configured, explicitly or implic-
itly, with the GNU linker. This option does not affect which ld is called; it
only changes what parameters are passed to that ld. The ld that is called is
determined by the ‘--with-ld’ configure option, GCC’s program search path,
and finally by the user’s PATH. The linker used by GCC can be printed us-
ing ‘which ‘gcc -print-prog-name=ld‘’. This option is only available on the
64-bit HP-UX GCC, i.e. configured with ‘hppa*64*-*-hpux*’.

-mhp-ld Use options specific to HP ld. This passes ‘-b’ to ld when building a shared
library and passes ‘+Accept TypeMismatch’ to ld on all links. It is the default
when GCC is configured, explicitly or implicitly, with the HP linker. This op-
tion does not affect which ld is called; it only changes what parameters are
passed to that ld. The ld that is called is determined by the ‘--with-ld’ con-
figure option, GCC’s program search path, and finally by the user’s PATH. The
linker used by GCC can be printed using ‘which ‘gcc -print-prog-name=ld‘’.
This option is only available on the 64-bit HP-UX GCC, i.e. configured with
‘hppa*64*-*-hpux*’.

-mlong-calls
Generate code that uses long call sequences. This ensures that a call is always
able to reach linker generated stubs. The default is to generate long calls
only when the distance from the call site to the beginning of the function or
translation unit, as the case may be, exceeds a predefined limit set by the
branch type being used. The limits for normal calls are 7,600,000 and 240,000
bytes, respectively for the PA 2.0 and PA 1.X architectures. Sibcalls are always
limited at 240,000 bytes.

Distances are measured from the beginning of functions when using
the ‘-ffunction-sections’ option, or when using the ‘-mgas’ and
‘-mno-portable-runtime’ options together under HP-UX with the SOM
linker.

It is normally not desirable to use this option as it degrades performance. How-
ever, it may be useful in large applications, particularly when partial linking is
used to build the application.

The types of long calls used depends on the capabilities of the assembler and
linker, and the type of code being generated. The impact on systems that
support long absolute calls, and long pic symbol-difference or pc-relative calls
should be relatively small. However, an indirect call is used on 32-bit ELF
systems in pic code and it is quite long.

Chapter 3: GCC Command Options 225

-munix=unix-std
Generate compiler predefines and select a startfile for the specified UNIX stan-
dard. The choices for unix-std are ‘93’, ‘95’ and ‘98’. ‘93’ is supported on all
HP-UX versions. ‘95’ is available on HP-UX 10.10 and later. ‘98’ is available
on HP-UX 11.11 and later. The default values are ‘93’ for HP-UX 10.00, ‘95’
for HP-UX 10.10 though to 11.00, and ‘98’ for HP-UX 11.11 and later.
‘-munix=93’ provides the same predefines as GCC 3.3 and 3.4. ‘-munix=95’
provides additional predefines for XOPEN_UNIX and _XOPEN_SOURCE_EXTENDED,
and the startfile ‘unix95.o’. ‘-munix=98’ provides additional predefines for
_XOPEN_UNIX, _XOPEN_SOURCE_EXTENDED, _INCLUDE__STDC_A1_SOURCE and _
INCLUDE_XOPEN_SOURCE_500, and the startfile ‘unix98.o’.
It is important to note that this option changes the interfaces for various library
routines. It also affects the operational behavior of the C library. Thus, extreme
care is needed in using this option.
Library code that is intended to operate with more than one UNIX standard
must test, set and restore the variable xpg4 extended mask as appropriate.
Most GNU software doesn’t provide this capability.

-nolibdld
Suppress the generation of link options to search libdld.sl when the ‘-static’
option is specified on HP-UX 10 and later.

-static The HP-UX implementation of setlocale in libc has a dependency on libdld.sl.
There isn’t an archive version of libdld.sl. Thus, when the ‘-static’ option is
specified, special link options are needed to resolve this dependency.
On HP-UX 10 and later, the GCC driver adds the necessary options to link
with libdld.sl when the ‘-static’ option is specified. This causes the resulting
binary to be dynamic. On the 64-bit port, the linkers generate dynamic binaries
by default in any case. The ‘-nolibdld’ option can be used to prevent the GCC
driver from adding these link options.

-threads Add support for multithreading with the dce thread library under HP-UX. This
option sets flags for both the preprocessor and linker.

3.17.17 Intel 386 and AMD x86-64 Options

These ‘-m’ options are defined for the i386 and x86-64 family of computers:

-march=cpu-type
Generate instructions for the machine type cpu-type. In contrast to
‘-mtune=cpu-type’, which merely tunes the generated code for the specified
cpu-type, ‘-march=cpu-type’ allows GCC to generate code that may
not run at all on processors other than the one indicated. Specifying
‘-march=cpu-type’ implies ‘-mtune=cpu-type’.
The choices for cpu-type are:

‘native’ This selects the CPU to generate code for at compilation time by
determining the processor type of the compiling machine. Using
‘-march=native’ enables all instruction subsets supported by the

226 Using the GNU Compiler Collection (GCC)

local machine (hence the result might not run on different ma-
chines). Using ‘-mtune=native’ produces code optimized for the
local machine under the constraints of the selected instruction set.

‘i386’ Original Intel i386 CPU.

‘i486’ Intel i486 CPU. (No scheduling is implemented for this chip.)

‘i586’
‘pentium’ Intel Pentium CPU with no MMX support.

‘pentium-mmx’
Intel Pentium MMX CPU, based on Pentium core with MMX in-
struction set support.

‘pentiumpro’
Intel Pentium Pro CPU.

‘i686’ When used with ‘-march’, the Pentium Pro instruction set is used,
so the code runs on all i686 family chips. When used with ‘-mtune’,
it has the same meaning as ‘generic’.

‘pentium2’
Intel Pentium II CPU, based on Pentium Pro core with MMX in-
struction set support.

‘pentium3’
‘pentium3m’

Intel Pentium III CPU, based on Pentium Pro core with MMX and
SSE instruction set support.

‘pentium-m’
Intel Pentium M; low-power version of Intel Pentium III CPU with
MMX, SSE and SSE2 instruction set support. Used by Centrino
notebooks.

‘pentium4’
‘pentium4m’

Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set
support.

‘prescott’
Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2
and SSE3 instruction set support.

‘nocona’ Improved version of Intel Pentium 4 CPU with 64-bit extensions,
MMX, SSE, SSE2 and SSE3 instruction set support.

‘core2’ Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3
and SSSE3 instruction set support.

‘nehalem’ Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSE4.2 and POPCNT instruction set sup-
port.

Chapter 3: GCC Command Options 227

‘westmere’
Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AES and PCLMUL in-
struction set support.

‘sandybridge’
Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE,
SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AES and
PCLMUL instruction set support.

‘ivybridge’
Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL,
FSGSBASE, RDRND and F16C instruction set support.

‘haswell’ Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE,
SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2,
AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2 and
F16C instruction set support.

‘broadwell’
Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE,
SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2,
AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C,
RDSEED, ADCX and PREFETCHW instruction set support.

‘bonnell’ Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE,
SSE2, SSE3 and SSSE3 instruction set support.

‘silvermont’
Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE,
SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PCLMUL
and RDRND instruction set support.

‘k6’ AMD K6 CPU with MMX instruction set support.

‘k6-2’
‘k6-3’ Improved versions of AMD K6 CPU with MMX and 3DNow! in-

struction set support.

‘athlon’
‘athlon-tbird’

AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow! and
SSE prefetch instructions support.

‘athlon-4’
‘athlon-xp’
‘athlon-mp’

Improved AMD Athlon CPU with MMX, 3DNow!, enhanced
3DNow! and full SSE instruction set support.

228 Using the GNU Compiler Collection (GCC)

‘k8’
‘opteron’
‘athlon64’
‘athlon-fx’

Processors based on the AMD K8 core with x86-64 instruction set
support, including the AMD Opteron, Athlon 64, and Athlon 64 FX
processors. (This supersets MMX, SSE, SSE2, 3DNow!, enhanced
3DNow! and 64-bit instruction set extensions.)

‘k8-sse3’
‘opteron-sse3’
‘athlon64-sse3’

Improved versions of AMD K8 cores with SSE3 instruction set sup-
port.

‘amdfam10’
‘barcelona’

CPUs based on AMD Family 10h cores with x86-64 instruction
set support. (This supersets MMX, SSE, SSE2, SSE3, SSE4A,
3DNow!, enhanced 3DNow!, ABM and 64-bit instruction set exten-
sions.)

‘bdver1’ CPUs based on AMD Family 15h cores with x86-64 instruction
set support. (This supersets FMA4, AVX, XOP, LWP, AES,
PCL MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)

‘bdver2’ AMD Family 15h core based CPUs with x86-64 instruction set sup-
port. (This supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP,
LWP, AES, PCL MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set exten-
sions.)

‘bdver3’ AMD Family 15h core based CPUs with x86-64 instruction set
support. (This supersets BMI, TBM, F16C, FMA, FMA4, FS-
GSBASE, AVX, XOP, LWP, AES, PCL MUL, CX16, MMX, SSE,
SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit in-
struction set extensions.

‘bdver4’ AMD Family 15h core based CPUs with x86-64 instruction set
support. (This supersets BMI, BMI2, TBM, F16C, FMA, FMA4,
FSGSBASE, AVX, AVX2, XOP, LWP, AES, PCL MUL, CX16,
MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
SSE4.2, ABM and 64-bit instruction set extensions.

‘btver1’ CPUs based on AMD Family 14h cores with x86-64 instruction set
support. (This supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A,
CX16, ABM and 64-bit instruction set extensions.)

‘btver2’ CPUs based on AMD Family 16h cores with x86-64 instruction set
support. This includes MOVBE, F16C, BMI, AVX, PCL MUL,

Chapter 3: GCC Command Options 229

AES, SSE4.2, SSE4.1, CX16, ABM, SSE4A, SSSE3, SSE3, SSE2,
SSE, MMX and 64-bit instruction set extensions.

‘winchip-c6’
IDT WinChip C6 CPU, dealt in same way as i486 with additional
MMX instruction set support.

‘winchip2’
IDT WinChip 2 CPU, dealt in same way as i486 with additional
MMX and 3DNow! instruction set support.

‘c3’ VIA C3 CPU with MMX and 3DNow! instruction set support. (No
scheduling is implemented for this chip.)

‘c3-2’ VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction
set support. (No scheduling is implemented for this chip.)

‘geode’ AMD Geode embedded processor with MMX and 3DNow! instruc-
tion set support.

-mtune=cpu-type
Tune to cpu-type everything applicable about the generated code, except for
the ABI and the set of available instructions. While picking a specific cpu-type
schedules things appropriately for that particular chip, the compiler does not
generate any code that cannot run on the default machine type unless you use
a ‘-march=cpu-type’ option. For example, if GCC is configured for i686-pc-
linux-gnu then ‘-mtune=pentium4’ generates code that is tuned for Pentium 4
but still runs on i686 machines.
The choices for cpu-type are the same as for ‘-march’. In addition, ‘-mtune’
supports 2 extra choices for cpu-type:

‘generic’ Produce code optimized for the most common IA32/AMD64/
EM64T processors. If you know the CPU on which your code will
run, then you should use the corresponding ‘-mtune’ or ‘-march’
option instead of ‘-mtune=generic’. But, if you do not know
exactly what CPU users of your application will have, then you
should use this option.
As new processors are deployed in the marketplace, the behavior of
this option will change. Therefore, if you upgrade to a newer version
of GCC, code generation controlled by this option will change to
reflect the processors that are most common at the time that version
of GCC is released.
There is no ‘-march=generic’ option because ‘-march’ indicates
the instruction set the compiler can use, and there is no generic
instruction set applicable to all processors. In contrast, ‘-mtune’
indicates the processor (or, in this case, collection of processors) for
which the code is optimized.

‘intel’ Produce code optimized for the most current Intel processors, which
are Haswell and Silvermont for this version of GCC. If you know

230 Using the GNU Compiler Collection (GCC)

the CPU on which your code will run, then you should use the cor-
responding ‘-mtune’ or ‘-march’ option instead of ‘-mtune=intel’.
But, if you want your application performs better on both Haswell
and Silvermont, then you should use this option.

As new Intel processors are deployed in the marketplace, the be-
havior of this option will change. Therefore, if you upgrade to a
newer version of GCC, code generation controlled by this option
will change to reflect the most current Intel processors at the time
that version of GCC is released.

There is no ‘-march=intel’ option because ‘-march’ indicates the
instruction set the compiler can use, and there is no common in-
struction set applicable to all processors. In contrast, ‘-mtune’
indicates the processor (or, in this case, collection of processors)
for which the code is optimized.

-mcpu=cpu-type
A deprecated synonym for ‘-mtune’.

-mfpmath=unit
Generate floating-point arithmetic for selected unit unit. The choices for unit
are:

‘387’ Use the standard 387 floating-point coprocessor present on the ma-
jority of chips and emulated otherwise. Code compiled with this
option runs almost everywhere. The temporary results are com-
puted in 80-bit precision instead of the precision specified by the
type, resulting in slightly different results compared to most of other
chips. See ‘-ffloat-store’ for more detailed description.

This is the default choice for i386 compiler.

‘sse’ Use scalar floating-point instructions present in the SSE instruction
set. This instruction set is supported by Pentium III and newer
chips, and in the AMD line by Athlon-4, Athlon XP and Athlon MP
chips. The earlier version of the SSE instruction set supports only
single-precision arithmetic, thus the double and extended-precision
arithmetic are still done using 387. A later version, present only
in Pentium 4 and AMD x86-64 chips, supports double-precision
arithmetic too.

For the i386 compiler, you must use ‘-march=cpu-type’, ‘-msse’ or
‘-msse2’ switches to enable SSE extensions and make this option
effective. For the x86-64 compiler, these extensions are enabled by
default.

The resulting code should be considerably faster in the majority of
cases and avoid the numerical instability problems of 387 code, but
may break some existing code that expects temporaries to be 80
bits.

This is the default choice for the x86-64 compiler.

Chapter 3: GCC Command Options 231

‘sse,387’
‘sse+387’
‘both’ Attempt to utilize both instruction sets at once. This effectively

doubles the amount of available registers, and on chips with sepa-
rate execution units for 387 and SSE the execution resources too.
Use this option with care, as it is still experimental, because the
GCC register allocator does not model separate functional units
well, resulting in unstable performance.

-masm=dialect
Output assembly instructions using selected dialect. Supported choices are
‘intel’ or ‘att’ (the default). Darwin does not support ‘intel’.

-mieee-fp
-mno-ieee-fp

Control whether or not the compiler uses IEEE floating-point comparisons.
These correctly handle the case where the result of a comparison is unordered.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not part of GCC. Normally the facilities
of the machine’s usual C compiler are used, but this can’t be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation.
On machines where a function returns floating-point results in the 80387 register
stack, some floating-point opcodes may be emitted even if ‘-msoft-float’ is
used.

-mno-fp-ret-in-387
Do not use the FPU registers for return values of functions.
The usual calling convention has functions return values of types float and
double in an FPU register, even if there is no FPU. The idea is that the
operating system should emulate an FPU.
The option ‘-mno-fp-ret-in-387’ causes such values to be returned in ordinary
CPU registers instead.

-mno-fancy-math-387
Some 387 emulators do not support the sin, cos and sqrt instructions for the
387. Specify this option to avoid generating those instructions. This option
is the default on FreeBSD, OpenBSD and NetBSD. This option is overridden
when ‘-march’ indicates that the target CPU always has an FPU and so the
instruction does not need emulation. These instructions are not generated
unless you also use the ‘-funsafe-math-optimizations’ switch.

-malign-double
-mno-align-double

Control whether GCC aligns double, long double, and long long variables on
a two-word boundary or a one-word boundary. Aligning double variables on a
two-word boundary produces code that runs somewhat faster on a Pentium at
the expense of more memory.

232 Using the GNU Compiler Collection (GCC)

On x86-64, ‘-malign-double’ is enabled by default.
Warning: if you use the ‘-malign-double’ switch, structures containing the
above types are aligned differently than the published application binary inter-
face specifications for the 386 and are not binary compatible with structures in
code compiled without that switch.

-m96bit-long-double
-m128bit-long-double

These switches control the size of long double type. The i386 application
binary interface specifies the size to be 96 bits, so ‘-m96bit-long-double’ is
the default in 32-bit mode.
Modern architectures (Pentium and newer) prefer long double to be aligned
to an 8- or 16-byte boundary. In arrays or structures conforming to the ABI,
this is not possible. So specifying ‘-m128bit-long-double’ aligns long double
to a 16-byte boundary by padding the long double with an additional 32-bit
zero.
In the x86-64 compiler, ‘-m128bit-long-double’ is the default choice as its
ABI specifies that long double is aligned on 16-byte boundary.
Notice that neither of these options enable any extra precision over the x87
standard of 80 bits for a long double.
Warning: if you override the default value for your target ABI, this changes
the size of structures and arrays containing long double variables, as well as
modifying the function calling convention for functions taking long double.
Hence they are not binary-compatible with code compiled without that switch.

-mlong-double-64
-mlong-double-80
-mlong-double-128

These switches control the size of long double type. A size of 64 bits makes the
long double type equivalent to the double type. This is the default for 32-bit
Bionic C library. A size of 128 bits makes the long double type equivalent to
the __float128 type. This is the default for 64-bit Bionic C library.
Warning: if you override the default value for your target ABI, this changes
the size of structures and arrays containing long double variables, as well as
modifying the function calling convention for functions taking long double.
Hence they are not binary-compatible with code compiled without that switch.

-mlarge-data-threshold=threshold
When ‘-mcmodel=medium’ is specified, data objects larger than threshold are
placed in the large data section. This value must be the same across all objects
linked into the binary, and defaults to 65535.

-mrtd Use a different function-calling convention, in which functions that take a fixed
number of arguments return with the ret num instruction, which pops their
arguments while returning. This saves one instruction in the caller since there
is no need to pop the arguments there.
You can specify that an individual function is called with this calling sequence
with the function attribute ‘stdcall’. You can also override the ‘-mrtd’ option

Chapter 3: GCC Command Options 233

by using the function attribute ‘cdecl’. See Section 6.30 [Function Attributes],
page 372.

Warning: this calling convention is incompatible with the one normally used on
Unix, so you cannot use it if you need to call libraries compiled with the Unix
compiler.

Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf); otherwise incorrect code is generated
for calls to those functions.

In addition, seriously incorrect code results if you call a function with too many
arguments. (Normally, extra arguments are harmlessly ignored.)

-mregparm=num
Control how many registers are used to pass integer arguments. By default, no
registers are used to pass arguments, and at most 3 registers can be used. You
can control this behavior for a specific function by using the function attribute
‘regparm’. See Section 6.30 [Function Attributes], page 372.

Warning: if you use this switch, and num is nonzero, then you must build all
modules with the same value, including any libraries. This includes the system
libraries and startup modules.

-msseregparm
Use SSE register passing conventions for float and double arguments and return
values. You can control this behavior for a specific function by using the func-
tion attribute ‘sseregparm’. See Section 6.30 [Function Attributes], page 372.

Warning: if you use this switch then you must build all modules with the same
value, including any libraries. This includes the system libraries and startup
modules.

-mvect8-ret-in-mem
Return 8-byte vectors in memory instead of MMX registers. This is the default
on Solaris 8 and 9 and VxWorks to match the ABI of the Sun Studio compilers
until version 12. Later compiler versions (starting with Studio 12 Update 1)
follow the ABI used by other x86 targets, which is the default on Solaris 10 and
later. Only use this option if you need to remain compatible with existing code
produced by those previous compiler versions or older versions of GCC.

-mpc32
-mpc64
-mpc80

Set 80387 floating-point precision to 32, 64 or 80 bits. When ‘-mpc32’ is speci-
fied, the significands of results of floating-point operations are rounded to 24 bits
(single precision); ‘-mpc64’ rounds the significands of results of floating-point
operations to 53 bits (double precision) and ‘-mpc80’ rounds the significands
of results of floating-point operations to 64 bits (extended double precision),
which is the default. When this option is used, floating-point operations in
higher precisions are not available to the programmer without setting the FPU
control word explicitly.

234 Using the GNU Compiler Collection (GCC)

Setting the rounding of floating-point operations to less than the default 80 bits
can speed some programs by 2% or more. Note that some mathematical libraries
assume that extended-precision (80-bit) floating-point operations are enabled
by default; routines in such libraries could suffer significant loss of accuracy,
typically through so-called “catastrophic cancellation”, when this option is used
to set the precision to less than extended precision.

-mstackrealign
Realign the stack at entry. On the Intel x86, the ‘-mstackrealign’ option
generates an alternate prologue and epilogue that realigns the run-time stack
if necessary. This supports mixing legacy codes that keep 4-byte stack align-
ment with modern codes that keep 16-byte stack alignment for SSE compatibil-
ity. See also the attribute force_align_arg_pointer, applicable to individual
functions.

-mpreferred-stack-boundary=num
Attempt to keep the stack boundary aligned to a 2 raised to num byte boundary.
If ‘-mpreferred-stack-boundary’ is not specified, the default is 4 (16 bytes or
128 bits).

Warning: When generating code for the x86-64 architecture with SSE exten-
sions disabled, ‘-mpreferred-stack-boundary=3’ can be used to keep the stack
boundary aligned to 8 byte boundary. Since x86-64 ABI require 16 byte stack
alignment, this is ABI incompatible and intended to be used in controlled en-
vironment where stack space is important limitation. This option will lead
to wrong code when functions compiled with 16 byte stack alignment (such as
functions from a standard library) are called with misaligned stack. In this case,
SSE instructions may lead to misaligned memory access traps. In addition, vari-
able arguments will be handled incorrectly for 16 byte aligned objects (including
x87 long double and int128), leading to wrong results. You must build all
modules with ‘-mpreferred-stack-boundary=3’, including any libraries. This
includes the system libraries and startup modules.

-mincoming-stack-boundary=num
Assume the incoming stack is aligned to a 2 raised to num byte boundary.
If ‘-mincoming-stack-boundary’ is not specified, the one specified by
‘-mpreferred-stack-boundary’ is used.

On Pentium and Pentium Pro, double and long double values should be
aligned to an 8-byte boundary (see ‘-malign-double’) or suffer significant run
time performance penalties. On Pentium III, the Streaming SIMD Extension
(SSE) data type __m128 may not work properly if it is not 16-byte aligned.

To ensure proper alignment of this values on the stack, the stack boundary
must be as aligned as that required by any value stored on the stack. Further,
every function must be generated such that it keeps the stack aligned. Thus
calling a function compiled with a higher preferred stack boundary from a
function compiled with a lower preferred stack boundary most likely misaligns
the stack. It is recommended that libraries that use callbacks always use the
default setting.

Chapter 3: GCC Command Options 235

This extra alignment does consume extra stack space, and generally increases
code size. Code that is sensitive to stack space usage, such as embedded systems
and operating system kernels, may want to reduce the preferred alignment to
‘-mpreferred-stack-boundary=2’.

-mmmx
-mno-mmx
-msse
-mno-sse
-msse2
-mno-sse2
-msse3
-mno-sse3
-mssse3
-mno-ssse3
-msse4.1
-mno-sse4.1
-msse4.2
-mno-sse4.2
-msse4
-mno-sse4
-mavx
-mno-avx
-mavx2
-mno-avx2
-mavx512f
-mno-avx512f
-mavx512pf
-mno-avx512pf
-mavx512er
-mno-avx512er
-mavx512cd
-mno-avx512cd
-msha
-mno-sha
-maes
-mno-aes
-mpclmul
-mno-pclmul

236 Using the GNU Compiler Collection (GCC)

-mfsgsbase
-mno-fsgsbase
-mrdrnd
-mno-rdrnd
-mf16c
-mno-f16c
-mfma
-mno-fma
-mprefetchwt1
-mno-prefetchwt1
-msse4a
-mno-sse4a
-mfma4
-mno-fma4
-mxop
-mno-xop
-mlwp
-mno-lwp
-m3dnow
-mno-3dnow
-mpopcnt
-mno-popcnt
-mabm
-mno-abm
-mbmi
-mbmi2
-mno-bmi
-mno-bmi2
-mlzcnt
-mno-lzcnt
-mfxsr
-mxsave
-mxsaveopt
-mrtm
-mtbm
-mno-tbm These switches enable or disable the use of instructions in the MMX,

SSE, SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF,
AVX512ER, AVX512CD, SHA, AES, PCLMUL, FSGSBASE, RDRND,
F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM, BMI, BMI2, FXSR, XSAVE,
XSAVEOPT, LZCNT, RTM, or 3DNow! extended instruction sets. These
extensions are also available as built-in functions: see Section 6.57.11 [X86
Built-in Functions], page 600, for details of the functions enabled and disabled
by these switches.

To generate SSE/SSE2 instructions automatically from floating-point code (as
opposed to 387 instructions), see ‘-mfpmath=sse’.

Chapter 3: GCC Command Options 237

GCC depresses SSEx instructions when ‘-mavx’ is used. Instead, it gener-
ates new AVX instructions or AVX equivalence for all SSEx instructions when
needed.
These options enable GCC to use these extended instructions in generated
code, even without ‘-mfpmath=sse’. Applications that perform run-time CPU
detection must compile separate files for each supported architecture, using the
appropriate flags. In particular, the file containing the CPU detection code
should be compiled without these options.

-mdump-tune-features
This option instructs GCC to dump the names of the x86 performance
tuning features and default settings. The names can be used in
‘-mtune-ctrl=feature-list’.

-mtune-ctrl=feature-list
This option is used to do fine grain control of x86 code generation
features. feature-list is a comma separated list of feature names. See also
‘-mdump-tune-features’. When specified, the feature will be turned on if it is
not preceded with ^, otherwise, it will be turned off. ‘-mtune-ctrl=feature-
list’ is intended to be used by GCC developers. Using it may lead to code
paths not covered by testing and can potentially result in compiler ICEs or
runtime errors.

-mno-default
This option instructs GCC to turn off all tunable features. See also
‘-mtune-ctrl=feature-list’ and ‘-mdump-tune-features’.

-mcld This option instructs GCC to emit a cld instruction in the prologue of functions
that use string instructions. String instructions depend on the DF flag to select
between autoincrement or autodecrement mode. While the ABI specifies the
DF flag to be cleared on function entry, some operating systems violate this
specification by not clearing the DF flag in their exception dispatchers. The
exception handler can be invoked with the DF flag set, which leads to wrong
direction mode when string instructions are used. This option can be enabled
by default on 32-bit x86 targets by configuring GCC with the ‘--enable-cld’
configure option. Generation of cld instructions can be suppressed with the
‘-mno-cld’ compiler option in this case.

-mvzeroupper
This option instructs GCC to emit a vzeroupper instruction before a transfer of
control flow out of the function to minimize the AVX to SSE transition penalty
as well as remove unnecessary zeroupper intrinsics.

-mprefer-avx128
This option instructs GCC to use 128-bit AVX instructions instead of 256-bit
AVX instructions in the auto-vectorizer.

-mcx16 This option enables GCC to generate CMPXCHG16B instructions. CMPXCHG16B
allows for atomic operations on 128-bit double quadword (or oword) data types.
This is useful for high-resolution counters that can be updated by multiple
processors (or cores). This instruction is generated as part of atomic built-in

238 Using the GNU Compiler Collection (GCC)

functions: see Section 6.51 [sync Builtins], page 474 or Section 6.52 [atomic
Builtins], page 475 for details.

-msahf This option enables generation of SAHF instructions in 64-bit code. Early Intel
Pentium 4 CPUs with Intel 64 support, prior to the introduction of Pentium 4
G1 step in December 2005, lacked the LAHF and SAHF instructions which were
supported by AMD64. These are load and store instructions, respectively, for
certain status flags. In 64-bit mode, the SAHF instruction is used to optimize
fmod, drem, and remainder built-in functions; see Section 6.56 [Other Builtins],
page 482 for details.

-mmovbe This option enables use of the movbe instruction to implement __builtin_
bswap32 and __builtin_bswap64.

-mcrc32 This option enables built-in functions __builtin_ia32_crc32qi, __builtin_
ia32_crc32hi, __builtin_ia32_crc32si and __builtin_ia32_crc32di to
generate the crc32 machine instruction.

-mrecip This option enables use of RCPSS and RSQRTSS instructions (and their
vectorized variants RCPPS and RSQRTPS) with an additional Newton-Raphson
step to increase precision instead of DIVSS and SQRTSS (and their vectorized
variants) for single-precision floating-point arguments. These instructions are
generated only when ‘-funsafe-math-optimizations’ is enabled together
with ‘-finite-math-only’ and ‘-fno-trapping-math’. Note that while the
throughput of the sequence is higher than the throughput of the non-reciprocal
instruction, the precision of the sequence can be decreased by up to 2 ulp (i.e.
the inverse of 1.0 equals 0.99999994).
Note that GCC implements 1.0f/sqrtf(x) in terms of RSQRTSS (or RSQRTPS)
already with ‘-ffast-math’ (or the above option combination), and doesn’t
need ‘-mrecip’.
Also note that GCC emits the above sequence with additional Newton-Raphson
step for vectorized single-float division and vectorized sqrtf(x) already with
‘-ffast-math’ (or the above option combination), and doesn’t need ‘-mrecip’.

-mrecip=opt
This option controls which reciprocal estimate instructions may be used. opt
is a comma-separated list of options, which may be preceded by a ‘!’ to invert
the option:

‘all’ Enable all estimate instructions.

‘default’ Enable the default instructions, equivalent to ‘-mrecip’.

‘none’ Disable all estimate instructions, equivalent to ‘-mno-recip’.

‘div’ Enable the approximation for scalar division.

‘vec-div’ Enable the approximation for vectorized division.

‘sqrt’ Enable the approximation for scalar square root.

‘vec-sqrt’
Enable the approximation for vectorized square root.

Chapter 3: GCC Command Options 239

So, for example, ‘-mrecip=all,!sqrt’ enables all of the reciprocal approxima-
tions, except for square root.

-mveclibabi=type
Specifies the ABI type to use for vectorizing intrinsics using an external li-
brary. Supported values for type are ‘svml’ for the Intel short vector math
library and ‘acml’ for the AMD math core library. To use this option, both
‘-ftree-vectorize’ and ‘-funsafe-math-optimizations’ have to be enabled,
and an SVML or ACML ABI-compatible library must be specified at link time.
GCC currently emits calls to vmldExp2, vmldLn2, vmldLog102, vmldLog102,
vmldPow2, vmldTanh2, vmldTan2, vmldAtan2, vmldAtanh2, vmldCbrt2,
vmldSinh2, vmldSin2, vmldAsinh2, vmldAsin2, vmldCosh2, vmldCos2,
vmldAcosh2, vmldAcos2, vmlsExp4, vmlsLn4, vmlsLog104, vmlsLog104,
vmlsPow4, vmlsTanh4, vmlsTan4, vmlsAtan4, vmlsAtanh4, vmlsCbrt4,
vmlsSinh4, vmlsSin4, vmlsAsinh4, vmlsAsin4, vmlsCosh4, vmlsCos4,
vmlsAcosh4 and vmlsAcos4 for corresponding function type when
‘-mveclibabi=svml’ is used, and __vrd2_sin, __vrd2_cos, __vrd2_exp,
__vrd2_log, __vrd2_log2, __vrd2_log10, __vrs4_sinf, __vrs4_cosf,
__vrs4_expf, __vrs4_logf, __vrs4_log2f, __vrs4_log10f and __vrs4_powf
for the corresponding function type when ‘-mveclibabi=acml’ is used.

-mabi=name
Generate code for the specified calling convention. Permissible values are ‘sysv’
for the ABI used on GNU/Linux and other systems, and ‘ms’ for the Microsoft
ABI. The default is to use the Microsoft ABI when targeting Microsoft Windows
and the SysV ABI on all other systems. You can control this behavior for
a specific function by using the function attribute ‘ms_abi’/‘sysv_abi’. See
Section 6.30 [Function Attributes], page 372.

-mtls-dialect=type
Generate code to access thread-local storage using the ‘gnu’ or ‘gnu2’ conven-
tions. ‘gnu’ is the conservative default; ‘gnu2’ is more efficient, but it may add
compile- and run-time requirements that cannot be satisfied on all systems.

-mpush-args
-mno-push-args

Use PUSH operations to store outgoing parameters. This method is shorter
and usually equally fast as method using SUB/MOV operations and is enabled
by default. In some cases disabling it may improve performance because of
improved scheduling and reduced dependencies.

-maccumulate-outgoing-args
If enabled, the maximum amount of space required for outgoing arguments
is computed in the function prologue. This is faster on most modern CPUs
because of reduced dependencies, improved scheduling and reduced stack usage
when the preferred stack boundary is not equal to 2. The drawback is a notable
increase in code size. This switch implies ‘-mno-push-args’.

-mthreads
Support thread-safe exception handling on MinGW. Programs that rely
on thread-safe exception handling must compile and link all code with the

240 Using the GNU Compiler Collection (GCC)

‘-mthreads’ option. When compiling, ‘-mthreads’ defines -D_MT; when
linking, it links in a special thread helper library ‘-lmingwthrd’ which cleans
up per-thread exception-handling data.

-mno-align-stringops
Do not align the destination of inlined string operations. This switch reduces
code size and improves performance in case the destination is already aligned,
but GCC doesn’t know about it.

-minline-all-stringops
By default GCC inlines string operations only when the destination is known to
be aligned to least a 4-byte boundary. This enables more inlining and increases
code size, but may improve performance of code that depends on fast memcpy,
strlen, and memset for short lengths.

-minline-stringops-dynamically
For string operations of unknown size, use run-time checks with inline code for
small blocks and a library call for large blocks.

-mstringop-strategy=alg
Override the internal decision heuristic for the particular algorithm to use for
inlining string operations. The allowed values for alg are:

‘rep_byte’
‘rep_4byte’
‘rep_8byte’

Expand using i386 rep prefix of the specified size.

‘byte_loop’
‘loop’
‘unrolled_loop’

Expand into an inline loop.

‘libcall’ Always use a library call.

-mmemcpy-strategy=strategy
Override the internal decision heuristic to decide if __builtin_memcpy
should be inlined and what inline algorithm to use when the expected
size of the copy operation is known. strategy is a comma-separated list of
alg :max size:dest align triplets. alg is specified in ‘-mstringop-strategy’,
max size specifies the max byte size with which inline algorithm alg is allowed.
For the last triplet, the max size must be -1. The max size of the triplets in
the list must be specified in increasing order. The minimal byte size for alg is
0 for the first triplet and max_size + 1 of the preceding range.

-mmemset-strategy=strategy
The option is similar to ‘-mmemcpy-strategy=’ except that it is to control __
builtin_memset expansion.

-momit-leaf-frame-pointer
Don’t keep the frame pointer in a register for leaf functions. This avoids the in-
structions to save, set up, and restore frame pointers and makes an extra register

Chapter 3: GCC Command Options 241

available in leaf functions. The option ‘-fomit-leaf-frame-pointer’ removes
the frame pointer for leaf functions, which might make debugging harder.

-mtls-direct-seg-refs
-mno-tls-direct-seg-refs

Controls whether TLS variables may be accessed with offsets from the TLS
segment register (%gs for 32-bit, %fs for 64-bit), or whether the thread base
pointer must be added. Whether or not this is valid depends on the operating
system, and whether it maps the segment to cover the entire TLS area.
For systems that use the GNU C Library, the default is on.

-msse2avx
-mno-sse2avx

Specify that the assembler should encode SSE instructions with VEX prefix.
The option ‘-mavx’ turns this on by default.

-mfentry
-mno-fentry

If profiling is active (‘-pg’), put the profiling counter call before the prologue.
Note: On x86 architectures the attribute ms_hook_prologue isn’t possible at
the moment for ‘-mfentry’ and ‘-pg’.

-m8bit-idiv
-mno-8bit-idiv

On some processors, like Intel Atom, 8-bit unsigned integer divide is much faster
than 32-bit/64-bit integer divide. This option generates a run-time check. If
both dividend and divisor are within range of 0 to 255, 8-bit unsigned integer
divide is used instead of 32-bit/64-bit integer divide.

-mavx256-split-unaligned-load
-mavx256-split-unaligned-store

Split 32-byte AVX unaligned load and store.

-mstack-protector-guard=guard
Generate stack protection code using canary at guard. Supported locations
are ‘global’ for global canary or ‘tls’ for per-thread canary in the TLS block
(the default). This option has effect only when ‘-fstack-protector’ or
‘-fstack-protector-all’ is specified.

These ‘-m’ switches are supported in addition to the above on x86-64 processors in 64-bit
environments.

-m32
-m64
-mx32
-m16 Generate code for a 16-bit, 32-bit or 64-bit environment. The ‘-m32’ option

sets int, long, and pointer types to 32 bits, and generates code that runs on
any i386 system.
The ‘-m64’ option sets int to 32 bits and long and pointer types to 64 bits, and
generates code for the x86-64 architecture. For Darwin only the ‘-m64’ option
also turns off the ‘-fno-pic’ and ‘-mdynamic-no-pic’ options.

242 Using the GNU Compiler Collection (GCC)

The ‘-mx32’ option sets int, long, and pointer types to 32 bits, and generates
code for the x86-64 architecture.
The ‘-m16’ option is the same as ‘-m32’, except for that it outputs the
.code16gcc assembly directive at the beginning of the assembly output so
that the binary can run in 16-bit mode.

-mno-red-zone
Do not use a so-called “red zone” for x86-64 code. The red zone is mandated by
the x86-64 ABI; it is a 128-byte area beyond the location of the stack pointer
that is not modified by signal or interrupt handlers and therefore can be used for
temporary data without adjusting the stack pointer. The flag ‘-mno-red-zone’
disables this red zone.

-mcmodel=small
Generate code for the small code model: the program and its symbols must be
linked in the lower 2 GB of the address space. Pointers are 64 bits. Programs
can be statically or dynamically linked. This is the default code model.

-mcmodel=kernel
Generate code for the kernel code model. The kernel runs in the negative 2 GB
of the address space. This model has to be used for Linux kernel code.

-mcmodel=medium
Generate code for the medium model: the program is linked in the lower 2 GB
of the address space. Small symbols are also placed there. Symbols with sizes
larger than ‘-mlarge-data-threshold’ are put into large data or BSS sections
and can be located above 2GB. Programs can be statically or dynamically
linked.

-mcmodel=large
Generate code for the large model. This model makes no assumptions about
addresses and sizes of sections.

-maddress-mode=long
Generate code for long address mode. This is only supported for 64-bit and
x32 environments. It is the default address mode for 64-bit environments.

-maddress-mode=short
Generate code for short address mode. This is only supported for 32-bit and x32
environments. It is the default address mode for 32-bit and x32 environments.

3.17.18 i386 and x86-64 Windows Options

These additional options are available for Microsoft Windows targets:

-mconsole
This option specifies that a console application is to be generated, by instructing
the linker to set the PE header subsystem type required for console applications.
This option is available for Cygwin and MinGW targets and is enabled by
default on those targets.

-mdll This option is available for Cygwin and MinGW targets. It specifies that a
DLL—a dynamic link library—is to be generated, enabling the selection of the
required runtime startup object and entry point.

Chapter 3: GCC Command Options 243

-mnop-fun-dllimport
This option is available for Cygwin and MinGW targets. It specifies that the
dllimport attribute should be ignored.

-mthread This option is available for MinGW targets. It specifies that MinGW-specific
thread support is to be used.

-municode
This option is available for MinGW-w64 targets. It causes the UNICODE prepro-
cessor macro to be predefined, and chooses Unicode-capable runtime startup
code.

-mwin32 This option is available for Cygwin and MinGW targets. It specifies that the
typical Microsoft Windows predefined macros are to be set in the pre-processor,
but does not influence the choice of runtime library/startup code.

-mwindows
This option is available for Cygwin and MinGW targets. It specifies that a GUI
application is to be generated by instructing the linker to set the PE header
subsystem type appropriately.

-fno-set-stack-executable
This option is available for MinGW targets. It specifies that the executable flag
for the stack used by nested functions isn’t set. This is necessary for binaries
running in kernel mode of Microsoft Windows, as there the User32 API, which
is used to set executable privileges, isn’t available.

-fwritable-relocated-rdata
This option is available for MinGW and Cygwin targets. It specifies that
relocated-data in read-only section is put into .data section. This is a nec-
essary for older runtimes not supporting modification of .rdata sections for
pseudo-relocation.

-mpe-aligned-commons
This option is available for Cygwin and MinGW targets. It specifies that the
GNU extension to the PE file format that permits the correct alignment of
COMMON variables should be used when generating code. It is enabled by
default if GCC detects that the target assembler found during configuration
supports the feature.

See also under Section 3.17.17 [i386 and x86-64 Options], page 225 for standard options.

3.17.19 IA-64 Options

These are the ‘-m’ options defined for the Intel IA-64 architecture.

-mbig-endian
Generate code for a big-endian target. This is the default for HP-UX.

-mlittle-endian
Generate code for a little-endian target. This is the default for AIX5 and
GNU/Linux.

244 Using the GNU Compiler Collection (GCC)

-mgnu-as
-mno-gnu-as

Generate (or don’t) code for the GNU assembler. This is the default.

-mgnu-ld
-mno-gnu-ld

Generate (or don’t) code for the GNU linker. This is the default.

-mno-pic Generate code that does not use a global pointer register. The result is not
position independent code, and violates the IA-64 ABI.

-mvolatile-asm-stop
-mno-volatile-asm-stop

Generate (or don’t) a stop bit immediately before and after volatile asm state-
ments.

-mregister-names
-mno-register-names

Generate (or don’t) ‘in’, ‘loc’, and ‘out’ register names for the stacked registers.
This may make assembler output more readable.

-mno-sdata
-msdata Disable (or enable) optimizations that use the small data section. This may be

useful for working around optimizer bugs.

-mconstant-gp
Generate code that uses a single constant global pointer value. This is useful
when compiling kernel code.

-mauto-pic
Generate code that is self-relocatable. This implies ‘-mconstant-gp’. This is
useful when compiling firmware code.

-minline-float-divide-min-latency
Generate code for inline divides of floating-point values using the minimum
latency algorithm.

-minline-float-divide-max-throughput
Generate code for inline divides of floating-point values using the maximum
throughput algorithm.

-mno-inline-float-divide
Do not generate inline code for divides of floating-point values.

-minline-int-divide-min-latency
Generate code for inline divides of integer values using the minimum latency
algorithm.

-minline-int-divide-max-throughput
Generate code for inline divides of integer values using the maximum through-
put algorithm.

-mno-inline-int-divide
Do not generate inline code for divides of integer values.

Chapter 3: GCC Command Options 245

-minline-sqrt-min-latency
Generate code for inline square roots using the minimum latency algorithm.

-minline-sqrt-max-throughput
Generate code for inline square roots using the maximum throughput algorithm.

-mno-inline-sqrt
Do not generate inline code for sqrt.

-mfused-madd
-mno-fused-madd

Do (don’t) generate code that uses the fused multiply/add or multiply/subtract
instructions. The default is to use these instructions.

-mno-dwarf2-asm
-mdwarf2-asm

Don’t (or do) generate assembler code for the DWARF 2 line number debugging
info. This may be useful when not using the GNU assembler.

-mearly-stop-bits
-mno-early-stop-bits

Allow stop bits to be placed earlier than immediately preceding the instruction
that triggered the stop bit. This can improve instruction scheduling, but does
not always do so.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed regis-
ter is one that the register allocator cannot use. This is useful when compiling
kernel code. A register range is specified as two registers separated by a dash.
Multiple register ranges can be specified separated by a comma.

-mtls-size=tls-size
Specify bit size of immediate TLS offsets. Valid values are 14, 22, and 64.

-mtune=cpu-type
Tune the instruction scheduling for a particular CPU, Valid values are
‘itanium’, ‘itanium1’, ‘merced’, ‘itanium2’, and ‘mckinley’.

-milp32
-mlp64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets

int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and
long and pointer to 64 bits. These are HP-UX specific flags.

-mno-sched-br-data-spec
-msched-br-data-spec

(Dis/En)able data speculative scheduling before reload. This results in gen-
eration of ld.a instructions and the corresponding check instructions (ld.c /
chk.a). The default is ’disable’.

-msched-ar-data-spec
-mno-sched-ar-data-spec

(En/Dis)able data speculative scheduling after reload. This results in gener-
ation of ld.a instructions and the corresponding check instructions (ld.c /
chk.a). The default is ’enable’.

246 Using the GNU Compiler Collection (GCC)

-mno-sched-control-spec
-msched-control-spec

(Dis/En)able control speculative scheduling. This feature is available only dur-
ing region scheduling (i.e. before reload). This results in generation of the ld.s
instructions and the corresponding check instructions chk.s. The default is
’disable’.

-msched-br-in-data-spec
-mno-sched-br-in-data-spec

(En/Dis)able speculative scheduling of the instructions that are dependent
on the data speculative loads before reload. This is effective only with
‘-msched-br-data-spec’ enabled. The default is ’enable’.

-msched-ar-in-data-spec
-mno-sched-ar-in-data-spec

(En/Dis)able speculative scheduling of the instructions that are dependent
on the data speculative loads after reload. This is effective only with
‘-msched-ar-data-spec’ enabled. The default is ’enable’.

-msched-in-control-spec
-mno-sched-in-control-spec

(En/Dis)able speculative scheduling of the instructions that are de-
pendent on the control speculative loads. This is effective only with
‘-msched-control-spec’ enabled. The default is ’enable’.

-mno-sched-prefer-non-data-spec-insns
-msched-prefer-non-data-spec-insns

If enabled, data-speculative instructions are chosen for schedule only if there
are no other choices at the moment. This makes the use of the data speculation
much more conservative. The default is ’disable’.

-mno-sched-prefer-non-control-spec-insns
-msched-prefer-non-control-spec-insns

If enabled, control-speculative instructions are chosen for schedule only if there
are no other choices at the moment. This makes the use of the control specu-
lation much more conservative. The default is ’disable’.

-mno-sched-count-spec-in-critical-path
-msched-count-spec-in-critical-path

If enabled, speculative dependencies are considered during computation of the
instructions priorities. This makes the use of the speculation a bit more con-
servative. The default is ’disable’.

-msched-spec-ldc
Use a simple data speculation check. This option is on by default.

-msched-control-spec-ldc
Use a simple check for control speculation. This option is on by default.

-msched-stop-bits-after-every-cycle
Place a stop bit after every cycle when scheduling. This option is on by default.

Chapter 3: GCC Command Options 247

-msched-fp-mem-deps-zero-cost
Assume that floating-point stores and loads are not likely to cause a conflict
when placed into the same instruction group. This option is disabled by default.

-msel-sched-dont-check-control-spec
Generate checks for control speculation in selective scheduling. This flag is
disabled by default.

-msched-max-memory-insns=max-insns
Limit on the number of memory insns per instruction group, giving lower prior-
ity to subsequent memory insns attempting to schedule in the same instruction
group. Frequently useful to prevent cache bank conflicts. The default value is
1.

-msched-max-memory-insns-hard-limit
Makes the limit specified by ‘msched-max-memory-insns’ a hard limit, disal-
lowing more than that number in an instruction group. Otherwise, the limit
is “soft”, meaning that non-memory operations are preferred when the limit is
reached, but memory operations may still be scheduled.

3.17.20 LM32 Options

These ‘-m’ options are defined for the LatticeMico32 architecture:

-mbarrel-shift-enabled
Enable barrel-shift instructions.

-mdivide-enabled
Enable divide and modulus instructions.

-mmultiply-enabled
Enable multiply instructions.

-msign-extend-enabled
Enable sign extend instructions.

-muser-enabled
Enable user-defined instructions.

3.17.21 M32C Options

-mcpu=name
Select the CPU for which code is generated. name may be one of ‘r8c’ for
the R8C/Tiny series, ‘m16c’ for the M16C (up to /60) series, ‘m32cm’ for the
M16C/80 series, or ‘m32c’ for the M32C/80 series.

-msim Specifies that the program will be run on the simulator. This causes an alternate
runtime library to be linked in which supports, for example, file I/O. You must
not use this option when generating programs that will run on real hardware;
you must provide your own runtime library for whatever I/O functions are
needed.

-memregs=number
Specifies the number of memory-based pseudo-registers GCC uses during code
generation. These pseudo-registers are used like real registers, so there is a

248 Using the GNU Compiler Collection (GCC)

tradeoff between GCC’s ability to fit the code into available registers, and the
performance penalty of using memory instead of registers. Note that all modules
in a program must be compiled with the same value for this option. Because
of that, you must not use this option with GCC’s default runtime libraries.

3.17.22 M32R/D Options

These ‘-m’ options are defined for Renesas M32R/D architectures:

-m32r2 Generate code for the M32R/2.

-m32rx Generate code for the M32R/X.

-m32r Generate code for the M32R. This is the default.

-mmodel=small
Assume all objects live in the lower 16MB of memory (so that their addresses
can be loaded with the ld24 instruction), and assume all subroutines are reach-
able with the bl instruction. This is the default.
The addressability of a particular object can be set with the model attribute.

-mmodel=medium
Assume objects may be anywhere in the 32-bit address space (the compiler
generates seth/add3 instructions to load their addresses), and assume all sub-
routines are reachable with the bl instruction.

-mmodel=large
Assume objects may be anywhere in the 32-bit address space (the compiler gen-
erates seth/add3 instructions to load their addresses), and assume subroutines
may not be reachable with the bl instruction (the compiler generates the much
slower seth/add3/jl instruction sequence).

-msdata=none
Disable use of the small data area. Variables are put into one of ‘.data’,
‘.bss’, or ‘.rodata’ (unless the section attribute has been specified). This is
the default.
The small data area consists of sections ‘.sdata’ and ‘.sbss’. Objects may be
explicitly put in the small data area with the section attribute using one of
these sections.

-msdata=sdata
Put small global and static data in the small data area, but do not generate
special code to reference them.

-msdata=use
Put small global and static data in the small data area, and generate special
instructions to reference them.

-G num Put global and static objects less than or equal to num bytes into the small
data or BSS sections instead of the normal data or BSS sections. The default
value of num is 8. The ‘-msdata’ option must be set to one of ‘sdata’ or ‘use’
for this option to have any effect.

Chapter 3: GCC Command Options 249

All modules should be compiled with the same ‘-G num’ value. Compiling with
different values of num may or may not work; if it doesn’t the linker gives an
error message—incorrect code is not generated.

-mdebug Makes the M32R-specific code in the compiler display some statistics that might
help in debugging programs.

-malign-loops
Align all loops to a 32-byte boundary.

-mno-align-loops
Do not enforce a 32-byte alignment for loops. This is the default.

-missue-rate=number
Issue number instructions per cycle. number can only be 1 or 2.

-mbranch-cost=number
number can only be 1 or 2. If it is 1 then branches are preferred over conditional
code, if it is 2, then the opposite applies.

-mflush-trap=number
Specifies the trap number to use to flush the cache. The default is 12. Valid
numbers are between 0 and 15 inclusive.

-mno-flush-trap
Specifies that the cache cannot be flushed by using a trap.

-mflush-func=name
Specifies the name of the operating system function to call to flush the cache.
The default is flush cache, but a function call is only used if a trap is not
available.

-mno-flush-func
Indicates that there is no OS function for flushing the cache.

3.17.23 M680x0 Options

These are the ‘-m’ options defined for M680x0 and ColdFire processors. The default settings
depend on which architecture was selected when the compiler was configured; the defaults
for the most common choices are given below.

-march=arch
Generate code for a specific M680x0 or ColdFire instruction set architecture.
Permissible values of arch for M680x0 architectures are: ‘68000’, ‘68010’,
‘68020’, ‘68030’, ‘68040’, ‘68060’ and ‘cpu32’. ColdFire architectures are
selected according to Freescale’s ISA classification and the permissible values
are: ‘isaa’, ‘isaaplus’, ‘isab’ and ‘isac’.
GCC defines a macro ‘__mcfarch__’ whenever it is generating code for a Cold-
Fire target. The arch in this macro is one of the ‘-march’ arguments given
above.
When used together, ‘-march’ and ‘-mtune’ select code that runs on a family
of similar processors but that is optimized for a particular microarchitecture.

250 Using the GNU Compiler Collection (GCC)

-mcpu=cpu
Generate code for a specific M680x0 or ColdFire processor. The M680x0 cpus
are: ‘68000’, ‘68010’, ‘68020’, ‘68030’, ‘68040’, ‘68060’, ‘68302’, ‘68332’ and
‘cpu32’. The ColdFire cpus are given by the table below, which also classifies
the CPUs into families:

Family ‘-mcpu’ arguments
‘51’ ‘51’ ‘51ac’ ‘51ag’ ‘51cn’ ‘51em’ ‘51je’ ‘51jf’ ‘51jg’ ‘51jm’ ‘51mm’ ‘51qe’

‘51qm’
‘5206’ ‘5202’ ‘5204’ ‘5206’
‘5206e’ ‘5206e’
‘5208’ ‘5207’ ‘5208’
‘5211a’ ‘5210a’ ‘5211a’
‘5213’ ‘5211’ ‘5212’ ‘5213’
‘5216’ ‘5214’ ‘5216’
‘52235’ ‘52230’ ‘52231’ ‘52232’ ‘52233’ ‘52234’ ‘52235’
‘5225’ ‘5224’ ‘5225’
‘52259’ ‘52252’ ‘52254’ ‘52255’ ‘52256’ ‘52258’ ‘52259’
‘5235’ ‘5232’ ‘5233’ ‘5234’ ‘5235’ ‘523x’
‘5249’ ‘5249’
‘5250’ ‘5250’
‘5271’ ‘5270’ ‘5271’
‘5272’ ‘5272’
‘5275’ ‘5274’ ‘5275’
‘5282’ ‘5280’ ‘5281’ ‘5282’ ‘528x’
‘53017’ ‘53011’ ‘53012’ ‘53013’ ‘53014’ ‘53015’ ‘53016’ ‘53017’
‘5307’ ‘5307’
‘5329’ ‘5327’ ‘5328’ ‘5329’ ‘532x’
‘5373’ ‘5372’ ‘5373’ ‘537x’
‘5407’ ‘5407’
‘5475’ ‘5470’ ‘5471’ ‘5472’ ‘5473’ ‘5474’ ‘5475’ ‘547x’ ‘5480’ ‘5481’ ‘5482’

‘5483’ ‘5484’ ‘5485’

‘-mcpu=cpu’ overrides ‘-march=arch’ if arch is compatible with cpu. Other
combinations of ‘-mcpu’ and ‘-march’ are rejected.

GCC defines the macro ‘__mcf_cpu_cpu’ when ColdFire target cpu is selected.
It also defines ‘__mcf_family_family’, where the value of family is given by
the table above.

-mtune=tune
Tune the code for a particular microarchitecture within the constraints set by
‘-march’ and ‘-mcpu’. The M680x0 microarchitectures are: ‘68000’, ‘68010’,
‘68020’, ‘68030’, ‘68040’, ‘68060’ and ‘cpu32’. The ColdFire microarchitectures
are: ‘cfv1’, ‘cfv2’, ‘cfv3’, ‘cfv4’ and ‘cfv4e’.

You can also use ‘-mtune=68020-40’ for code that needs to run relatively well
on 68020, 68030 and 68040 targets. ‘-mtune=68020-60’ is similar but includes
68060 targets as well. These two options select the same tuning decisions as
‘-m68020-40’ and ‘-m68020-60’ respectively.

Chapter 3: GCC Command Options 251

GCC defines the macros ‘__mcarch’ and ‘__mcarch__’ when tuning for 680x0
architecture arch. It also defines ‘mcarch’ unless either ‘-ansi’ or a non-GNU
‘-std’ option is used. If GCC is tuning for a range of architectures, as selected
by ‘-mtune=68020-40’ or ‘-mtune=68020-60’, it defines the macros for every
architecture in the range.
GCC also defines the macro ‘__muarch__’ when tuning for ColdFire microar-
chitecture uarch, where uarch is one of the arguments given above.

-m68000
-mc68000 Generate output for a 68000. This is the default when the compiler is configured

for 68000-based systems. It is equivalent to ‘-march=68000’.
Use this option for microcontrollers with a 68000 or EC000 core, including the
68008, 68302, 68306, 68307, 68322, 68328 and 68356.

-m68010 Generate output for a 68010. This is the default when the compiler is configured
for 68010-based systems. It is equivalent to ‘-march=68010’.

-m68020
-mc68020 Generate output for a 68020. This is the default when the compiler is configured

for 68020-based systems. It is equivalent to ‘-march=68020’.

-m68030 Generate output for a 68030. This is the default when the compiler is configured
for 68030-based systems. It is equivalent to ‘-march=68030’.

-m68040 Generate output for a 68040. This is the default when the compiler is configured
for 68040-based systems. It is equivalent to ‘-march=68040’.
This option inhibits the use of 68881/68882 instructions that have to be em-
ulated by software on the 68040. Use this option if your 68040 does not have
code to emulate those instructions.

-m68060 Generate output for a 68060. This is the default when the compiler is configured
for 68060-based systems. It is equivalent to ‘-march=68060’.
This option inhibits the use of 68020 and 68881/68882 instructions that have
to be emulated by software on the 68060. Use this option if your 68060 does
not have code to emulate those instructions.

-mcpu32 Generate output for a CPU32. This is the default when the compiler is config-
ured for CPU32-based systems. It is equivalent to ‘-march=cpu32’.
Use this option for microcontrollers with a CPU32 or CPU32+ core, including
the 68330, 68331, 68332, 68333, 68334, 68336, 68340, 68341, 68349 and 68360.

-m5200 Generate output for a 520X ColdFire CPU. This is the default when the com-
piler is configured for 520X-based systems. It is equivalent to ‘-mcpu=5206’,
and is now deprecated in favor of that option.
Use this option for microcontroller with a 5200 core, including the MCF5202,
MCF5203, MCF5204 and MCF5206.

-m5206e Generate output for a 5206e ColdFire CPU. The option is now deprecated in
favor of the equivalent ‘-mcpu=5206e’.

-m528x Generate output for a member of the ColdFire 528X family. The option is now
deprecated in favor of the equivalent ‘-mcpu=528x’.

252 Using the GNU Compiler Collection (GCC)

-m5307 Generate output for a ColdFire 5307 CPU. The option is now deprecated in
favor of the equivalent ‘-mcpu=5307’.

-m5407 Generate output for a ColdFire 5407 CPU. The option is now deprecated in
favor of the equivalent ‘-mcpu=5407’.

-mcfv4e Generate output for a ColdFire V4e family CPU (e.g. 547x/548x). This in-
cludes use of hardware floating-point instructions. The option is equivalent to
‘-mcpu=547x’, and is now deprecated in favor of that option.

-m68020-40
Generate output for a 68040, without using any of the new instructions. This
results in code that can run relatively efficiently on either a 68020/68881 or a
68030 or a 68040. The generated code does use the 68881 instructions that are
emulated on the 68040.
The option is equivalent to ‘-march=68020’ ‘-mtune=68020-40’.

-m68020-60
Generate output for a 68060, without using any of the new instructions. This
results in code that can run relatively efficiently on either a 68020/68881 or a
68030 or a 68040. The generated code does use the 68881 instructions that are
emulated on the 68060.
The option is equivalent to ‘-march=68020’ ‘-mtune=68020-60’.

-mhard-float
-m68881 Generate floating-point instructions. This is the default for 68020 and

above, and for ColdFire devices that have an FPU. It defines the macro
‘__HAVE_68881__’ on M680x0 targets and ‘__mcffpu__’ on ColdFire targets.

-msoft-float
Do not generate floating-point instructions; use library calls instead. This is the
default for 68000, 68010, and 68832 targets. It is also the default for ColdFire
devices that have no FPU.

-mdiv
-mno-div Generate (do not generate) ColdFire hardware divide and remainder instruc-

tions. If ‘-march’ is used without ‘-mcpu’, the default is “on” for ColdFire ar-
chitectures and “off” for M680x0 architectures. Otherwise, the default is taken
from the target CPU (either the default CPU, or the one specified by ‘-mcpu’).
For example, the default is “off” for ‘-mcpu=5206’ and “on” for ‘-mcpu=5206e’.
GCC defines the macro ‘__mcfhwdiv__’ when this option is enabled.

-mshort Consider type int to be 16 bits wide, like short int. Additionally, parameters
passed on the stack are also aligned to a 16-bit boundary even on targets whose
API mandates promotion to 32-bit.

-mno-short
Do not consider type int to be 16 bits wide. This is the default.

-mnobitfield
-mno-bitfield

Do not use the bit-field instructions. The ‘-m68000’, ‘-mcpu32’ and ‘-m5200’
options imply ‘-mnobitfield’.

Chapter 3: GCC Command Options 253

-mbitfield
Do use the bit-field instructions. The ‘-m68020’ option implies ‘-mbitfield’.
This is the default if you use a configuration designed for a 68020.

-mrtd Use a different function-calling convention, in which functions that take a fixed
number of arguments return with the rtd instruction, which pops their argu-
ments while returning. This saves one instruction in the caller since there is no
need to pop the arguments there.
This calling convention is incompatible with the one normally used on Unix, so
you cannot use it if you need to call libraries compiled with the Unix compiler.
Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf); otherwise incorrect code is generated
for calls to those functions.
In addition, seriously incorrect code results if you call a function with too many
arguments. (Normally, extra arguments are harmlessly ignored.)
The rtd instruction is supported by the 68010, 68020, 68030, 68040, 68060 and
CPU32 processors, but not by the 68000 or 5200.

-mno-rtd Do not use the calling conventions selected by ‘-mrtd’. This is the default.

-malign-int
-mno-align-int

Control whether GCC aligns int, long, long long, float, double, and long
double variables on a 32-bit boundary (‘-malign-int’) or a 16-bit boundary
(‘-mno-align-int’). Aligning variables on 32-bit boundaries produces code
that runs somewhat faster on processors with 32-bit busses at the expense of
more memory.
Warning: if you use the ‘-malign-int’ switch, GCC aligns structures contain-
ing the above types differently than most published application binary interface
specifications for the m68k.

-mpcrel Use the pc-relative addressing mode of the 68000 directly, instead of using a
global offset table. At present, this option implies ‘-fpic’, allowing at most a
16-bit offset for pc-relative addressing. ‘-fPIC’ is not presently supported with
‘-mpcrel’, though this could be supported for 68020 and higher processors.

-mno-strict-align
-mstrict-align

Do not (do) assume that unaligned memory references are handled by the sys-
tem.

-msep-data
Generate code that allows the data segment to be located in a different area of
memory from the text segment. This allows for execute-in-place in an environ-
ment without virtual memory management. This option implies ‘-fPIC’.

-mno-sep-data
Generate code that assumes that the data segment follows the text segment.
This is the default.

254 Using the GNU Compiler Collection (GCC)

-mid-shared-library
Generate code that supports shared libraries via the library ID method. This
allows for execute-in-place and shared libraries in an environment without vir-
tual memory management. This option implies ‘-fPIC’.

-mno-id-shared-library
Generate code that doesn’t assume ID-based shared libraries are being used.
This is the default.

-mshared-library-id=n
Specifies the identification number of the ID-based shared library being com-
piled. Specifying a value of 0 generates more compact code; specifying other
values forces the allocation of that number to the current library, but is no more
space- or time-efficient than omitting this option.

-mxgot
-mno-xgot

When generating position-independent code for ColdFire, generate code that
works if the GOT has more than 8192 entries. This code is larger and slower
than code generated without this option. On M680x0 processors, this option is
not needed; ‘-fPIC’ suffices.
GCC normally uses a single instruction to load values from the GOT. While
this is relatively efficient, it only works if the GOT is smaller than about 64k.
Anything larger causes the linker to report an error such as:

relocation truncated to fit: R_68K_GOT16O foobar

If this happens, you should recompile your code with ‘-mxgot’. It should then
work with very large GOTs. However, code generated with ‘-mxgot’ is less
efficient, since it takes 4 instructions to fetch the value of a global symbol.
Note that some linkers, including newer versions of the GNU linker, can create
multiple GOTs and sort GOT entries. If you have such a linker, you should
only need to use ‘-mxgot’ when compiling a single object file that accesses more
than 8192 GOT entries. Very few do.
These options have no effect unless GCC is generating position-independent
code.

3.17.24 MCore Options

These are the ‘-m’ options defined for the Motorola M*Core processors.

-mhardlit
-mno-hardlit

Inline constants into the code stream if it can be done in two instructions or
less.

-mdiv
-mno-div Use the divide instruction. (Enabled by default).

-mrelax-immediate
-mno-relax-immediate

Allow arbitrary-sized immediates in bit operations.

Chapter 3: GCC Command Options 255

-mwide-bitfields
-mno-wide-bitfields

Always treat bit-fields as int-sized.

-m4byte-functions
-mno-4byte-functions

Force all functions to be aligned to a 4-byte boundary.

-mcallgraph-data
-mno-callgraph-data

Emit callgraph information.

-mslow-bytes
-mno-slow-bytes

Prefer word access when reading byte quantities.

-mlittle-endian
-mbig-endian

Generate code for a little-endian target.

-m210
-m340 Generate code for the 210 processor.

-mno-lsim
Assume that runtime support has been provided and so omit the simulator
library (‘libsim.a)’ from the linker command line.

-mstack-increment=size
Set the maximum amount for a single stack increment operation. Large values
can increase the speed of programs that contain functions that need a large
amount of stack space, but they can also trigger a segmentation fault if the
stack is extended too much. The default value is 0x1000.

3.17.25 MeP Options

-mabsdiff
Enables the abs instruction, which is the absolute difference between two reg-
isters.

-mall-opts
Enables all the optional instructions—average, multiply, divide, bit operations,
leading zero, absolute difference, min/max, clip, and saturation.

-maverage
Enables the ave instruction, which computes the average of two registers.

-mbased=n
Variables of size n bytes or smaller are placed in the .based section by default.
Based variables use the $tp register as a base register, and there is a 128-byte
limit to the .based section.

-mbitops Enables the bit operation instructions—bit test (btstm), set (bsetm), clear
(bclrm), invert (bnotm), and test-and-set (tas).

256 Using the GNU Compiler Collection (GCC)

-mc=name Selects which section constant data is placed in. name may be tiny, near, or
far.

-mclip Enables the clip instruction. Note that -mclip is not useful unless you also
provide -mminmax.

-mconfig=name
Selects one of the built-in core configurations. Each MeP chip has one or more
modules in it; each module has a core CPU and a variety of coprocessors,
optional instructions, and peripherals. The MeP-Integrator tool, not part of
GCC, provides these configurations through this option; using this option is
the same as using all the corresponding command-line options. The default
configuration is default.

-mcop Enables the coprocessor instructions. By default, this is a 32-bit coprocessor.
Note that the coprocessor is normally enabled via the -mconfig= option.

-mcop32 Enables the 32-bit coprocessor’s instructions.

-mcop64 Enables the 64-bit coprocessor’s instructions.

-mivc2 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.

-mdc Causes constant variables to be placed in the .near section.

-mdiv Enables the div and divu instructions.

-meb Generate big-endian code.

-mel Generate little-endian code.

-mio-volatile
Tells the compiler that any variable marked with the io attribute is to be
considered volatile.

-ml Causes variables to be assigned to the .far section by default.

-mleadz Enables the leadz (leading zero) instruction.

-mm Causes variables to be assigned to the .near section by default.

-mminmax Enables the min and max instructions.

-mmult Enables the multiplication and multiply-accumulate instructions.

-mno-opts
Disables all the optional instructions enabled by -mall-opts.

-mrepeat Enables the repeat and erepeat instructions, used for low-overhead looping.

-ms Causes all variables to default to the .tiny section. Note that there is a 65536-
byte limit to this section. Accesses to these variables use the %gp base register.

-msatur Enables the saturation instructions. Note that the compiler does not currently
generate these itself, but this option is included for compatibility with other
tools, like as.

-msdram Link the SDRAM-based runtime instead of the default ROM-based runtime.

Chapter 3: GCC Command Options 257

-msim Link the simulator run-time libraries.

-msimnovec
Link the simulator runtime libraries, excluding built-in support for reset and
exception vectors and tables.

-mtf Causes all functions to default to the .far section. Without this option, func-
tions default to the .near section.

-mtiny=n Variables that are n bytes or smaller are allocated to the .tiny section. These
variables use the $gp base register. The default for this option is 4, but note
that there’s a 65536-byte limit to the .tiny section.

3.17.26 MicroBlaze Options

-msoft-float
Use software emulation for floating point (default).

-mhard-float
Use hardware floating-point instructions.

-mmemcpy Do not optimize block moves, use memcpy.

-mno-clearbss
This option is deprecated. Use ‘-fno-zero-initialized-in-bss’ instead.

-mcpu=cpu-type
Use features of, and schedule code for, the given CPU. Supported values are in
the format ‘vX.YY.Z’, where X is a major version, YY is the minor version, and
Z is compatibility code. Example values are ‘v3.00.a’, ‘v4.00.b’, ‘v5.00.a’,
‘v5.00.b’, ‘v5.00.b’, ‘v6.00.a’.

-mxl-soft-mul
Use software multiply emulation (default).

-mxl-soft-div
Use software emulation for divides (default).

-mxl-barrel-shift
Use the hardware barrel shifter.

-mxl-pattern-compare
Use pattern compare instructions.

-msmall-divides
Use table lookup optimization for small signed integer divisions.

-mxl-stack-check
This option is deprecated. Use ‘-fstack-check’ instead.

-mxl-gp-opt
Use GP-relative .sdata/.sbss sections.

-mxl-multiply-high
Use multiply high instructions for high part of 32x32 multiply.

258 Using the GNU Compiler Collection (GCC)

-mxl-float-convert
Use hardware floating-point conversion instructions.

-mxl-float-sqrt
Use hardware floating-point square root instruction.

-mbig-endian
Generate code for a big-endian target.

-mlittle-endian
Generate code for a little-endian target.

-mxl-reorder
Use reorder instructions (swap and byte reversed load/store).

-mxl-mode-app-model
Select application model app-model. Valid models are

‘executable’
normal executable (default), uses startup code ‘crt0.o’.

‘xmdstub’ for use with Xilinx Microprocessor Debugger (XMD) based soft-
ware intrusive debug agent called xmdstub. This uses startup file
‘crt1.o’ and sets the start address of the program to 0x800.

‘bootstrap’
for applications that are loaded using a bootloader. This model uses
startup file ‘crt2.o’ which does not contain a processor reset vector
handler. This is suitable for transferring control on a processor reset
to the bootloader rather than the application.

‘novectors’
for applications that do not require any of the MicroBlaze vectors.
This option may be useful for applications running within a moni-
toring application. This model uses ‘crt3.o’ as a startup file.

Option ‘-xl-mode-app-model’ is a deprecated alias for ‘-mxl-mode-app-
model’.

3.17.27 MIPS Options

-EB Generate big-endian code.

-EL Generate little-endian code. This is the default for ‘mips*el-*-*’ configura-
tions.

-march=arch
Generate code that runs on arch, which can be the name of a generic MIPS
ISA, or the name of a particular processor. The ISA names are: ‘mips1’,
‘mips2’, ‘mips3’, ‘mips4’, ‘mips32’, ‘mips32r2’, ‘mips64’ and ‘mips64r2’.
The processor names are: ‘4kc’, ‘4km’, ‘4kp’, ‘4ksc’, ‘4kec’, ‘4kem’, ‘4kep’,
‘4ksd’, ‘5kc’, ‘5kf’, ‘20kc’, ‘24kc’, ‘24kf2_1’, ‘24kf1_1’, ‘24kec’, ‘24kef2_1’,
‘24kef1_1’, ‘34kc’, ‘34kf2_1’, ‘34kf1_1’, ‘34kn’, ‘74kc’, ‘74kf2_1’, ‘74kf1_1’,
‘74kf3_2’, ‘1004kc’, ‘1004kf2_1’, ‘1004kf1_1’, ‘loongson2e’, ‘loongson2f’,

Chapter 3: GCC Command Options 259

‘loongson3a’, ‘m4k’, ‘m14k’, ‘m14kc’, ‘m14ke’, ‘m14kec’, ‘octeon’, ‘octeon+’,
‘octeon2’, ‘orion’, ‘r2000’, ‘r3000’, ‘r3900’, ‘r4000’, ‘r4400’, ‘r4600’,
‘r4650’, ‘r4700’, ‘r6000’, ‘r8000’, ‘rm7000’, ‘rm9000’, ‘r10000’, ‘r12000’,
‘r14000’, ‘r16000’, ‘sb1’, ‘sr71000’, ‘vr4100’, ‘vr4111’, ‘vr4120’, ‘vr4130’,
‘vr4300’, ‘vr5000’, ‘vr5400’, ‘vr5500’, ‘xlr’ and ‘xlp’. The special value
‘from-abi’ selects the most compatible architecture for the selected ABI (that
is, ‘mips1’ for 32-bit ABIs and ‘mips3’ for 64-bit ABIs).
The native Linux/GNU toolchain also supports the value ‘native’, which selects
the best architecture option for the host processor. ‘-march=native’ has no
effect if GCC does not recognize the processor.
In processor names, a final ‘000’ can be abbreviated as ‘k’ (for example,
‘-march=r2k’). Prefixes are optional, and ‘vr’ may be written ‘r’.
Names of the form ‘nf2_1’ refer to processors with FPUs clocked at half the rate
of the core, names of the form ‘nf1_1’ refer to processors with FPUs clocked at
the same rate as the core, and names of the form ‘nf3_2’ refer to processors with
FPUs clocked a ratio of 3:2 with respect to the core. For compatibility reasons,
‘nf’ is accepted as a synonym for ‘nf2_1’ while ‘nx’ and ‘bfx’ are accepted as
synonyms for ‘nf1_1’.
GCC defines two macros based on the value of this option. The first is
‘_MIPS_ARCH’, which gives the name of target architecture, as a string. The
second has the form ‘_MIPS_ARCH_foo’, where foo is the capitalized value of
‘_MIPS_ARCH’. For example, ‘-march=r2000’ sets ‘_MIPS_ARCH’ to ‘"r2000"’
and defines the macro ‘_MIPS_ARCH_R2000’.
Note that the ‘_MIPS_ARCH’ macro uses the processor names given above. In
other words, it has the full prefix and does not abbreviate ‘000’ as ‘k’. In the case
of ‘from-abi’, the macro names the resolved architecture (either ‘"mips1"’ or
‘"mips3"’). It names the default architecture when no ‘-march’ option is given.

-mtune=arch
Optimize for arch. Among other things, this option controls the way instruc-
tions are scheduled, and the perceived cost of arithmetic operations. The list
of arch values is the same as for ‘-march’.
When this option is not used, GCC optimizes for the processor specified by
‘-march’. By using ‘-march’ and ‘-mtune’ together, it is possible to generate
code that runs on a family of processors, but optimize the code for one particular
member of that family.
‘-mtune’ defines the macros ‘_MIPS_TUNE’ and ‘_MIPS_TUNE_foo’, which work
in the same way as the ‘-march’ ones described above.

-mips1 Equivalent to ‘-march=mips1’.

-mips2 Equivalent to ‘-march=mips2’.

-mips3 Equivalent to ‘-march=mips3’.

-mips4 Equivalent to ‘-march=mips4’.

-mips32 Equivalent to ‘-march=mips32’.

260 Using the GNU Compiler Collection (GCC)

-mips32r2
Equivalent to ‘-march=mips32r2’.

-mips64 Equivalent to ‘-march=mips64’.

-mips64r2
Equivalent to ‘-march=mips64r2’.

-mips16
-mno-mips16

Generate (do not generate) MIPS16 code. If GCC is targeting a MIPS32 or
MIPS64 architecture, it makes use of the MIPS16e ASE.
MIPS16 code generation can also be controlled on a per-function basis by means
of mips16 and nomips16 attributes. See Section 6.30 [Function Attributes],
page 372, for more information.

-mflip-mips16
Generate MIPS16 code on alternating functions. This option is provided for
regression testing of mixed MIPS16/non-MIPS16 code generation, and is not
intended for ordinary use in compiling user code.

-minterlink-compressed
-mno-interlink-compressed

Require (do not require) that code using the standard (uncompressed) MIPS
ISA be link-compatible with MIPS16 and microMIPS code, and vice versa.
For example, code using the standard ISA encoding cannot jump directly to
MIPS16 or microMIPS code; it must either use a call or an indirect jump.
‘-minterlink-compressed’ therefore disables direct jumps unless GCC knows
that the target of the jump is not compressed.

-minterlink-mips16
-mno-interlink-mips16

Aliases of ‘-minterlink-compressed’ and ‘-mno-interlink-compressed’.
These options predate the microMIPS ASE and are retained for backwards
compatibility.

-mabi=32
-mabi=o64
-mabi=n32
-mabi=64
-mabi=eabi

Generate code for the given ABI.
Note that the EABI has a 32-bit and a 64-bit variant. GCC normally generates
64-bit code when you select a 64-bit architecture, but you can use ‘-mgp32’ to
get 32-bit code instead.
For information about the O64 ABI, see http://gcc.gnu.org/projects/
mipso64-abi.html.
GCC supports a variant of the o32 ABI in which floating-point registers are
64 rather than 32 bits wide. You can select this combination with ‘-mabi=32’

http://gcc.gnu.org/projects/mipso64-abi.html
http://gcc.gnu.org/projects/mipso64-abi.html

Chapter 3: GCC Command Options 261

‘-mfp64’. This ABI relies on the mthc1 and mfhc1 instructions and is therefore
only supported for MIPS32R2 processors.
The register assignments for arguments and return values remain the same, but
each scalar value is passed in a single 64-bit register rather than a pair of 32-bit
registers. For example, scalar floating-point values are returned in ‘$f0’ only,
not a ‘$f0’/‘$f1’ pair. The set of call-saved registers also remains the same,
but all 64 bits are saved.

-mabicalls
-mno-abicalls

Generate (do not generate) code that is suitable for SVR4-style dynamic ob-
jects. ‘-mabicalls’ is the default for SVR4-based systems.

-mshared
-mno-shared

Generate (do not generate) code that is fully position-independent, and that can
therefore be linked into shared libraries. This option only affects ‘-mabicalls’.
All ‘-mabicalls’ code has traditionally been position-independent, regardless of
options like ‘-fPIC’ and ‘-fpic’. However, as an extension, the GNU toolchain
allows executables to use absolute accesses for locally-binding symbols. It can
also use shorter GP initialization sequences and generate direct calls to locally-
defined functions. This mode is selected by ‘-mno-shared’.
‘-mno-shared’ depends on binutils 2.16 or higher and generates objects that
can only be linked by the GNU linker. However, the option does not affect the
ABI of the final executable; it only affects the ABI of relocatable objects. Using
‘-mno-shared’ generally makes executables both smaller and quicker.
‘-mshared’ is the default.

-mplt
-mno-plt Assume (do not assume) that the static and dynamic linkers support PLTs and

copy relocations. This option only affects ‘-mno-shared -mabicalls’. For the
n64 ABI, this option has no effect without ‘-msym32’.
You can make ‘-mplt’ the default by configuring GCC with ‘--with-mips-plt’.
The default is ‘-mno-plt’ otherwise.

-mxgot
-mno-xgot

Lift (do not lift) the usual restrictions on the size of the global offset table.
GCC normally uses a single instruction to load values from the GOT. While
this is relatively efficient, it only works if the GOT is smaller than about 64k.
Anything larger causes the linker to report an error such as:

relocation truncated to fit: R_MIPS_GOT16 foobar

If this happens, you should recompile your code with ‘-mxgot’. This works with
very large GOTs, although the code is also less efficient, since it takes three
instructions to fetch the value of a global symbol.
Note that some linkers can create multiple GOTs. If you have such a linker,
you should only need to use ‘-mxgot’ when a single object file accesses more
than 64k’s worth of GOT entries. Very few do.

262 Using the GNU Compiler Collection (GCC)

These options have no effect unless GCC is generating position independent
code.

-mgp32 Assume that general-purpose registers are 32 bits wide.

-mgp64 Assume that general-purpose registers are 64 bits wide.

-mfp32 Assume that floating-point registers are 32 bits wide.

-mfp64 Assume that floating-point registers are 64 bits wide.

-mhard-float
Use floating-point coprocessor instructions.

-msoft-float
Do not use floating-point coprocessor instructions. Implement floating-point
calculations using library calls instead.

-mno-float
Equivalent to ‘-msoft-float’, but additionally asserts that the program be-
ing compiled does not perform any floating-point operations. This option is
presently supported only by some bare-metal MIPS configurations, where it
may select a special set of libraries that lack all floating-point support (includ-
ing, for example, the floating-point printf formats). If code compiled with
-mno-float accidentally contains floating-point operations, it is likely to suffer
a link-time or run-time failure.

-msingle-float
Assume that the floating-point coprocessor only supports single-precision oper-
ations.

-mdouble-float
Assume that the floating-point coprocessor supports double-precision opera-
tions. This is the default.

-mabs=2008
-mabs=legacy

These options control the treatment of the special not-a-number (NaN) IEEE
754 floating-point data with the abs.fmt and neg.fmt machine instructions.
By default or when the ‘-mabs=legacy’ is used the legacy treatment is selected.
In this case these instructions are considered arithmetic and avoided where
correct operation is required and the input operand might be a NaN. A longer
sequence of instructions that manipulate the sign bit of floating-point datum
manually is used instead unless the ‘-ffinite-math-only’ option has also been
specified.
The ‘-mabs=2008’ option selects the IEEE 754-2008 treatment. In this case
these instructions are considered non-arithmetic and therefore operating cor-
rectly in all cases, including in particular where the input operand is a NaN.
These instructions are therefore always used for the respective operations.

-mnan=2008
-mnan=legacy

These options control the encoding of the special not-a-number (NaN) IEEE
754 floating-point data.

Chapter 3: GCC Command Options 263

The ‘-mnan=legacy’ option selects the legacy encoding. In this case quiet NaNs
(qNaNs) are denoted by the first bit of their trailing significand field being 0,
whereas signalling NaNs (sNaNs) are denoted by the first bit of their trailing
significand field being 1.

The ‘-mnan=2008’ option selects the IEEE 754-2008 encoding. In this case
qNaNs are denoted by the first bit of their trailing significand field being 1,
whereas sNaNs are denoted by the first bit of their trailing significand field
being 0.

The default is ‘-mnan=legacy’ unless GCC has been configured with
‘--with-nan=2008’.

-mllsc
-mno-llsc

Use (do not use) ‘ll’, ‘sc’, and ‘sync’ instructions to implement atomic memory
built-in functions. When neither option is specified, GCC uses the instructions
if the target architecture supports them.

‘-mllsc’ is useful if the runtime environment can emulate the instructions and
‘-mno-llsc’ can be useful when compiling for nonstandard ISAs. You can
make either option the default by configuring GCC with ‘--with-llsc’ and
‘--without-llsc’ respectively. ‘--with-llsc’ is the default for some configu-
rations; see the installation documentation for details.

-mdsp
-mno-dsp Use (do not use) revision 1 of the MIPS DSP ASE. See Section 6.57.13 [MIPS

DSP Built-in Functions], page 623. This option defines the preprocessor macro
‘__mips_dsp’. It also defines ‘__mips_dsp_rev’ to 1.

-mdspr2
-mno-dspr2

Use (do not use) revision 2 of the MIPS DSP ASE. See Section 6.57.13 [MIPS
DSP Built-in Functions], page 623. This option defines the preprocessor macros
‘__mips_dsp’ and ‘__mips_dspr2’. It also defines ‘__mips_dsp_rev’ to 2.

-msmartmips
-mno-smartmips

Use (do not use) the MIPS SmartMIPS ASE.

-mpaired-single
-mno-paired-single

Use (do not use) paired-single floating-point instructions. See Section 6.57.14
[MIPS Paired-Single Support], page 628. This option requires hardware
floating-point support to be enabled.

-mdmx
-mno-mdmx

Use (do not use) MIPS Digital Media Extension instructions. This option can
only be used when generating 64-bit code and requires hardware floating-point
support to be enabled.

264 Using the GNU Compiler Collection (GCC)

-mips3d
-mno-mips3d

Use (do not use) the MIPS-3D ASE. See Section 6.57.15.3 [MIPS-3D Built-in
Functions], page 632. The option ‘-mips3d’ implies ‘-mpaired-single’.

-mmicromips
-mno-micromips

Generate (do not generate) microMIPS code.
MicroMIPS code generation can also be controlled on a per-function basis by
means of micromips and nomicromips attributes. See Section 6.30 [Function
Attributes], page 372, for more information.

-mmt
-mno-mt Use (do not use) MT Multithreading instructions.

-mmcu
-mno-mcu Use (do not use) the MIPS MCU ASE instructions.

-meva
-mno-eva Use (do not use) the MIPS Enhanced Virtual Addressing instructions.

-mvirt
-mno-virt

Use (do not use) the MIPS Virtualization Application Specific instructions.

-mlong64 Force long types to be 64 bits wide. See ‘-mlong32’ for an explanation of the
default and the way that the pointer size is determined.

-mlong32 Force long, int, and pointer types to be 32 bits wide.
The default size of ints, longs and pointers depends on the ABI. All the
supported ABIs use 32-bit ints. The n64 ABI uses 64-bit longs, as does the
64-bit EABI; the others use 32-bit longs. Pointers are the same size as longs,
or the same size as integer registers, whichever is smaller.

-msym32
-mno-sym32

Assume (do not assume) that all symbols have 32-bit values, regardless of
the selected ABI. This option is useful in combination with ‘-mabi=64’ and
‘-mno-abicalls’ because it allows GCC to generate shorter and faster refer-
ences to symbolic addresses.

-G num Put definitions of externally-visible data in a small data section if that data is
no bigger than num bytes. GCC can then generate more efficient accesses to
the data; see ‘-mgpopt’ for details.
The default ‘-G’ option depends on the configuration.

-mlocal-sdata
-mno-local-sdata

Extend (do not extend) the ‘-G’ behavior to local data too, such as to static
variables in C. ‘-mlocal-sdata’ is the default for all configurations.
If the linker complains that an application is using too much small data,
you might want to try rebuilding the less performance-critical parts with

Chapter 3: GCC Command Options 265

‘-mno-local-sdata’. You might also want to build large libraries with
‘-mno-local-sdata’, so that the libraries leave more room for the main
program.

-mextern-sdata
-mno-extern-sdata

Assume (do not assume) that externally-defined data is in a small data section
if the size of that data is within the ‘-G’ limit. ‘-mextern-sdata’ is the default
for all configurations.
If you compile a module Mod with ‘-mextern-sdata’ ‘-G num’ ‘-mgpopt’, and
Mod references a variable Var that is no bigger than num bytes, you must make
sure that Var is placed in a small data section. If Var is defined by another
module, you must either compile that module with a high-enough ‘-G’ setting
or attach a section attribute to Var’s definition. If Var is common, you must
link the application with a high-enough ‘-G’ setting.
The easiest way of satisfying these restrictions is to compile and link every
module with the same ‘-G’ option. However, you may wish to build a library
that supports several different small data limits. You can do this by compil-
ing the library with the highest supported ‘-G’ setting and additionally us-
ing ‘-mno-extern-sdata’ to stop the library from making assumptions about
externally-defined data.

-mgpopt
-mno-gpopt

Use (do not use) GP-relative accesses for symbols that are known to be in a
small data section; see ‘-G’, ‘-mlocal-sdata’ and ‘-mextern-sdata’. ‘-mgpopt’
is the default for all configurations.
‘-mno-gpopt’ is useful for cases where the $gp register might not hold the value
of _gp. For example, if the code is part of a library that might be used in a
boot monitor, programs that call boot monitor routines pass an unknown value
in $gp. (In such situations, the boot monitor itself is usually compiled with
‘-G0’.)
‘-mno-gpopt’ implies ‘-mno-local-sdata’ and ‘-mno-extern-sdata’.

-membedded-data
-mno-embedded-data

Allocate variables to the read-only data section first if possible, then next in the
small data section if possible, otherwise in data. This gives slightly slower code
than the default, but reduces the amount of RAM required when executing,
and thus may be preferred for some embedded systems.

-muninit-const-in-rodata
-mno-uninit-const-in-rodata

Put uninitialized const variables in the read-only data section. This option is
only meaningful in conjunction with ‘-membedded-data’.

-mcode-readable=setting
Specify whether GCC may generate code that reads from executable sections.
There are three possible settings:

266 Using the GNU Compiler Collection (GCC)

-mcode-readable=yes
Instructions may freely access executable sections. This is the de-
fault setting.

-mcode-readable=pcrel
MIPS16 PC-relative load instructions can access executable sec-
tions, but other instructions must not do so. This option is useful
on 4KSc and 4KSd processors when the code TLBs have the Read
Inhibit bit set. It is also useful on processors that can be configured
to have a dual instruction/data SRAM interface and that, like the
M4K, automatically redirect PC-relative loads to the instruction
RAM.

-mcode-readable=no
Instructions must not access executable sections. This option can
be useful on targets that are configured to have a dual instruc-
tion/data SRAM interface but that (unlike the M4K) do not auto-
matically redirect PC-relative loads to the instruction RAM.

-msplit-addresses
-mno-split-addresses

Enable (disable) use of the %hi() and %lo() assembler relocation operators.
This option has been superseded by ‘-mexplicit-relocs’ but is retained for
backwards compatibility.

-mexplicit-relocs
-mno-explicit-relocs

Use (do not use) assembler relocation operators when dealing with symbolic
addresses. The alternative, selected by ‘-mno-explicit-relocs’, is to use as-
sembler macros instead.

‘-mexplicit-relocs’ is the default if GCC was configured to use an assembler
that supports relocation operators.

-mcheck-zero-division
-mno-check-zero-division

Trap (do not trap) on integer division by zero.

The default is ‘-mcheck-zero-division’.

-mdivide-traps
-mdivide-breaks

MIPS systems check for division by zero by generating either a conditional
trap or a break instruction. Using traps results in smaller code, but is only
supported on MIPS II and later. Also, some versions of the Linux kernel have
a bug that prevents trap from generating the proper signal (SIGFPE). Use
‘-mdivide-traps’ to allow conditional traps on architectures that support them
and ‘-mdivide-breaks’ to force the use of breaks.

The default is usually ‘-mdivide-traps’, but this can be overridden at configure
time using ‘--with-divide=breaks’. Divide-by-zero checks can be completely
disabled using ‘-mno-check-zero-division’.

Chapter 3: GCC Command Options 267

-mmemcpy
-mno-memcpy

Force (do not force) the use of memcpy() for non-trivial block moves. The de-
fault is ‘-mno-memcpy’, which allows GCC to inline most constant-sized copies.

-mlong-calls
-mno-long-calls

Disable (do not disable) use of the jal instruction. Calling functions using
jal is more efficient but requires the caller and callee to be in the same 256
megabyte segment.
This option has no effect on abicalls code. The default is ‘-mno-long-calls’.

-mmad
-mno-mad Enable (disable) use of the mad, madu and mul instructions, as provided by the

R4650 ISA.

-mimadd
-mno-imadd

Enable (disable) use of the madd and msub integer instructions. The default
is ‘-mimadd’ on architectures that support madd and msub except for the 74k
architecture where it was found to generate slower code.

-mfused-madd
-mno-fused-madd

Enable (disable) use of the floating-point multiply-accumulate instructions,
when they are available. The default is ‘-mfused-madd’.
On the R8000 CPU when multiply-accumulate instructions are used, the in-
termediate product is calculated to infinite precision and is not subject to the
FCSR Flush to Zero bit. This may be undesirable in some circumstances. On
other processors the result is numerically identical to the equivalent computa-
tion using separate multiply, add, subtract and negate instructions.

-nocpp Tell the MIPS assembler to not run its preprocessor over user assembler files
(with a ‘.s’ suffix) when assembling them.

-mfix-24k
-mno-fix-24k

Work around the 24K E48 (lost data on stores during refill) errata. The
workarounds are implemented by the assembler rather than by GCC.

-mfix-r4000
-mno-fix-r4000

Work around certain R4000 CPU errata:
− A double-word or a variable shift may give an incorrect result if executed

immediately after starting an integer division.
− A double-word or a variable shift may give an incorrect result if executed

while an integer multiplication is in progress.
− An integer division may give an incorrect result if started in a delay slot of

a taken branch or a jump.

268 Using the GNU Compiler Collection (GCC)

-mfix-r4400
-mno-fix-r4400

Work around certain R4400 CPU errata:
− A double-word or a variable shift may give an incorrect result if executed

immediately after starting an integer division.

-mfix-r10000
-mno-fix-r10000

Work around certain R10000 errata:
− ll/sc sequences may not behave atomically on revisions prior to 3.0. They

may deadlock on revisions 2.6 and earlier.

This option can only be used if the target architecture supports branch-likely
instructions. ‘-mfix-r10000’ is the default when ‘-march=r10000’ is used;
‘-mno-fix-r10000’ is the default otherwise.

-mfix-rm7000
-mno-fix-rm7000

Work around the RM7000 dmult/dmultu errata. The workarounds are imple-
mented by the assembler rather than by GCC.

-mfix-vr4120
-mno-fix-vr4120

Work around certain VR4120 errata:
− dmultu does not always produce the correct result.
− div and ddiv do not always produce the correct result if one of the operands

is negative.

The workarounds for the division errata rely on special functions in ‘libgcc.a’.
At present, these functions are only provided by the mips64vr*-elf configura-
tions.
Other VR4120 errata require a NOP to be inserted between certain pairs of
instructions. These errata are handled by the assembler, not by GCC itself.

-mfix-vr4130
Work around the VR4130 mflo/mfhi errata. The workarounds are implemented
by the assembler rather than by GCC, although GCC avoids using mflo and
mfhi if the VR4130 macc, macchi, dmacc and dmacchi instructions are available
instead.

-mfix-sb1
-mno-fix-sb1

Work around certain SB-1 CPU core errata. (This flag currently works around
the SB-1 revision 2 “F1” and “F2” floating-point errata.)

-mr10k-cache-barrier=setting
Specify whether GCC should insert cache barriers to avoid the side-effects of
speculation on R10K processors.
In common with many processors, the R10K tries to predict the outcome of
a conditional branch and speculatively executes instructions from the “taken”

Chapter 3: GCC Command Options 269

branch. It later aborts these instructions if the predicted outcome is wrong.
However, on the R10K, even aborted instructions can have side effects.

This problem only affects kernel stores and, depending on the system, kernel
loads. As an example, a speculatively-executed store may load the target mem-
ory into cache and mark the cache line as dirty, even if the store itself is later
aborted. If a DMA operation writes to the same area of memory before the
“dirty” line is flushed, the cached data overwrites the DMA-ed data. See the
R10K processor manual for a full description, including other potential prob-
lems.

One workaround is to insert cache barrier instructions before every memory
access that might be speculatively executed and that might have side effects
even if aborted. ‘-mr10k-cache-barrier=setting’ controls GCC’s implemen-
tation of this workaround. It assumes that aborted accesses to any byte in the
following regions does not have side effects:

1. the memory occupied by the current function’s stack frame;

2. the memory occupied by an incoming stack argument;

3. the memory occupied by an object with a link-time-constant address.

It is the kernel’s responsibility to ensure that speculative accesses to these
regions are indeed safe.

If the input program contains a function declaration such as:
void foo (void);

then the implementation of foo must allow j foo and jal foo to be executed
speculatively. GCC honors this restriction for functions it compiles itself. It
expects non-GCC functions (such as hand-written assembly code) to do the
same.

The option has three forms:

-mr10k-cache-barrier=load-store
Insert a cache barrier before a load or store that might be specula-
tively executed and that might have side effects even if aborted.

-mr10k-cache-barrier=store
Insert a cache barrier before a store that might be speculatively
executed and that might have side effects even if aborted.

-mr10k-cache-barrier=none
Disable the insertion of cache barriers. This is the default setting.

-mflush-func=func
-mno-flush-func

Specifies the function to call to flush the I and D caches, or to not call any such
function. If called, the function must take the same arguments as the common
_flush_func(), that is, the address of the memory range for which the cache
is being flushed, the size of the memory range, and the number 3 (to flush
both caches). The default depends on the target GCC was configured for, but
commonly is either ‘_flush_func’ or ‘__cpu_flush’.

270 Using the GNU Compiler Collection (GCC)

mbranch-cost=num
Set the cost of branches to roughly num “simple” instructions. This cost is only
a heuristic and is not guaranteed to produce consistent results across releases.
A zero cost redundantly selects the default, which is based on the ‘-mtune’
setting.

-mbranch-likely
-mno-branch-likely

Enable or disable use of Branch Likely instructions, regardless of the default
for the selected architecture. By default, Branch Likely instructions may be
generated if they are supported by the selected architecture. An exception
is for the MIPS32 and MIPS64 architectures and processors that implement
those architectures; for those, Branch Likely instructions are not be generated
by default because the MIPS32 and MIPS64 architectures specifically deprecate
their use.

-mfp-exceptions
-mno-fp-exceptions

Specifies whether FP exceptions are enabled. This affects how FP instructions
are scheduled for some processors. The default is that FP exceptions are en-
abled.

For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
64-bit code, then we can use both FP pipes. Otherwise, we can only use one
FP pipe.

-mvr4130-align
-mno-vr4130-align

The VR4130 pipeline is two-way superscalar, but can only issue two instructions
together if the first one is 8-byte aligned. When this option is enabled, GCC
aligns pairs of instructions that it thinks should execute in parallel.

This option only has an effect when optimizing for the VR4130. It normally
makes code faster, but at the expense of making it bigger. It is enabled by
default at optimization level ‘-O3’.

-msynci
-mno-synci

Enable (disable) generation of synci instructions on architectures that sup-
port it. The synci instructions (if enabled) are generated when __builtin__
_clear_cache() is compiled.

This option defaults to -mno-synci, but the default can be overridden by con-
figuring with --with-synci.

When compiling code for single processor systems, it is generally safe to use
synci. However, on many multi-core (SMP) systems, it does not invalidate the
instruction caches on all cores and may lead to undefined behavior.

Chapter 3: GCC Command Options 271

-mrelax-pic-calls
-mno-relax-pic-calls

Try to turn PIC calls that are normally dispatched via register $25 into direct
calls. This is only possible if the linker can resolve the destination at link-time
and if the destination is within range for a direct call.
‘-mrelax-pic-calls’ is the default if GCC was configured to use an assem-
bler and a linker that support the .reloc assembly directive and -mexplicit-
relocs is in effect. With -mno-explicit-relocs, this optimization can be
performed by the assembler and the linker alone without help from the com-
piler.

-mmcount-ra-address
-mno-mcount-ra-address

Emit (do not emit) code that allows _mcount to modify the calling function’s
return address. When enabled, this option extends the usual _mcount interface
with a new ra-address parameter, which has type intptr_t * and is passed in
register $12. _mcount can then modify the return address by doing both of the
following:
• Returning the new address in register $31.
• Storing the new address in *ra-address, if ra-address is nonnull.

The default is ‘-mno-mcount-ra-address’.

3.17.28 MMIX Options

These options are defined for the MMIX:

-mlibfuncs
-mno-libfuncs

Specify that intrinsic library functions are being compiled, passing all values in
registers, no matter the size.

-mepsilon
-mno-epsilon

Generate floating-point comparison instructions that compare with respect to
the rE epsilon register.

-mabi=mmixware
-mabi=gnu

Generate code that passes function parameters and return values that (in the
called function) are seen as registers $0 and up, as opposed to the GNU ABI
which uses global registers $231 and up.

-mzero-extend
-mno-zero-extend

When reading data from memory in sizes shorter than 64 bits, use (do not use)
zero-extending load instructions by default, rather than sign-extending ones.

-mknuthdiv
-mno-knuthdiv

Make the result of a division yielding a remainder have the same sign as the
divisor. With the default, ‘-mno-knuthdiv’, the sign of the remainder follows

272 Using the GNU Compiler Collection (GCC)

the sign of the dividend. Both methods are arithmetically valid, the latter being
almost exclusively used.

-mtoplevel-symbols
-mno-toplevel-symbols

Prepend (do not prepend) a ‘:’ to all global symbols, so the assembly code can
be used with the PREFIX assembly directive.

-melf Generate an executable in the ELF format, rather than the default ‘mmo’ format
used by the mmix simulator.

-mbranch-predict
-mno-branch-predict

Use (do not use) the probable-branch instructions, when static branch predic-
tion indicates a probable branch.

-mbase-addresses
-mno-base-addresses

Generate (do not generate) code that uses base addresses. Using a base address
automatically generates a request (handled by the assembler and the linker)
for a constant to be set up in a global register. The register is used for one or
more base address requests within the range 0 to 255 from the value held in the
register. The generally leads to short and fast code, but the number of different
data items that can be addressed is limited. This means that a program that
uses lots of static data may require ‘-mno-base-addresses’.

-msingle-exit
-mno-single-exit

Force (do not force) generated code to have a single exit point in each function.

3.17.29 MN10300 Options

These ‘-m’ options are defined for Matsushita MN10300 architectures:

-mmult-bug
Generate code to avoid bugs in the multiply instructions for the MN10300
processors. This is the default.

-mno-mult-bug
Do not generate code to avoid bugs in the multiply instructions for the MN10300
processors.

-mam33 Generate code using features specific to the AM33 processor.

-mno-am33
Do not generate code using features specific to the AM33 processor. This is the
default.

-mam33-2 Generate code using features specific to the AM33/2.0 processor.

-mam34 Generate code using features specific to the AM34 processor.

-mtune=cpu-type
Use the timing characteristics of the indicated CPU type when scheduling in-
structions. This does not change the targeted processor type. The CPU type
must be one of ‘mn10300’, ‘am33’, ‘am33-2’ or ‘am34’.

Chapter 3: GCC Command Options 273

-mreturn-pointer-on-d0
When generating a function that returns a pointer, return the pointer in both
a0 and d0. Otherwise, the pointer is returned only in a0, and attempts to call
such functions without a prototype result in errors. Note that this option is on
by default; use ‘-mno-return-pointer-on-d0’ to disable it.

-mno-crt0
Do not link in the C run-time initialization object file.

-mrelax Indicate to the linker that it should perform a relaxation optimization pass to
shorten branches, calls and absolute memory addresses. This option only has
an effect when used on the command line for the final link step.
This option makes symbolic debugging impossible.

-mliw Allow the compiler to generate Long Instruction Word instructions if the target
is the ‘AM33’ or later. This is the default. This option defines the preprocessor
macro ‘__LIW__’.

-mnoliw Do not allow the compiler to generate Long Instruction Word instructions. This
option defines the preprocessor macro ‘__NO_LIW__’.

-msetlb Allow the compiler to generate the SETLB and Lcc instructions if the target
is the ‘AM33’ or later. This is the default. This option defines the preprocessor
macro ‘__SETLB__’.

-mnosetlb
Do not allow the compiler to generate SETLB or Lcc instructions. This option
defines the preprocessor macro ‘__NO_SETLB__’.

3.17.30 Moxie Options

-meb Generate big-endian code. This is the default for ‘moxie-*-*’ configurations.

-mel Generate little-endian code.

-mno-crt0
Do not link in the C run-time initialization object file.

3.17.31 MSP430 Options

These options are defined for the MSP430:

-masm-hex
Force assembly output to always use hex constants. Normally such constants
are signed decimals, but this option is available for testsuite and/or aesthetic
purposes.

-mmcu= Select the MCU to target. This is used to create a C preprocessor symbol based
upon the MCU name, converted to upper case and pre- and post- fixed with
__. This in turn will be used by the msp430.h header file to select an MCU
specific supplimentary header file.
The option also sets the ISA to use. If the MCU name is one that is known
to only support the 430 ISA then that is selected, otherwise the 430X ISA is

274 Using the GNU Compiler Collection (GCC)

selected. A generic MCU name of msp430 can also be used to select the 430
ISA. Similarly the generic msp430x MCU name will select the 430X ISA.
In addition an MCU specific linker script will be added to the linker command
line. The script’s name is the name of the MCU with .ld appended. Thus
specifying ‘-mmcu=xxx’ on the gcc command line will define the C preprocessor
symbol __XXX__ and cause the linker to search for a script called ‘xxx.ld’.
This option is also passed on to the assembler.

-mcpu= Specifies the ISA to use. Accepted values are msp430, msp430x and msp430xv2.
This option is deprecated. The ‘-mmcu=’ option should be used to select the
ISA.

-msim Link to the simulator runtime libraries and linker script. Overrides any scripts
that would be selected by the ‘-mmcu=’ option.

-mlarge Use large-model addressing (20-bit pointers, 32-bit size_t).

-msmall Use small-model addressing (16-bit pointers, 16-bit size_t).

-mrelax This option is passed to the assembler and linker, and allows the linker to
perform certain optimizations that cannot be done until the final link.

3.17.32 NDS32 Options

These options are defined for NDS32 implementations:

-mbig-endian
Generate code in big-endian mode.

-mlittle-endian
Generate code in little-endian mode.

-mreduced-regs
Use reduced-set registers for register allocation.

-mfull-regs
Use full-set registers for register allocation.

-mcmov Generate conditional move instructions.

-mno-cmov
Do not generate conditional move instructions.

-mperf-ext
Generate performance extension instructions.

-mno-perf-ext
Do not generate performance extension instructions.

-mv3push Generate v3 push25/pop25 instructions.

-mno-v3push
Do not generate v3 push25/pop25 instructions.

-m16-bit Generate 16-bit instructions.

Chapter 3: GCC Command Options 275

-mno-16-bit
Do not generate 16-bit instructions.

-mgp-direct
Generate GP base instructions directly.

-mno-gp-direct
Do no generate GP base instructions directly.

-misr-vector-size=num
Specify the size of each interrupt vector, which must be 4 or 16.

-mcache-block-size=num
Specify the size of each cache block, which must be a power of 2 between 4 and
512.

-march=arch
Specify the name of the target architecture.

-mforce-fp-as-gp
Prevent $fp being allocated during register allocation so that compiler is able
to force performing fp-as-gp optimization.

-mforbid-fp-as-gp
Forbid using $fp to access static and global variables. This option strictly
forbids fp-as-gp optimization regardless of ‘-mforce-fp-as-gp’.

-mex9 Use special directives to guide linker doing ex9 optimization.

-mctor-dtor
Enable constructor/destructor feature.

-mrelax Guide linker to relax instructions.

3.17.33 Nios II Options

These are the options defined for the Altera Nios II processor.

-G num Put global and static objects less than or equal to num bytes into the small
data or BSS sections instead of the normal data or BSS sections. The default
value of num is 8.

-mgpopt
-mno-gpopt

Generate (do not generate) GP-relative accesses for objects in the small data
or BSS sections. The default is ‘-mgpopt’ except when ‘-fpic’ or ‘-fPIC’ is
specified to generate position-independent code. Note that the Nios II ABI
does not permit GP-relative accesses from shared libraries.
You may need to specify ‘-mno-gpopt’ explicitly when building programs that
include large amounts of small data, including large GOT data sections. In this
case, the 16-bit offset for GP-relative addressing may not be large enough to
allow access to the entire small data section.

-mel
-meb Generate little-endian (default) or big-endian (experimental) code, respectively.

276 Using the GNU Compiler Collection (GCC)

-mbypass-cache
-mno-bypass-cache

Force all load and store instructions to always bypass cache by using I/O vari-
ants of the instructions. The default is not to bypass the cache.

-mno-cache-volatile
-mcache-volatile

Volatile memory access bypass the cache using the I/O variants of the load and
store instructions. The default is not to bypass the cache.

-mno-fast-sw-div
-mfast-sw-div

Do not use table-based fast divide for small numbers. The default is to use the
fast divide at ‘-O3’ and above.

-mno-hw-mul
-mhw-mul
-mno-hw-mulx
-mhw-mulx
-mno-hw-div
-mhw-div Enable or disable emitting mul, mulx and div family of instructions by the

compiler. The default is to emit mul and not emit div and mulx.

-mcustom-insn=N
-mno-custom-insn

Each ‘-mcustom-insn=N’ option enables use of a custom instruction with encod-
ing N when generating code that uses insn. For example, -mcustom-fadds=253
generates custom instruction 253 for single-precision floating-point add opera-
tions instead of the default behavior of using a library call.

The following values of insn are supported. Except as otherwise noted, floating-
point operations are expected to be implemented with normal IEEE 754 seman-
tics and correspond directly to the C operators or the equivalent GCC built-in
functions (see Section 6.56 [Other Builtins], page 482).

Single-precision floating point:

‘fadds’, ‘fsubs’, ‘fdivs’, ‘fmuls’
Binary arithmetic operations.

‘fnegs’ Unary negation.

‘fabss’ Unary absolute value.

‘fcmpeqs’, ‘fcmpges’, ‘fcmpgts’, ‘fcmples’, ‘fcmplts’, ‘fcmpnes’
Comparison operations.

‘fmins’, ‘fmaxs’
Floating-point minimum and maximum. These instructions are
only generated if ‘-ffinite-math-only’ is specified.

‘fsqrts’ Unary square root operation.

Chapter 3: GCC Command Options 277

‘fcoss’, ‘fsins’, ‘ftans’, ‘fatans’, ‘fexps’, ‘flogs’
Floating-point trigonometric and exponential functions. These in-
structions are only generated if ‘-funsafe-math-optimizations’
is also specified.

Double-precision floating point:

‘faddd’, ‘fsubd’, ‘fdivd’, ‘fmuld’
Binary arithmetic operations.

‘fnegd’ Unary negation.

‘fabsd’ Unary absolute value.

‘fcmpeqd’, ‘fcmpged’, ‘fcmpgtd’, ‘fcmpled’, ‘fcmpltd’, ‘fcmpned’
Comparison operations.

‘fmind’, ‘fmaxd’
Double-precision minimum and maximum. These instructions are
only generated if ‘-ffinite-math-only’ is specified.

‘fsqrtd’ Unary square root operation.

‘fcosd’, ‘fsind’, ‘ftand’, ‘fatand’, ‘fexpd’, ‘flogd’
Double-precision trigonometric and exponential functions. These
instructions are only generated if ‘-funsafe-math-optimizations’
is also specified.

Conversions:

‘fextsd’ Conversion from single precision to double precision.

‘ftruncds’
Conversion from double precision to single precision.

‘fixsi’, ‘fixsu’, ‘fixdi’, ‘fixdu’
Conversion from floating point to signed or unsigned integer types,
with truncation towards zero.

‘floatis’, ‘floatus’, ‘floatid’, ‘floatud’
Conversion from signed or unsigned integer types to floating-point
types.

In addition, all of the following transfer instructions for internal registers X and
Y must be provided to use any of the double-precision floating-point instruc-
tions. Custom instructions taking two double-precision source operands expect
the first operand in the 64-bit register X. The other operand (or only operand
of a unary operation) is given to the custom arithmetic instruction with the
least significant half in source register src1 and the most significant half in src2.
A custom instruction that returns a double-precision result returns the most
significant 32 bits in the destination register and the other half in 32-bit register
Y. GCC automatically generates the necessary code sequences to write register
X and/or read register Y when double-precision floating-point instructions are
used.

278 Using the GNU Compiler Collection (GCC)

‘fwrx’ Write src1 into the least significant half of X and src2 into the most
significant half of X.

‘fwry’ Write src1 into Y.

‘frdxhi’, ‘frdxlo’
Read the most or least (respectively) significant half of X and store
it in dest.

‘frdy’ Read the value of Y and store it into dest.

Note that you can gain more local control over generation of Nios II custom in-
structions by using the target("custom-insn=N") and target("no-custom-
insn") function attributes (see Section 6.30 [Function Attributes], page 372)
or pragmas (see Section 6.59.13 [Function Specific Option Pragmas], page 695).

-mcustom-fpu-cfg=name
This option enables a predefined, named set of custom instruction encodings
(see ‘-mcustom-insn’ above). Currently, the following sets are defined:
‘-mcustom-fpu-cfg=60-1’ is equivalent to:

-mcustom-fmuls=252

-mcustom-fadds=253

-mcustom-fsubs=254

-fsingle-precision-constant

‘-mcustom-fpu-cfg=60-2’ is equivalent to:
-mcustom-fmuls=252

-mcustom-fadds=253

-mcustom-fsubs=254

-mcustom-fdivs=255

-fsingle-precision-constant

‘-mcustom-fpu-cfg=72-3’ is equivalent to:
-mcustom-floatus=243

-mcustom-fixsi=244

-mcustom-floatis=245

-mcustom-fcmpgts=246

-mcustom-fcmples=249

-mcustom-fcmpeqs=250

-mcustom-fcmpnes=251

-mcustom-fmuls=252

-mcustom-fadds=253

-mcustom-fsubs=254

-mcustom-fdivs=255

-fsingle-precision-constant

Custom instruction assignments given by individual ‘-mcustom-insn=’ options
override those given by ‘-mcustom-fpu-cfg=’, regardless of the order of the
options on the command line.
Note that you can gain more local control over selection of a FPU configu-
ration by using the target("custom-fpu-cfg=name") function attribute (see
Section 6.30 [Function Attributes], page 372) or pragma (see Section 6.59.13
[Function Specific Option Pragmas], page 695).

These additional ‘-m’ options are available for the Altera Nios II ELF (bare-metal) target:

Chapter 3: GCC Command Options 279

-mhal Link with HAL BSP. This suppresses linking with the GCC-provided C run-
time startup and termination code, and is typically used in conjunction with
‘-msys-crt0=’ to specify the location of the alternate startup code provided by
the HAL BSP.

-msmallc Link with a limited version of the C library, ‘-lsmallc’, rather than Newlib.

-msys-crt0=startfile
startfile is the file name of the startfile (crt0) to use when linking. This option
is only useful in conjunction with ‘-mhal’.

-msys-lib=systemlib
systemlib is the library name of the library that provides low-level system calls
required by the C library, e.g. read and write. This option is typically used
to link with a library provided by a HAL BSP.

3.17.34 PDP-11 Options

These options are defined for the PDP-11:

-mfpu Use hardware FPP floating point. This is the default. (FIS floating point on
the PDP-11/40 is not supported.)

-msoft-float
Do not use hardware floating point.

-mac0 Return floating-point results in ac0 (fr0 in Unix assembler syntax).

-mno-ac0 Return floating-point results in memory. This is the default.

-m40 Generate code for a PDP-11/40.

-m45 Generate code for a PDP-11/45. This is the default.

-m10 Generate code for a PDP-11/10.

-mbcopy-builtin
Use inline movmemhi patterns for copying memory. This is the default.

-mbcopy Do not use inline movmemhi patterns for copying memory.

-mint16
-mno-int32

Use 16-bit int. This is the default.

-mint32
-mno-int16

Use 32-bit int.

-mfloat64
-mno-float32

Use 64-bit float. This is the default.

-mfloat32
-mno-float64

Use 32-bit float.

280 Using the GNU Compiler Collection (GCC)

-mabshi Use abshi2 pattern. This is the default.

-mno-abshi
Do not use abshi2 pattern.

-mbranch-expensive
Pretend that branches are expensive. This is for experimenting with code gen-
eration only.

-mbranch-cheap
Do not pretend that branches are expensive. This is the default.

-munix-asm
Use Unix assembler syntax. This is the default when configured for
‘pdp11-*-bsd’.

-mdec-asm
Use DEC assembler syntax. This is the default when configured for any PDP-11
target other than ‘pdp11-*-bsd’.

3.17.35 picoChip Options

These ‘-m’ options are defined for picoChip implementations:

-mae=ae_type
Set the instruction set, register set, and instruction scheduling parameters for
array element type ae type. Supported values for ae type are ‘ANY’, ‘MUL’, and
‘MAC’.
‘-mae=ANY’ selects a completely generic AE type. Code generated with this
option runs on any of the other AE types. The code is not as efficient as it
would be if compiled for a specific AE type, and some types of operation (e.g.,
multiplication) do not work properly on all types of AE.
‘-mae=MUL’ selects a MUL AE type. This is the most useful AE type for com-
piled code, and is the default.
‘-mae=MAC’ selects a DSP-style MAC AE. Code compiled with this option may
suffer from poor performance of byte (char) manipulation, since the DSP AE
does not provide hardware support for byte load/stores.

-msymbol-as-address
Enable the compiler to directly use a symbol name as an address in a load/store
instruction, without first loading it into a register. Typically, the use of this
option generates larger programs, which run faster than when the option isn’t
used. However, the results vary from program to program, so it is left as a user
option, rather than being permanently enabled.

-mno-inefficient-warnings
Disables warnings about the generation of inefficient code. These warnings can
be generated, for example, when compiling code that performs byte-level mem-
ory operations on the MAC AE type. The MAC AE has no hardware support
for byte-level memory operations, so all byte load/stores must be synthesized
from word load/store operations. This is inefficient and a warning is generated

Chapter 3: GCC Command Options 281

to indicate that you should rewrite the code to avoid byte operations, or to tar-
get an AE type that has the necessary hardware support. This option disables
these warnings.

3.17.36 PowerPC Options

These are listed under See Section 3.17.38 [RS/6000 and PowerPC Options], page 281.

3.17.37 RL78 Options

-msim Links in additional target libraries to support operation within a simulator.

-mmul=none
-mmul=g13
-mmul=rl78

Specifies the type of hardware multiplication support to be used. The default
is none, which uses software multiplication functions. The g13 option is for the
hardware multiply/divide peripheral only on the RL78/G13 targets. The rl78
option is for the standard hardware multiplication defined in the RL78 software
manual.

3.17.38 IBM RS/6000 and PowerPC Options

These ‘-m’ options are defined for the IBM RS/6000 and PowerPC:

-mpowerpc-gpopt
-mno-powerpc-gpopt
-mpowerpc-gfxopt
-mno-powerpc-gfxopt
-mpowerpc64
-mno-powerpc64
-mmfcrf
-mno-mfcrf
-mpopcntb
-mno-popcntb
-mpopcntd
-mno-popcntd
-mfprnd
-mno-fprnd
-mcmpb
-mno-cmpb
-mmfpgpr
-mno-mfpgpr
-mhard-dfp
-mno-hard-dfp

You use these options to specify which instructions are available on the processor
you are using. The default value of these options is determined when configuring
GCC. Specifying the ‘-mcpu=cpu_type’ overrides the specification of these
options. We recommend you use the ‘-mcpu=cpu_type’ option rather than the
options listed above.

282 Using the GNU Compiler Collection (GCC)

Specifying ‘-mpowerpc-gpopt’ allows GCC to use the optional PowerPC ar-
chitecture instructions in the General Purpose group, including floating-point
square root. Specifying ‘-mpowerpc-gfxopt’ allows GCC to use the optional
PowerPC architecture instructions in the Graphics group, including floating-
point select.
The ‘-mmfcrf’ option allows GCC to generate the move from condition register
field instruction implemented on the POWER4 processor and other processors
that support the PowerPC V2.01 architecture. The ‘-mpopcntb’ option allows
GCC to generate the popcount and double-precision FP reciprocal estimate
instruction implemented on the POWER5 processor and other processors that
support the PowerPC V2.02 architecture. The ‘-mpopcntd’ option allows GCC
to generate the popcount instruction implemented on the POWER7 proces-
sor and other processors that support the PowerPC V2.06 architecture. The
‘-mfprnd’ option allows GCC to generate the FP round to integer instructions
implemented on the POWER5+ processor and other processors that support the
PowerPC V2.03 architecture. The ‘-mcmpb’ option allows GCC to generate the
compare bytes instruction implemented on the POWER6 processor and other
processors that support the PowerPC V2.05 architecture. The ‘-mmfpgpr’ op-
tion allows GCC to generate the FP move to/from general-purpose register in-
structions implemented on the POWER6X processor and other processors that
support the extended PowerPC V2.05 architecture. The ‘-mhard-dfp’ option
allows GCC to generate the decimal floating-point instructions implemented on
some POWER processors.
The ‘-mpowerpc64’ option allows GCC to generate the additional 64-bit instruc-
tions that are found in the full PowerPC64 architecture and to treat GPRs as
64-bit, doubleword quantities. GCC defaults to ‘-mno-powerpc64’.

-mcpu=cpu_type
Set architecture type, register usage, and instruction scheduling parameters
for machine type cpu type. Supported values for cpu type are ‘401’, ‘403’,
‘405’, ‘405fp’, ‘440’, ‘440fp’, ‘464’, ‘464fp’, ‘476’, ‘476fp’, ‘505’, ‘601’, ‘602’,
‘603’, ‘603e’, ‘604’, ‘604e’, ‘620’, ‘630’, ‘740’, ‘7400’, ‘7450’, ‘750’, ‘801’,
‘821’, ‘823’, ‘860’, ‘970’, ‘8540’, ‘a2’, ‘e300c2’, ‘e300c3’, ‘e500mc’, ‘e500mc64’,
‘e5500’, ‘e6500’, ‘ec603e’, ‘G3’, ‘G4’, ‘G5’, ‘titan’, ‘power3’, ‘power4’, ‘power5’,
‘power5+’, ‘power6’, ‘power6x’, ‘power7’, ‘power8’, ‘powerpc’, ‘powerpc64’,
and ‘rs64’.
‘-mcpu=powerpc’, and ‘-mcpu=powerpc64’ specify pure 32-bit PowerPC and 64-
bit PowerPC architecture machine types, with an appropriate, generic processor
model assumed for scheduling purposes.
The other options specify a specific processor. Code generated under those
options runs best on that processor, and may not run at all on others.
The ‘-mcpu’ options automatically enable or disable the following options:

-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple

-mpopcntb -mpopcntd -mpowerpc64

-mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float

-msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx

-mcrypto -mdirect-move -mpower8-fusion -mpower8-vector

-mquad-memory -mquad-memory-atomic

Chapter 3: GCC Command Options 283

The particular options set for any particular CPU varies between compiler
versions, depending on what setting seems to produce optimal code for that
CPU; it doesn’t necessarily reflect the actual hardware’s capabilities. If you
wish to set an individual option to a particular value, you may specify it after
the ‘-mcpu’ option, like ‘-mcpu=970 -mno-altivec’.

On AIX, the ‘-maltivec’ and ‘-mpowerpc64’ options are not enabled or disabled
by the ‘-mcpu’ option at present because AIX does not have full support for
these options. You may still enable or disable them individually if you’re sure
it’ll work in your environment.

-mtune=cpu_type
Set the instruction scheduling parameters for machine type cpu type, but do
not set the architecture type or register usage, as ‘-mcpu=cpu_type’ does. The
same values for cpu type are used for ‘-mtune’ as for ‘-mcpu’. If both are
specified, the code generated uses the architecture and registers set by ‘-mcpu’,
but the scheduling parameters set by ‘-mtune’.

-mcmodel=small
Generate PowerPC64 code for the small model: The TOC is limited to 64k.

-mcmodel=medium
Generate PowerPC64 code for the medium model: The TOC and other static
data may be up to a total of 4G in size.

-mcmodel=large
Generate PowerPC64 code for the large model: The TOC may be up to 4G in
size. Other data and code is only limited by the 64-bit address space.

-maltivec
-mno-altivec

Generate code that uses (does not use) AltiVec instructions, and also enable the
use of built-in functions that allow more direct access to the AltiVec instruction
set. You may also need to set ‘-mabi=altivec’ to adjust the current ABI with
AltiVec ABI enhancements.

When ‘-maltivec’ is used, rather than ‘-maltivec=le’ or ‘-maltivec=be’, the
element order for Altivec intrinsics such as vec_splat, vec_extract, and vec_
insert will match array element order corresponding to the endianness of the
target. That is, element zero identifies the leftmost element in a vector register
when targeting a big-endian platform, and identifies the rightmost element in
a vector register when targeting a little-endian platform.

-maltivec=be
Generate Altivec instructions using big-endian element order, regardless of
whether the target is big- or little-endian. This is the default when target-
ing a big-endian platform.

The element order is used to interpret element numbers in Altivec intrinsics
such as vec_splat, vec_extract, and vec_insert. By default, these will
match array element order corresponding to the endianness for the target.

284 Using the GNU Compiler Collection (GCC)

-maltivec=le
Generate Altivec instructions using little-endian element order, regardless of
whether the target is big- or little-endian. This is the default when targeting
a little-endian platform. This option is currently ignored when targeting a
big-endian platform.

The element order is used to interpret element numbers in Altivec intrinsics
such as vec_splat, vec_extract, and vec_insert. By default, these will
match array element order corresponding to the endianness for the target.

-mvrsave
-mno-vrsave

Generate VRSAVE instructions when generating AltiVec code.

-mgen-cell-microcode
Generate Cell microcode instructions.

-mwarn-cell-microcode
Warn when a Cell microcode instruction is emitted. An example of a Cell
microcode instruction is a variable shift.

-msecure-plt
Generate code that allows ld and ld.so to build executables and shared li-
braries with non-executable .plt and .got sections. This is a PowerPC 32-bit
SYSV ABI option.

-mbss-plt
Generate code that uses a BSS .plt section that ld.so fills in, and requires
.plt and .got sections that are both writable and executable. This is a Pow-
erPC 32-bit SYSV ABI option.

-misel
-mno-isel

This switch enables or disables the generation of ISEL instructions.

-misel=yes/no
This switch has been deprecated. Use ‘-misel’ and ‘-mno-isel’ instead.

-mspe
-mno-spe This switch enables or disables the generation of SPE simd instructions.

-mpaired
-mno-paired

This switch enables or disables the generation of PAIRED simd instructions.

-mspe=yes/no
This option has been deprecated. Use ‘-mspe’ and ‘-mno-spe’ instead.

-mvsx
-mno-vsx Generate code that uses (does not use) vector/scalar (VSX) instructions, and

also enable the use of built-in functions that allow more direct access to the
VSX instruction set.

Chapter 3: GCC Command Options 285

-mcrypto
-mno-crypto

Enable the use (disable) of the built-in functions that allow direct access to
the cryptographic instructions that were added in version 2.07 of the PowerPC
ISA.

-mdirect-move
-mno-direct-move

Generate code that uses (does not use) the instructions to move data between
the general purpose registers and the vector/scalar (VSX) registers that were
added in version 2.07 of the PowerPC ISA.

-mpower8-fusion
-mno-power8-fusion

Generate code that keeps (does not keeps) some integer operations adjacent so
that the instructions can be fused together on power8 and later processors.

-mpower8-vector
-mno-power8-vector

Generate code that uses (does not use) the vector and scalar instructions that
were added in version 2.07 of the PowerPC ISA. Also enable the use of built-in
functions that allow more direct access to the vector instructions.

-mquad-memory
-mno-quad-memory

Generate code that uses (does not use) the non-atomic quad word memory
instructions. The ‘-mquad-memory’ option requires use of 64-bit mode.

-mquad-memory-atomic
-mno-quad-memory-atomic

Generate code that uses (does not use) the atomic quad word memory instruc-
tions. The ‘-mquad-memory-atomic’ option requires use of 64-bit mode.

-mfloat-gprs=yes/single/double/no
-mfloat-gprs

This switch enables or disables the generation of floating-point operations on
the general-purpose registers for architectures that support it.
The argument yes or single enables the use of single-precision floating-point
operations.
The argument double enables the use of single and double-precision floating-
point operations.
The argument no disables floating-point operations on the general-purpose reg-
isters.
This option is currently only available on the MPC854x.

-m32
-m64 Generate code for 32-bit or 64-bit environments of Darwin and SVR4 targets

(including GNU/Linux). The 32-bit environment sets int, long and pointer
to 32 bits and generates code that runs on any PowerPC variant. The 64-bit
environment sets int to 32 bits and long and pointer to 64 bits, and generates
code for PowerPC64, as for ‘-mpowerpc64’.

286 Using the GNU Compiler Collection (GCC)

-mfull-toc
-mno-fp-in-toc
-mno-sum-in-toc
-mminimal-toc

Modify generation of the TOC (Table Of Contents), which is created for every
executable file. The ‘-mfull-toc’ option is selected by default. In that case,
GCC allocates at least one TOC entry for each unique non-automatic variable
reference in your program. GCC also places floating-point constants in the
TOC. However, only 16,384 entries are available in the TOC.

If you receive a linker error message that saying you have overflowed the avail-
able TOC space, you can reduce the amount of TOC space used with the
‘-mno-fp-in-toc’ and ‘-mno-sum-in-toc’ options. ‘-mno-fp-in-toc’ prevents
GCC from putting floating-point constants in the TOC and ‘-mno-sum-in-toc’
forces GCC to generate code to calculate the sum of an address and a constant
at run time instead of putting that sum into the TOC. You may specify one
or both of these options. Each causes GCC to produce very slightly slower and
larger code at the expense of conserving TOC space.

If you still run out of space in the TOC even when you specify both of these
options, specify ‘-mminimal-toc’ instead. This option causes GCC to make
only one TOC entry for every file. When you specify this option, GCC produces
code that is slower and larger but which uses extremely little TOC space. You
may wish to use this option only on files that contain less frequently-executed
code.

-maix64
-maix32 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit long

type, and the infrastructure needed to support them. Specifying ‘-maix64’
implies ‘-mpowerpc64’, while ‘-maix32’ disables the 64-bit ABI and implies
‘-mno-powerpc64’. GCC defaults to ‘-maix32’.

-mxl-compat
-mno-xl-compat

Produce code that conforms more closely to IBM XL compiler semantics when
using AIX-compatible ABI. Pass floating-point arguments to prototyped func-
tions beyond the register save area (RSA) on the stack in addition to argument
FPRs. Do not assume that most significant double in 128-bit long double value
is properly rounded when comparing values and converting to double. Use XL
symbol names for long double support routines.

The AIX calling convention was extended but not initially documented to han-
dle an obscure K&R C case of calling a function that takes the address of
its arguments with fewer arguments than declared. IBM XL compilers access
floating-point arguments that do not fit in the RSA from the stack when a
subroutine is compiled without optimization. Because always storing floating-
point arguments on the stack is inefficient and rarely needed, this option is not
enabled by default and only is necessary when calling subroutines compiled by
IBM XL compilers without optimization.

Chapter 3: GCC Command Options 287

-mpe Support IBM RS/6000 SP Parallel Environment (PE). Link an application
written to use message passing with special startup code to enable the ap-
plication to run. The system must have PE installed in the standard loca-
tion (‘/usr/lpp/ppe.poe/’), or the ‘specs’ file must be overridden with the
‘-specs=’ option to specify the appropriate directory location. The Parallel
Environment does not support threads, so the ‘-mpe’ option and the ‘-pthread’
option are incompatible.

-malign-natural
-malign-power

On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
‘-malign-natural’ overrides the ABI-defined alignment of larger types, such
as floating-point doubles, on their natural size-based boundary. The option
‘-malign-power’ instructs GCC to follow the ABI-specified alignment rules.
GCC defaults to the standard alignment defined in the ABI.

On 64-bit Darwin, natural alignment is the default, and ‘-malign-power’ is not
supported.

-msoft-float
-mhard-float

Generate code that does not use (uses) the floating-point register set. Software
floating-point emulation is provided if you use the ‘-msoft-float’ option, and
pass the option to GCC when linking.

-msingle-float
-mdouble-float

Generate code for single- or double-precision floating-point operations.
‘-mdouble-float’ implies ‘-msingle-float’.

-msimple-fpu
Do not generate sqrt and div instructions for hardware floating-point unit.

-mfpu=name
Specify type of floating-point unit. Valid values for name are ‘sp_lite’
(equivalent to ‘-msingle-float -msimple-fpu’), ‘dp_lite’ (equiv-
alent to ‘-mdouble-float -msimple-fpu’), ‘sp_full’ (equivalent to
‘-msingle-float’), and ‘dp_full’ (equivalent to ‘-mdouble-float’).

-mxilinx-fpu
Perform optimizations for the floating-point unit on Xilinx PPC 405/440.

-mmultiple
-mno-multiple

Generate code that uses (does not use) the load multiple word instructions
and the store multiple word instructions. These instructions are generated by
default on POWER systems, and not generated on PowerPC systems. Do not
use ‘-mmultiple’ on little-endian PowerPC systems, since those instructions
do not work when the processor is in little-endian mode. The exceptions are
PPC740 and PPC750 which permit these instructions in little-endian mode.

288 Using the GNU Compiler Collection (GCC)

-mstring
-mno-string

Generate code that uses (does not use) the load string instructions and the
store string word instructions to save multiple registers and do small block
moves. These instructions are generated by default on POWER systems, and
not generated on PowerPC systems. Do not use ‘-mstring’ on little-endian
PowerPC systems, since those instructions do not work when the processor is
in little-endian mode. The exceptions are PPC740 and PPC750 which permit
these instructions in little-endian mode.

-mupdate
-mno-update

Generate code that uses (does not use) the load or store instructions that update
the base register to the address of the calculated memory location. These
instructions are generated by default. If you use ‘-mno-update’, there is a small
window between the time that the stack pointer is updated and the address of
the previous frame is stored, which means code that walks the stack frame
across interrupts or signals may get corrupted data.

-mavoid-indexed-addresses
-mno-avoid-indexed-addresses

Generate code that tries to avoid (not avoid) the use of indexed load or store
instructions. These instructions can incur a performance penalty on Power6
processors in certain situations, such as when stepping through large arrays
that cross a 16M boundary. This option is enabled by default when targeting
Power6 and disabled otherwise.

-mfused-madd
-mno-fused-madd

Generate code that uses (does not use) the floating-point multiply and ac-
cumulate instructions. These instructions are generated by default if hard-
ware floating point is used. The machine-dependent ‘-mfused-madd’ option is
now mapped to the machine-independent ‘-ffp-contract=fast’ option, and
‘-mno-fused-madd’ is mapped to ‘-ffp-contract=off’.

-mmulhw
-mno-mulhw

Generate code that uses (does not use) the half-word multiply and multiply-
accumulate instructions on the IBM 405, 440, 464 and 476 processors. These
instructions are generated by default when targeting those processors.

-mdlmzb
-mno-dlmzb

Generate code that uses (does not use) the string-search ‘dlmzb’ instruction on
the IBM 405, 440, 464 and 476 processors. This instruction is generated by
default when targeting those processors.

-mno-bit-align
-mbit-align

On System V.4 and embedded PowerPC systems do not (do) force structures
and unions that contain bit-fields to be aligned to the base type of the bit-field.

Chapter 3: GCC Command Options 289

For example, by default a structure containing nothing but 8 unsigned bit-
fields of length 1 is aligned to a 4-byte boundary and has a size of 4 bytes. By
using ‘-mno-bit-align’, the structure is aligned to a 1-byte boundary and is 1
byte in size.

-mno-strict-align
-mstrict-align

On System V.4 and embedded PowerPC systems do not (do) assume that un-
aligned memory references are handled by the system.

-mrelocatable
-mno-relocatable

Generate code that allows (does not allow) a static executable to be relocated
to a different address at run time. A simple embedded PowerPC system loader
should relocate the entire contents of .got2 and 4-byte locations listed in the
.fixup section, a table of 32-bit addresses generated by this option. For this
to work, all objects linked together must be compiled with ‘-mrelocatable’
or ‘-mrelocatable-lib’. ‘-mrelocatable’ code aligns the stack to an 8-byte
boundary.

-mrelocatable-lib
-mno-relocatable-lib

Like ‘-mrelocatable’, ‘-mrelocatable-lib’ generates a .fixup section to al-
low static executables to be relocated at run time, but ‘-mrelocatable-lib’
does not use the smaller stack alignment of ‘-mrelocatable’. Objects com-
piled with ‘-mrelocatable-lib’ may be linked with objects compiled with any
combination of the ‘-mrelocatable’ options.

-mno-toc
-mtoc On System V.4 and embedded PowerPC systems do not (do) assume that reg-

ister 2 contains a pointer to a global area pointing to the addresses used in the
program.

-mlittle
-mlittle-endian

On System V.4 and embedded PowerPC systems compile code for the processor
in little-endian mode. The ‘-mlittle-endian’ option is the same as ‘-mlittle’.

-mbig
-mbig-endian

On System V.4 and embedded PowerPC systems compile code for the processor
in big-endian mode. The ‘-mbig-endian’ option is the same as ‘-mbig’.

-mdynamic-no-pic
On Darwin and Mac OS X systems, compile code so that it is not relocatable,
but that its external references are relocatable. The resulting code is suitable
for applications, but not shared libraries.

-msingle-pic-base
Treat the register used for PIC addressing as read-only, rather than loading
it in the prologue for each function. The runtime system is responsible for
initializing this register with an appropriate value before execution begins.

290 Using the GNU Compiler Collection (GCC)

-mprioritize-restricted-insns=priority
This option controls the priority that is assigned to dispatch-slot restricted
instructions during the second scheduling pass. The argument priority takes
the value ‘0’, ‘1’, or ‘2’ to assign no, highest, or second-highest (respectively)
priority to dispatch-slot restricted instructions.

-msched-costly-dep=dependence_type
This option controls which dependences are considered costly by the target
during instruction scheduling. The argument dependence type takes one of the
following values:

‘no’ No dependence is costly.

‘all’ All dependences are costly.

‘true_store_to_load’
A true dependence from store to load is costly.

‘store_to_load’
Any dependence from store to load is costly.

number Any dependence for which the latency is greater than or equal to
number is costly.

-minsert-sched-nops=scheme
This option controls which NOP insertion scheme is used during the second
scheduling pass. The argument scheme takes one of the following values:

‘no’ Don’t insert NOPs.

‘pad’ Pad with NOPs any dispatch group that has vacant issue slots,
according to the scheduler’s grouping.

‘regroup_exact’
Insert NOPs to force costly dependent insns into separate groups.
Insert exactly as many NOPs as needed to force an insn to a new
group, according to the estimated processor grouping.

number Insert NOPs to force costly dependent insns into separate groups.
Insert number NOPs to force an insn to a new group.

-mcall-sysv
On System V.4 and embedded PowerPC systems compile code using calling
conventions that adhere to the March 1995 draft of the System V Application
Binary Interface, PowerPC processor supplement. This is the default unless
you configured GCC using ‘powerpc-*-eabiaix’.

-mcall-sysv-eabi
-mcall-eabi

Specify both ‘-mcall-sysv’ and ‘-meabi’ options.

-mcall-sysv-noeabi
Specify both ‘-mcall-sysv’ and ‘-mno-eabi’ options.

Chapter 3: GCC Command Options 291

-mcall-aixdesc
On System V.4 and embedded PowerPC systems compile code for the AIX
operating system.

-mcall-linux
On System V.4 and embedded PowerPC systems compile code for the Linux-
based GNU system.

-mcall-freebsd
On System V.4 and embedded PowerPC systems compile code for the FreeBSD
operating system.

-mcall-netbsd
On System V.4 and embedded PowerPC systems compile code for the NetBSD
operating system.

-mcall-openbsd
On System V.4 and embedded PowerPC systems compile code for the OpenBSD
operating system.

-maix-struct-return
Return all structures in memory (as specified by the AIX ABI).

-msvr4-struct-return
Return structures smaller than 8 bytes in registers (as specified by the SVR4
ABI).

-mabi=abi-type
Extend the current ABI with a particular extension, or remove such extension.
Valid values are altivec, no-altivec, spe, no-spe, ibmlongdouble, ieeelongdouble,
elfv1, elfv2.

-mabi=spe
Extend the current ABI with SPE ABI extensions. This does not change the
default ABI, instead it adds the SPE ABI extensions to the current ABI.

-mabi=no-spe
Disable Book-E SPE ABI extensions for the current ABI.

-mabi=ibmlongdouble
Change the current ABI to use IBM extended-precision long double. This is a
PowerPC 32-bit SYSV ABI option.

-mabi=ieeelongdouble
Change the current ABI to use IEEE extended-precision long double. This is
a PowerPC 32-bit Linux ABI option.

-mabi=elfv1
Change the current ABI to use the ELFv1 ABI. This is the default ABI for
big-endian PowerPC 64-bit Linux. Overriding the default ABI requires special
system support and is likely to fail in spectacular ways.

-mabi=elfv2
Change the current ABI to use the ELFv2 ABI. This is the default ABI for
little-endian PowerPC 64-bit Linux. Overriding the default ABI requires special
system support and is likely to fail in spectacular ways.

292 Using the GNU Compiler Collection (GCC)

-mprototype
-mno-prototype

On System V.4 and embedded PowerPC systems assume that all calls to vari-
able argument functions are properly prototyped. Otherwise, the compiler must
insert an instruction before every non-prototyped call to set or clear bit 6 of
the condition code register (CR) to indicate whether floating-point values are
passed in the floating-point registers in case the function takes variable argu-
ments. With ‘-mprototype’, only calls to prototyped variable argument func-
tions set or clear the bit.

-msim On embedded PowerPC systems, assume that the startup module is called
‘sim-crt0.o’ and that the standard C libraries are ‘libsim.a’ and ‘libc.a’.
This is the default for ‘powerpc-*-eabisim’ configurations.

-mmvme On embedded PowerPC systems, assume that the startup module is called
‘crt0.o’ and the standard C libraries are ‘libmvme.a’ and ‘libc.a’.

-mads On embedded PowerPC systems, assume that the startup module is called
‘crt0.o’ and the standard C libraries are ‘libads.a’ and ‘libc.a’.

-myellowknife
On embedded PowerPC systems, assume that the startup module is called
‘crt0.o’ and the standard C libraries are ‘libyk.a’ and ‘libc.a’.

-mvxworks
On System V.4 and embedded PowerPC systems, specify that you are compiling
for a VxWorks system.

-memb On embedded PowerPC systems, set the PPC EMB bit in the ELF flags header
to indicate that ‘eabi’ extended relocations are used.

-meabi
-mno-eabi

On System V.4 and embedded PowerPC systems do (do not) adhere to the
Embedded Applications Binary Interface (EABI), which is a set of modifications
to the System V.4 specifications. Selecting ‘-meabi’ means that the stack is
aligned to an 8-byte boundary, a function __eabi is called from main to set up
the EABI environment, and the ‘-msdata’ option can use both r2 and r13 to
point to two separate small data areas. Selecting ‘-mno-eabi’ means that the
stack is aligned to a 16-byte boundary, no EABI initialization function is called
from main, and the ‘-msdata’ option only uses r13 to point to a single small
data area. The ‘-meabi’ option is on by default if you configured GCC using
one of the ‘powerpc*-*-eabi*’ options.

-msdata=eabi
On System V.4 and embedded PowerPC systems, put small initialized const
global and static data in the ‘.sdata2’ section, which is pointed to by register
r2. Put small initialized non-const global and static data in the ‘.sdata’
section, which is pointed to by register r13. Put small uninitialized global and
static data in the ‘.sbss’ section, which is adjacent to the ‘.sdata’ section.
The ‘-msdata=eabi’ option is incompatible with the ‘-mrelocatable’ option.
The ‘-msdata=eabi’ option also sets the ‘-memb’ option.

Chapter 3: GCC Command Options 293

-msdata=sysv
On System V.4 and embedded PowerPC systems, put small global and static
data in the ‘.sdata’ section, which is pointed to by register r13. Put small
uninitialized global and static data in the ‘.sbss’ section, which is adjacent
to the ‘.sdata’ section. The ‘-msdata=sysv’ option is incompatible with the
‘-mrelocatable’ option.

-msdata=default
-msdata On System V.4 and embedded PowerPC systems, if ‘-meabi’ is used, com-

pile code the same as ‘-msdata=eabi’, otherwise compile code the same as
‘-msdata=sysv’.

-msdata=data
On System V.4 and embedded PowerPC systems, put small global data in the
‘.sdata’ section. Put small uninitialized global data in the ‘.sbss’ section. Do
not use register r13 to address small data however. This is the default behavior
unless other ‘-msdata’ options are used.

-msdata=none
-mno-sdata

On embedded PowerPC systems, put all initialized global and static data in
the ‘.data’ section, and all uninitialized data in the ‘.bss’ section.

-mblock-move-inline-limit=num
Inline all block moves (such as calls to memcpy or structure copies) less than or
equal to num bytes. The minimum value for num is 32 bytes on 32-bit targets
and 64 bytes on 64-bit targets. The default value is target-specific.

-G num On embedded PowerPC systems, put global and static items less than or equal
to num bytes into the small data or BSS sections instead of the normal data or
BSS section. By default, num is 8. The ‘-G num’ switch is also passed to the
linker. All modules should be compiled with the same ‘-G num’ value.

-mregnames
-mno-regnames

On System V.4 and embedded PowerPC systems do (do not) emit register
names in the assembly language output using symbolic forms.

-mlongcall
-mno-longcall

By default assume that all calls are far away so that a longer and more expensive
calling sequence is required. This is required for calls farther than 32 megabytes
(33,554,432 bytes) from the current location. A short call is generated if the
compiler knows the call cannot be that far away. This setting can be overridden
by the shortcall function attribute, or by #pragma longcall(0).

Some linkers are capable of detecting out-of-range calls and generating glue
code on the fly. On these systems, long calls are unnecessary and generate
slower code. As of this writing, the AIX linker can do this, as can the GNU
linker for PowerPC/64. It is planned to add this feature to the GNU linker for
32-bit PowerPC systems as well.

294 Using the GNU Compiler Collection (GCC)

On Darwin/PPC systems, #pragma longcall generates jbsr callee, L42,
plus a branch island (glue code). The two target addresses represent the callee
and the branch island. The Darwin/PPC linker prefers the first address and
generates a bl callee if the PPC bl instruction reaches the callee directly;
otherwise, the linker generates bl L42 to call the branch island. The branch
island is appended to the body of the calling function; it computes the full
32-bit address of the callee and jumps to it.

On Mach-O (Darwin) systems, this option directs the compiler emit to the glue
for every direct call, and the Darwin linker decides whether to use or discard
it.

In the future, GCC may ignore all longcall specifications when the linker is
known to generate glue.

-mtls-markers
-mno-tls-markers

Mark (do not mark) calls to __tls_get_addr with a relocation specifying the
function argument. The relocation allows the linker to reliably associate func-
tion call with argument setup instructions for TLS optimization, which in turn
allows GCC to better schedule the sequence.

-pthread Adds support for multithreading with the pthreads library. This option sets
flags for both the preprocessor and linker.

-mrecip
-mno-recip

This option enables use of the reciprocal estimate and reciprocal square
root estimate instructions with additional Newton-Raphson steps to increase
precision instead of doing a divide or square root and divide for floating-point
arguments. You should use the ‘-ffast-math’ option when using ‘-mrecip’
(or at least ‘-funsafe-math-optimizations’, ‘-finite-math-only’,
‘-freciprocal-math’ and ‘-fno-trapping-math’). Note that while the
throughput of the sequence is generally higher than the throughput of the
non-reciprocal instruction, the precision of the sequence can be decreased by
up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994) for reciprocal square
roots.

-mrecip=opt
This option controls which reciprocal estimate instructions may be used. opt
is a comma-separated list of options, which may be preceded by a ! to invert
the option: all: enable all estimate instructions, default: enable the default
instructions, equivalent to ‘-mrecip’, none: disable all estimate instructions,
equivalent to ‘-mno-recip’; div: enable the reciprocal approximation instruc-
tions for both single and double precision; divf: enable the single-precision
reciprocal approximation instructions; divd: enable the double-precision re-
ciprocal approximation instructions; rsqrt: enable the reciprocal square root
approximation instructions for both single and double precision; rsqrtf: enable
the single-precision reciprocal square root approximation instructions; rsqrtd:
enable the double-precision reciprocal square root approximation instructions;

Chapter 3: GCC Command Options 295

So, for example, ‘-mrecip=all,!rsqrtd’ enables all of the reciprocal estimate
instructions, except for the FRSQRTE, XSRSQRTEDP, and XVRSQRTEDP instructions
which handle the double-precision reciprocal square root calculations.

-mrecip-precision
-mno-recip-precision

Assume (do not assume) that the reciprocal estimate instructions provide
higher-precision estimates than is mandated by the PowerPC ABI. Selecting
‘-mcpu=power6’, ‘-mcpu=power7’ or ‘-mcpu=power8’ automatically selects
‘-mrecip-precision’. The double-precision square root estimate instructions
are not generated by default on low-precision machines, since they do not
provide an estimate that converges after three steps.

-mveclibabi=type
Specifies the ABI type to use for vectorizing intrinsics using an external
library. The only type supported at present is mass, which specifies to use
IBM’s Mathematical Acceleration Subsystem (MASS) libraries for vectorizing
intrinsics using external libraries. GCC currently emits calls to acosd2,
acosf4, acoshd2, acoshf4, asind2, asinf4, asinhd2, asinhf4, atan2d2,
atan2f4, atand2, atanf4, atanhd2, atanhf4, cbrtd2, cbrtf4, cosd2, cosf4,
coshd2, coshf4, erfcd2, erfcf4, erfd2, erff4, exp2d2, exp2f4, expd2,
expf4, expm1d2, expm1f4, hypotd2, hypotf4, lgammad2, lgammaf4, log10d2,
log10f4, log1pd2, log1pf4, log2d2, log2f4, logd2, logf4, powd2, powf4,
sind2, sinf4, sinhd2, sinhf4, sqrtd2, sqrtf4, tand2, tanf4, tanhd2, and
tanhf4 when generating code for power7. Both ‘-ftree-vectorize’ and
‘-funsafe-math-optimizations’ must also be enabled. The MASS libraries
must be specified at link time.

-mfriz
-mno-friz

Generate (do not generate) the friz instruction when the
‘-funsafe-math-optimizations’ option is used to optimize rounding
of floating-point values to 64-bit integer and back to floating point. The friz
instruction does not return the same value if the floating-point number is too
large to fit in an integer.

-mpointers-to-nested-functions
-mno-pointers-to-nested-functions

Generate (do not generate) code to load up the static chain register
(r11) when calling through a pointer on AIX and 64-bit Linux systems
where a function pointer points to a 3-word descriptor giving the function
address, TOC value to be loaded in register r2, and static chain value to be
loaded in register r11. The ‘-mpointers-to-nested-functions’ is on by
default. You cannot call through pointers to nested functions or pointers to
functions compiled in other languages that use the static chain if you use the
‘-mno-pointers-to-nested-functions’.

296 Using the GNU Compiler Collection (GCC)

-msave-toc-indirect
-mno-save-toc-indirect

Generate (do not generate) code to save the TOC value in the reserved stack
location in the function prologue if the function calls through a pointer on AIX
and 64-bit Linux systems. If the TOC value is not saved in the prologue, it is
saved just before the call through the pointer. The ‘-mno-save-toc-indirect’
option is the default.

-mcompat-align-parm
-mno-compat-align-parm

Generate (do not generate) code to pass structure parameters with a maximum
alignment of 64 bits, for compatibility with older versions of GCC.

Older versions of GCC (prior to 4.9.0) incorrectly did not align a structure
parameter on a 128-bit boundary when that structure contained a member
requiring 128-bit alignment. This is corrected in more recent versions of GCC.
This option may be used to generate code that is compatible with functions
compiled with older versions of GCC.

The ‘-mno-compat-align-parm’ option is the default.

3.17.39 RX Options

These command-line options are defined for RX targets:

-m64bit-doubles
-m32bit-doubles

Make the double data type be 64 bits (‘-m64bit-doubles’) or 32 bits
(‘-m32bit-doubles’) in size. The default is ‘-m32bit-doubles’. Note RX
floating-point hardware only works on 32-bit values, which is why the default
is ‘-m32bit-doubles’.

-fpu
-nofpu Enables (‘-fpu’) or disables (‘-nofpu’) the use of RX floating-point hardware.

The default is enabled for the RX600 series and disabled for the RX200 series.

Floating-point instructions are only generated for 32-bit floating-point values,
however, so the FPU hardware is not used for doubles if the ‘-m64bit-doubles’
option is used.

Note If the ‘-fpu’ option is enabled then ‘-funsafe-math-optimizations’ is
also enabled automatically. This is because the RX FPU instructions are them-
selves unsafe.

-mcpu=name
Selects the type of RX CPU to be targeted. Currently three types are sup-
ported, the generic RX600 and RX200 series hardware and the specific RX610
CPU. The default is RX600.

The only difference between RX600 and RX610 is that the RX610 does not
support the MVTIPL instruction.

The RX200 series does not have a hardware floating-point unit and so ‘-nofpu’
is enabled by default when this type is selected.

Chapter 3: GCC Command Options 297

-mbig-endian-data
-mlittle-endian-data

Store data (but not code) in the big-endian format. The default is
‘-mlittle-endian-data’, i.e. to store data in the little-endian format.

-msmall-data-limit=N
Specifies the maximum size in bytes of global and static variables which can be
placed into the small data area. Using the small data area can lead to smaller
and faster code, but the size of area is limited and it is up to the programmer to
ensure that the area does not overflow. Also when the small data area is used
one of the RX’s registers (usually r13) is reserved for use pointing to this area,
so it is no longer available for use by the compiler. This could result in slower
and/or larger code if variables are pushed onto the stack instead of being held
in this register.

Note, common variables (variables that have not been initialized) and constants
are not placed into the small data area as they are assigned to other sections
in the output executable.

The default value is zero, which disables this feature. Note, this feature is not
enabled by default with higher optimization levels (‘-O2’ etc) because of the
potentially detrimental effects of reserving a register. It is up to the programmer
to experiment and discover whether this feature is of benefit to their program.
See the description of the ‘-mpid’ option for a description of how the actual
register to hold the small data area pointer is chosen.

-msim
-mno-sim Use the simulator runtime. The default is to use the libgloss board-specific

runtime.

-mas100-syntax
-mno-as100-syntax

When generating assembler output use a syntax that is compatible with Rene-
sas’s AS100 assembler. This syntax can also be handled by the GAS assembler,
but it has some restrictions so it is not generated by default.

-mmax-constant-size=N
Specifies the maximum size, in bytes, of a constant that can be used as an
operand in a RX instruction. Although the RX instruction set does allow
constants of up to 4 bytes in length to be used in instructions, a longer value
equates to a longer instruction. Thus in some circumstances it can be beneficial
to restrict the size of constants that are used in instructions. Constants that
are too big are instead placed into a constant pool and referenced via register
indirection.

The value N can be between 0 and 4. A value of 0 (the default) or 4 means
that constants of any size are allowed.

-mrelax Enable linker relaxation. Linker relaxation is a process whereby the linker
attempts to reduce the size of a program by finding shorter versions of various
instructions. Disabled by default.

298 Using the GNU Compiler Collection (GCC)

-mint-register=N
Specify the number of registers to reserve for fast interrupt handler functions.
The value N can be between 0 and 4. A value of 1 means that register r13 is
reserved for the exclusive use of fast interrupt handlers. A value of 2 reserves
r13 and r12. A value of 3 reserves r13, r12 and r11, and a value of 4 reserves
r13 through r10. A value of 0, the default, does not reserve any registers.

-msave-acc-in-interrupts
Specifies that interrupt handler functions should preserve the accumulator reg-
ister. This is only necessary if normal code might use the accumulator register,
for example because it performs 64-bit multiplications. The default is to ignore
the accumulator as this makes the interrupt handlers faster.

-mpid
-mno-pid Enables the generation of position independent data. When enabled any access

to constant data is done via an offset from a base address held in a register.
This allows the location of constant data to be determined at run time with-
out requiring the executable to be relocated, which is a benefit to embedded
applications with tight memory constraints. Data that can be modified is not
affected by this option.
Note, using this feature reserves a register, usually r13, for the constant data
base address. This can result in slower and/or larger code, especially in com-
plicated functions.
The actual register chosen to hold the constant data base address depends upon
whether the ‘-msmall-data-limit’ and/or the ‘-mint-register’ command-
line options are enabled. Starting with register r13 and proceeding downwards,
registers are allocated first to satisfy the requirements of ‘-mint-register’,
then ‘-mpid’ and finally ‘-msmall-data-limit’. Thus it is possible for the
small data area register to be r8 if both ‘-mint-register=4’ and ‘-mpid’ are
specified on the command line.
By default this feature is not enabled. The default can be restored via the
‘-mno-pid’ command-line option.

-mno-warn-multiple-fast-interrupts
-mwarn-multiple-fast-interrupts

Prevents GCC from issuing a warning message if it finds more than one fast
interrupt handler when it is compiling a file. The default is to issue a warning
for each extra fast interrupt handler found, as the RX only supports one such
interrupt.

Note: The generic GCC command-line option ‘-ffixed-reg’ has special significance to
the RX port when used with the interrupt function attribute. This attribute indicates a
function intended to process fast interrupts. GCC ensures that it only uses the registers r10,
r11, r12 and/or r13 and only provided that the normal use of the corresponding registers
have been restricted via the ‘-ffixed-reg’ or ‘-mint-register’ command-line options.

3.17.40 S/390 and zSeries Options

These are the ‘-m’ options defined for the S/390 and zSeries architecture.

Chapter 3: GCC Command Options 299

-mhard-float
-msoft-float

Use (do not use) the hardware floating-point instructions and registers
for floating-point operations. When ‘-msoft-float’ is specified, functions
in ‘libgcc.a’ are used to perform floating-point operations. When
‘-mhard-float’ is specified, the compiler generates IEEE floating-point
instructions. This is the default.

-mhard-dfp
-mno-hard-dfp

Use (do not use) the hardware decimal-floating-point instructions for
decimal-floating-point operations. When ‘-mno-hard-dfp’ is specified,
functions in ‘libgcc.a’ are used to perform decimal-floating-point operations.
When ‘-mhard-dfp’ is specified, the compiler generates decimal-floating-point
hardware instructions. This is the default for ‘-march=z9-ec’ or higher.

-mlong-double-64
-mlong-double-128

These switches control the size of long double type. A size of 64 bits makes
the long double type equivalent to the double type. This is the default.

-mbackchain
-mno-backchain

Store (do not store) the address of the caller’s frame as backchain pointer into
the callee’s stack frame. A backchain may be needed to allow debugging us-
ing tools that do not understand DWARF 2 call frame information. When
‘-mno-packed-stack’ is in effect, the backchain pointer is stored at the bottom
of the stack frame; when ‘-mpacked-stack’ is in effect, the backchain is placed
into the topmost word of the 96/160 byte register save area.
In general, code compiled with ‘-mbackchain’ is call-compatible with code com-
piled with ‘-mmo-backchain’; however, use of the backchain for debugging pur-
poses usually requires that the whole binary is built with ‘-mbackchain’. Note
that the combination of ‘-mbackchain’, ‘-mpacked-stack’ and ‘-mhard-float’
is not supported. In order to build a linux kernel use ‘-msoft-float’.
The default is to not maintain the backchain.

-mpacked-stack
-mno-packed-stack

Use (do not use) the packed stack layout. When ‘-mno-packed-stack’ is spec-
ified, the compiler uses the all fields of the 96/160 byte register save area
only for their default purpose; unused fields still take up stack space. When
‘-mpacked-stack’ is specified, register save slots are densely packed at the top
of the register save area; unused space is reused for other purposes, allowing for
more efficient use of the available stack space. However, when ‘-mbackchain’
is also in effect, the topmost word of the save area is always used to store the
backchain, and the return address register is always saved two words below the
backchain.
As long as the stack frame backchain is not used, code generated
with ‘-mpacked-stack’ is call-compatible with code generated with

300 Using the GNU Compiler Collection (GCC)

‘-mno-packed-stack’. Note that some non-FSF releases of GCC 2.95 for
S/390 or zSeries generated code that uses the stack frame backchain at run
time, not just for debugging purposes. Such code is not call-compatible with
code compiled with ‘-mpacked-stack’. Also, note that the combination of
‘-mbackchain’, ‘-mpacked-stack’ and ‘-mhard-float’ is not supported. In
order to build a linux kernel use ‘-msoft-float’.

The default is to not use the packed stack layout.

-msmall-exec
-mno-small-exec

Generate (or do not generate) code using the bras instruction to do subroutine
calls. This only works reliably if the total executable size does not exceed 64k.
The default is to use the basr instruction instead, which does not have this
limitation.

-m64
-m31 When ‘-m31’ is specified, generate code compliant to the GNU/Linux for S/390

ABI. When ‘-m64’ is specified, generate code compliant to the GNU/Linux for
zSeries ABI. This allows GCC in particular to generate 64-bit instructions. For
the ‘s390’ targets, the default is ‘-m31’, while the ‘s390x’ targets default to
‘-m64’.

-mzarch
-mesa When ‘-mzarch’ is specified, generate code using the instructions available on

z/Architecture. When ‘-mesa’ is specified, generate code using the instructions
available on ESA/390. Note that ‘-mesa’ is not possible with ‘-m64’. When
generating code compliant to the GNU/Linux for S/390 ABI, the default is
‘-mesa’. When generating code compliant to the GNU/Linux for zSeries ABI,
the default is ‘-mzarch’.

-mmvcle
-mno-mvcle

Generate (or do not generate) code using the mvcle instruction to perform
block moves. When ‘-mno-mvcle’ is specified, use a mvc loop instead. This is
the default unless optimizing for size.

-mdebug
-mno-debug

Print (or do not print) additional debug information when compiling. The
default is to not print debug information.

-march=cpu-type
Generate code that runs on cpu-type, which is the name of a system represent-
ing a certain processor type. Possible values for cpu-type are ‘g5’, ‘g6’, ‘z900’,
‘z990’, ‘z9-109’, ‘z9-ec’ and ‘z10’. When generating code using the instruc-
tions available on z/Architecture, the default is ‘-march=z900’. Otherwise, the
default is ‘-march=g5’.

Chapter 3: GCC Command Options 301

-mtune=cpu-type
Tune to cpu-type everything applicable about the generated code, except for
the ABI and the set of available instructions. The list of cpu-type values is the
same as for ‘-march’. The default is the value used for ‘-march’.

-mtpf-trace
-mno-tpf-trace

Generate code that adds (does not add) in TPF OS specific branches to trace
routines in the operating system. This option is off by default, even when
compiling for the TPF OS.

-mfused-madd
-mno-fused-madd

Generate code that uses (does not use) the floating-point multiply and accu-
mulate instructions. These instructions are generated by default if hardware
floating point is used.

-mwarn-framesize=framesize
Emit a warning if the current function exceeds the given frame size. Because
this is a compile-time check it doesn’t need to be a real problem when the
program runs. It is intended to identify functions that most probably cause a
stack overflow. It is useful to be used in an environment with limited stack size
e.g. the linux kernel.

-mwarn-dynamicstack
Emit a warning if the function calls alloca or uses dynamically-sized arrays.
This is generally a bad idea with a limited stack size.

-mstack-guard=stack-guard
-mstack-size=stack-size

If these options are provided the S/390 back end emits additional instructions
in the function prologue that trigger a trap if the stack size is stack-guard bytes
above the stack-size (remember that the stack on S/390 grows downward).
If the stack-guard option is omitted the smallest power of 2 larger than the
frame size of the compiled function is chosen. These options are intended to
be used to help debugging stack overflow problems. The additionally emitted
code causes only little overhead and hence can also be used in production-like
systems without greater performance degradation. The given values have to be
exact powers of 2 and stack-size has to be greater than stack-guard without
exceeding 64k. In order to be efficient the extra code makes the assumption
that the stack starts at an address aligned to the value given by stack-size. The
stack-guard option can only be used in conjunction with stack-size.

-mhotpatch[=halfwords]
-mno-hotpatch

If the hotpatch option is enabled, a “hot-patching” function prologue is gener-
ated for all functions in the compilation unit. The funtion label is prepended
with the given number of two-byte Nop instructions (halfwords, maximum
1000000) or 12 Nop instructions if no argument is present. Functions with
a hot-patching prologue are never inlined automatically, and a hot-patching
prologue is never generated for functions functions that are explicitly inline.

302 Using the GNU Compiler Collection (GCC)

This option can be overridden for individual functions with the hotpatch at-
tribute.

3.17.41 Score Options

These options are defined for Score implementations:

-meb Compile code for big-endian mode. This is the default.

-mel Compile code for little-endian mode.

-mnhwloop
Disable generation of bcnz instructions.

-muls Enable generation of unaligned load and store instructions.

-mmac Enable the use of multiply-accumulate instructions. Disabled by default.

-mscore5 Specify the SCORE5 as the target architecture.

-mscore5u
Specify the SCORE5U of the target architecture.

-mscore7 Specify the SCORE7 as the target architecture. This is the default.

-mscore7d
Specify the SCORE7D as the target architecture.

3.17.42 SH Options

These ‘-m’ options are defined for the SH implementations:

-m1 Generate code for the SH1.

-m2 Generate code for the SH2.

-m2e Generate code for the SH2e.

-m2a-nofpu
Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
that the floating-point unit is not used.

-m2a-single-only
Generate code for the SH2a-FPU, in such a way that no double-precision
floating-point operations are used.

-m2a-single
Generate code for the SH2a-FPU assuming the floating-point unit is in single-
precision mode by default.

-m2a Generate code for the SH2a-FPU assuming the floating-point unit is in double-
precision mode by default.

-m3 Generate code for the SH3.

-m3e Generate code for the SH3e.

-m4-nofpu
Generate code for the SH4 without a floating-point unit.

Chapter 3: GCC Command Options 303

-m4-single-only
Generate code for the SH4 with a floating-point unit that only supports single-
precision arithmetic.

-m4-single
Generate code for the SH4 assuming the floating-point unit is in single-precision
mode by default.

-m4 Generate code for the SH4.

-m4a-nofpu
Generate code for the SH4al-dsp, or for a SH4a in such a way that the floating-
point unit is not used.

-m4a-single-only
Generate code for the SH4a, in such a way that no double-precision floating-
point operations are used.

-m4a-single
Generate code for the SH4a assuming the floating-point unit is in
single-precision mode by default.

-m4a Generate code for the SH4a.

-m4al Same as ‘-m4a-nofpu’, except that it implicitly passes ‘-dsp’ to the assembler.
GCC doesn’t generate any DSP instructions at the moment.

-mb Compile code for the processor in big-endian mode.

-ml Compile code for the processor in little-endian mode.

-mdalign Align doubles at 64-bit boundaries. Note that this changes the calling conven-
tions, and thus some functions from the standard C library do not work unless
you recompile it first with ‘-mdalign’.

-mrelax Shorten some address references at link time, when possible; uses the linker
option ‘-relax’.

-mbigtable
Use 32-bit offsets in switch tables. The default is to use 16-bit offsets.

-mbitops Enable the use of bit manipulation instructions on SH2A.

-mfmovd Enable the use of the instruction fmovd. Check ‘-mdalign’ for alignment con-
straints.

-mhitachi
Comply with the calling conventions defined by Renesas.

-mrenesas
Comply with the calling conventions defined by Renesas.

-mno-renesas
Comply with the calling conventions defined for GCC before the Renesas con-
ventions were available. This option is the default for all targets of the SH
toolchain.

304 Using the GNU Compiler Collection (GCC)

-mnomacsave
Mark the MAC register as call-clobbered, even if ‘-mhitachi’ is given.

-mieee
-mno-ieee

Control the IEEE compliance of floating-point comparisons, which affects the
handling of cases where the result of a comparison is unordered. By default
‘-mieee’ is implicitly enabled. If ‘-ffinite-math-only’ is enabled ‘-mno-ieee’
is implicitly set, which results in faster floating-point greater-equal and less-
equal comparisons. The implcit settings can be overridden by specifying either
‘-mieee’ or ‘-mno-ieee’.

-minline-ic_invalidate
Inline code to invalidate instruction cache entries after setting up nested func-
tion trampolines. This option has no effect if ‘-musermode’ is in effect and the
selected code generation option (e.g. ‘-m4’) does not allow the use of the icbi
instruction. If the selected code generation option does not allow the use of
the icbi instruction, and ‘-musermode’ is not in effect, the inlined code ma-
nipulates the instruction cache address array directly with an associative write.
This not only requires privileged mode at run time, but it also fails if the cache
line had been mapped via the TLB and has become unmapped.

-misize Dump instruction size and location in the assembly code.

-mpadstruct
This option is deprecated. It pads structures to multiple of 4 bytes, which is
incompatible with the SH ABI.

-matomic-model=model
Sets the model of atomic operations and additional parameters as a comma
separated list. For details on the atomic built-in functions see Section 6.52
[atomic Builtins], page 475. The following models and parameters are sup-
ported:

‘none’ Disable compiler generated atomic sequences and emit library calls
for atomic operations. This is the default if the target is not sh-
-linux.

‘soft-gusa’
Generate GNU/Linux compatible gUSA software atomic sequences
for the atomic built-in functions. The generated atomic sequences
require additional support from the interrupt/exception handling
code of the system and are only suitable for SH3* and SH4* single-
core systems. This option is enabled by default when the target is
sh-*-linux* and SH3* or SH4*. When the target is SH4A, this
option will also partially utilize the hardware atomic instructions
movli.l and movco.l to create more efficient code, unless ‘strict’
is specified.

‘soft-tcb’
Generate software atomic sequences that use a variable in the
thread control block. This is a variation of the gUSA sequences

Chapter 3: GCC Command Options 305

which can also be used on SH1* and SH2* targets. The
generated atomic sequences require additional support from the
interrupt/exception handling code of the system and are only
suitable for single-core systems. When using this model, the
‘gbr-offset=’ parameter has to be specified as well.

‘soft-imask’
Generate software atomic sequences that temporarily disable inter-
rupts by setting SR.IMASK = 1111. This model works only when the
program runs in privileged mode and is only suitable for single-core
systems. Additional support from the interrupt/exception handling
code of the system is not required. This model is enabled by default
when the target is sh-*-linux* and SH1* or SH2*.

‘hard-llcs’
Generate hardware atomic sequences using the movli.l and
movco.l instructions only. This is only available on SH4A and is
suitable for multi-core systems. Since the hardware instructions
support only 32 bit atomic variables access to 8 or 16 bit variables
is emulated with 32 bit accesses. Code compiled with this
option will also be compatible with other software atomic model
interrupt/exception handling systems if executed on an SH4A
system. Additional support from the interrupt/exception handling
code of the system is not required for this model.

‘gbr-offset=’
This parameter specifies the offset in bytes of the variable in the
thread control block structure that should be used by the generated
atomic sequences when the ‘soft-tcb’ model has been selected. For
other models this parameter is ignored. The specified value must
be an integer multiple of four and in the range 0-1020.

‘strict’ This parameter prevents mixed usage of multiple atomic models,
even though they would be compatible, and will make the compiler
generate atomic sequences of the specified model only.

-mtas Generate the tas.b opcode for __atomic_test_and_set. Notice that depend-
ing on the particular hardware and software configuration this can degrade
overall performance due to the operand cache line flushes that are implied by
the tas.b instruction. On multi-core SH4A processors the tas.b instruction
must be used with caution since it can result in data corruption for certain
cache configurations.

-mspace Optimize for space instead of speed. Implied by ‘-Os’.

-mprefergot
When generating position-independent code, emit function calls using the
Global Offset Table instead of the Procedure Linkage Table.

306 Using the GNU Compiler Collection (GCC)

-musermode
Don’t generate privileged mode only code. This option implies
‘-mno-inline-ic_invalidate’ if the inlined code would not work in user
mode. This is the default when the target is sh-*-linux*.

-multcost=number
Set the cost to assume for a multiply insn.

-mdiv=strategy
Set the division strategy to be used for integer division operations. For SHmedia
strategy can be one of:

‘fp’ Performs the operation in floating point. This has a very high la-
tency, but needs only a few instructions, so it might be a good
choice if your code has enough easily-exploitable ILP to allow the
compiler to schedule the floating-point instructions together with
other instructions. Division by zero causes a floating-point excep-
tion.

‘inv’ Uses integer operations to calculate the inverse of the divisor, and
then multiplies the dividend with the inverse. This strategy al-
lows CSE and hoisting of the inverse calculation. Division by zero
calculates an unspecified result, but does not trap.

‘inv:minlat’
A variant of ‘inv’ where, if no CSE or hoisting opportunities have
been found, or if the entire operation has been hoisted to the same
place, the last stages of the inverse calculation are intertwined with
the final multiply to reduce the overall latency, at the expense of
using a few more instructions, and thus offering fewer scheduling
opportunities with other code.

‘call’ Calls a library function that usually implements the ‘inv:minlat’
strategy. This gives high code density for m5-*media-nofpu com-
pilations.

‘call2’ Uses a different entry point of the same library function, where it
assumes that a pointer to a lookup table has already been set up,
which exposes the pointer load to CSE and code hoisting optimiza-
tions.

‘inv:call’
‘inv:call2’
‘inv:fp’ Use the ‘inv’ algorithm for initial code generation, but if the code

stays unoptimized, revert to the ‘call’, ‘call2’, or ‘fp’ strategies,
respectively. Note that the potentially-trapping side effect of divi-
sion by zero is carried by a separate instruction, so it is possible
that all the integer instructions are hoisted out, but the marker for
the side effect stays where it is. A recombination to floating-point
operations or a call is not possible in that case.

Chapter 3: GCC Command Options 307

‘inv20u’
‘inv20l’ Variants of the ‘inv:minlat’ strategy. In the case that the inverse

calculation is not separated from the multiply, they speed up divi-
sion where the dividend fits into 20 bits (plus sign where applicable)
by inserting a test to skip a number of operations in this case; this
test slows down the case of larger dividends. ‘inv20u’ assumes the
case of a such a small dividend to be unlikely, and ‘inv20l’ assumes
it to be likely.

For targets other than SHmedia strategy can be one of:

‘call-div1’
Calls a library function that uses the single-step division instruc-
tion div1 to perform the operation. Division by zero calculates an
unspecified result and does not trap. This is the default except for
SH4, SH2A and SHcompact.

‘call-fp’ Calls a library function that performs the operation in double pre-
cision floating point. Division by zero causes a floating-point excep-
tion. This is the default for SHcompact with FPU. Specifying this
for targets that do not have a double precision FPU will default to
call-div1.

‘call-table’
Calls a library function that uses a lookup table for small divisors
and the div1 instruction with case distinction for larger divisors.
Division by zero calculates an unspecified result and does not trap.
This is the default for SH4. Specifying this for targets that do not
have dynamic shift instructions will default to call-div1.

When a division strategy has not been specified the default strategy will be
selected based on the current target. For SH2A the default strategy is to use
the divs and divu instructions instead of library function calls.

-maccumulate-outgoing-args
Reserve space once for outgoing arguments in the function prologue rather than
around each call. Generally beneficial for performance and size. Also needed
for unwinding to avoid changing the stack frame around conditional code.

-mdivsi3_libfunc=name
Set the name of the library function used for 32-bit signed division to name.
This only affects the name used in the ‘call’ and ‘inv:call’ division strategies,
and the compiler still expects the same sets of input/output/clobbered registers
as if this option were not present.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed
register is one that the register allocator can not use. This is useful when
compiling kernel code. A register range is specified as two registers separated
by a dash. Multiple register ranges can be specified separated by a comma.

308 Using the GNU Compiler Collection (GCC)

-mindexed-addressing
Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
This is only safe if the hardware and/or OS implement 32-bit wrap-around
semantics for the indexed addressing mode. The architecture allows the imple-
mentation of processors with 64-bit MMU, which the OS could use to get 32-bit
addressing, but since no current hardware implementation supports this or any
other way to make the indexed addressing mode safe to use in the 32-bit ABI,
the default is ‘-mno-indexed-addressing’.

-mgettrcost=number
Set the cost assumed for the gettr instruction to number. The default is 2 if
‘-mpt-fixed’ is in effect, 100 otherwise.

-mpt-fixed
Assume pt* instructions won’t trap. This generally generates better-scheduled
code, but is unsafe on current hardware. The current architecture definition
says that ptabs and ptrel trap when the target anded with 3 is 3. This has the
unintentional effect of making it unsafe to schedule these instructions before a
branch, or hoist them out of a loop. For example, __do_global_ctors, a part
of ‘libgcc’ that runs constructors at program startup, calls functions in a list
which is delimited by −1. With the ‘-mpt-fixed’ option, the ptabs is done
before testing against −1. That means that all the constructors run a bit more
quickly, but when the loop comes to the end of the list, the program crashes
because ptabs loads −1 into a target register.
Since this option is unsafe for any hardware implementing the current architec-
ture specification, the default is ‘-mno-pt-fixed’. Unless specified explicitly
with ‘-mgettrcost’, ‘-mno-pt-fixed’ also implies ‘-mgettrcost=100’; this de-
ters register allocation from using target registers for storing ordinary integers.

-minvalid-symbols
Assume symbols might be invalid. Ordinary function symbols generated
by the compiler are always valid to load with movi/shori/ptabs or
movi/shori/ptrel, but with assembler and/or linker tricks it is possible to
generate symbols that cause ptabs or ptrel to trap. This option is only
meaningful when ‘-mno-pt-fixed’ is in effect. It prevents cross-basic-block
CSE, hoisting and most scheduling of symbol loads. The default is
‘-mno-invalid-symbols’.

-mbranch-cost=num
Assume num to be the cost for a branch instruction. Higher numbers make the
compiler try to generate more branch-free code if possible. If not specified the
value is selected depending on the processor type that is being compiled for.

-mzdcbranch
-mno-zdcbranch

Assume (do not assume) that zero displacement conditional branch instructions
bt and bf are fast. If ‘-mzdcbranch’ is specified, the compiler will try to prefer
zero displacement branch code sequences. This is enabled by default when
generating code for SH4 and SH4A. It can be explicitly disabled by specifying
‘-mno-zdcbranch’.

Chapter 3: GCC Command Options 309

-mfused-madd
-mno-fused-madd

Generate code that uses (does not use) the floating-point multiply and ac-
cumulate instructions. These instructions are generated by default if hard-
ware floating point is used. The machine-dependent ‘-mfused-madd’ option is
now mapped to the machine-independent ‘-ffp-contract=fast’ option, and
‘-mno-fused-madd’ is mapped to ‘-ffp-contract=off’.

-mfsca
-mno-fsca

Allow or disallow the compiler to emit the fsca instruction for sine and co-
sine approximations. The option -mfsca must be used in combination with -
funsafe-math-optimizations. It is enabled by default when generating code
for SH4A. Using -mno-fsca disables sine and cosine approximations even if
-funsafe-math-optimizations is in effect.

-mfsrra
-mno-fsrra

Allow or disallow the compiler to emit the fsrra instruction for reciprocal
square root approximations. The option -mfsrra must be used in combination
with -funsafe-math-optimizations and -ffinite-math-only. It is enabled
by default when generating code for SH4A. Using -mno-fsrra disables recip-
rocal square root approximations even if -funsafe-math-optimizations and
-ffinite-math-only are in effect.

-mpretend-cmove
Prefer zero-displacement conditional branches for conditional move instruction
patterns. This can result in faster code on the SH4 processor.

3.17.43 Solaris 2 Options

These ‘-m’ options are supported on Solaris 2:

-mimpure-text
‘-mimpure-text’, used in addition to ‘-shared’, tells the compiler to not pass
‘-z text’ to the linker when linking a shared object. Using this option, you can
link position-dependent code into a shared object.
‘-mimpure-text’ suppresses the “relocations remain against allocatable but
non-writable sections” linker error message. However, the necessary reloca-
tions trigger copy-on-write, and the shared object is not actually shared across
processes. Instead of using ‘-mimpure-text’, you should compile all source
code with ‘-fpic’ or ‘-fPIC’.

These switches are supported in addition to the above on Solaris 2:

-pthreads
Add support for multithreading using the POSIX threads library. This option
sets flags for both the preprocessor and linker. This option does not affect
the thread safety of object code produced by the compiler or that of libraries
supplied with it.

-pthread This is a synonym for ‘-pthreads’.

310 Using the GNU Compiler Collection (GCC)

3.17.44 SPARC Options

These ‘-m’ options are supported on the SPARC:

-mno-app-regs
-mapp-regs

Specify ‘-mapp-regs’ to generate output using the global registers 2 through 4,
which the SPARC SVR4 ABI reserves for applications. Like the global register
1, each global register 2 through 4 is then treated as an allocable register that
is clobbered by function calls. This is the default.
To be fully SVR4 ABI-compliant at the cost of some performance loss, specify
‘-mno-app-regs’. You should compile libraries and system software with this
option.

-mflat
-mno-flat

With ‘-mflat’, the compiler does not generate save/restore instructions and
uses a “flat” or single register window model. This model is compatible with
the regular register window model. The local registers and the input registers
(0–5) are still treated as “call-saved” registers and are saved on the stack as
needed.
With ‘-mno-flat’ (the default), the compiler generates save/restore instruc-
tions (except for leaf functions). This is the normal operating mode.

-mfpu
-mhard-float

Generate output containing floating-point instructions. This is the default.

-mno-fpu
-msoft-float

Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all SPARC targets. Normally the facilities
of the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation. The embedded targets ‘sparc-*-aout’
and ‘sparclite-*-*’ do provide software floating-point support.
‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile ‘libgcc.a’, the library that comes with GCC, with
‘-msoft-float’ in order for this to work.

-mhard-quad-float
Generate output containing quad-word (long double) floating-point instruc-
tions.

-msoft-quad-float
Generate output containing library calls for quad-word (long double) floating-
point instructions. The functions called are those specified in the SPARC ABI.
This is the default.
As of this writing, there are no SPARC implementations that have hardware
support for the quad-word floating-point instructions. They all invoke a trap

Chapter 3: GCC Command Options 311

handler for one of these instructions, and then the trap handler emulates the
effect of the instruction. Because of the trap handler overhead, this is much
slower than calling the ABI library routines. Thus the ‘-msoft-quad-float’
option is the default.

-mno-unaligned-doubles
-munaligned-doubles

Assume that doubles have 8-byte alignment. This is the default.
With ‘-munaligned-doubles’, GCC assumes that doubles have 8-byte align-
ment only if they are contained in another type, or if they have an absolute
address. Otherwise, it assumes they have 4-byte alignment. Specifying this
option avoids some rare compatibility problems with code generated by other
compilers. It is not the default because it results in a performance loss, espe-
cially for floating-point code.

-mno-faster-structs
-mfaster-structs

With ‘-mfaster-structs’, the compiler assumes that structures should have
8-byte alignment. This enables the use of pairs of ldd and std instructions
for copies in structure assignment, in place of twice as many ld and st pairs.
However, the use of this changed alignment directly violates the SPARC ABI.
Thus, it’s intended only for use on targets where the developer acknowledges
that their resulting code is not directly in line with the rules of the ABI.

-mcpu=cpu_type
Set the instruction set, register set, and instruction scheduling parameters for
machine type cpu type. Supported values for cpu type are ‘v7’, ‘cypress’,
‘v8’, ‘supersparc’, ‘hypersparc’, ‘leon’, ‘leon3’, ‘sparclite’, ‘f930’, ‘f934’,
‘sparclite86x’, ‘sparclet’, ‘tsc701’, ‘v9’, ‘ultrasparc’, ‘ultrasparc3’,
‘niagara’, ‘niagara2’, ‘niagara3’ and ‘niagara4’.
Native Solaris and GNU/Linux toolchains also support the value
‘native’, which selects the best architecture option for the host processor.
‘-mcpu=native’ has no effect if GCC does not recognize the processor.
Default instruction scheduling parameters are used for values that select an
architecture and not an implementation. These are ‘v7’, ‘v8’, ‘sparclite’,
‘sparclet’, ‘v9’.
Here is a list of each supported architecture and their supported implementa-
tions.

v7 cypress

v8 supersparc, hypersparc, leon, leon3

sparclite f930, f934, sparclite86x

sparclet tsc701

v9 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4

By default (unless configured otherwise), GCC generates code for the V7 vari-
ant of the SPARC architecture. With ‘-mcpu=cypress’, the compiler addition-

312 Using the GNU Compiler Collection (GCC)

ally optimizes it for the Cypress CY7C602 chip, as used in the SPARCSta-
tion/SPARCServer 3xx series. This is also appropriate for the older SPARC-
Station 1, 2, IPX etc.

With ‘-mcpu=v8’, GCC generates code for the V8 variant of the SPARC archi-
tecture. The only difference from V7 code is that the compiler emits the integer
multiply and integer divide instructions which exist in SPARC-V8 but not in
SPARC-V7. With ‘-mcpu=supersparc’, the compiler additionally optimizes it
for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000
series.

With ‘-mcpu=sparclite’, GCC generates code for the SPARClite variant of the
SPARC architecture. This adds the integer multiply, integer divide step and
scan (ffs) instructions which exist in SPARClite but not in SPARC-V7. With
‘-mcpu=f930’, the compiler additionally optimizes it for the Fujitsu MB86930
chip, which is the original SPARClite, with no FPU. With ‘-mcpu=f934’, the
compiler additionally optimizes it for the Fujitsu MB86934 chip, which is the
more recent SPARClite with FPU.

With ‘-mcpu=sparclet’, GCC generates code for the SPARClet variant of the
SPARC architecture. This adds the integer multiply, multiply/accumulate,
integer divide step and scan (ffs) instructions which exist in SPARClet but
not in SPARC-V7. With ‘-mcpu=tsc701’, the compiler additionally optimizes
it for the TEMIC SPARClet chip.

With ‘-mcpu=v9’, GCC generates code for the V9 variant of the SPARC ar-
chitecture. This adds 64-bit integer and floating-point move instructions, 3
additional floating-point condition code registers and conditional move instruc-
tions. With ‘-mcpu=ultrasparc’, the compiler additionally optimizes it for the
Sun UltraSPARC I/II/IIi chips. With ‘-mcpu=ultrasparc3’, the compiler addi-
tionally optimizes it for the Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips.
With ‘-mcpu=niagara’, the compiler additionally optimizes it for Sun Ultra-
SPARC T1 chips. With ‘-mcpu=niagara2’, the compiler additionally optimizes
it for Sun UltraSPARC T2 chips. With ‘-mcpu=niagara3’, the compiler addi-
tionally optimizes it for Sun UltraSPARC T3 chips. With ‘-mcpu=niagara4’,
the compiler additionally optimizes it for Sun UltraSPARC T4 chips.

-mtune=cpu_type
Set the instruction scheduling parameters for machine type cpu type, but do
not set the instruction set or register set that the option ‘-mcpu=cpu_type’
does.

The same values for ‘-mcpu=cpu_type’ can be used for ‘-mtune=cpu_type’, but
the only useful values are those that select a particular CPU implementation.
Those are ‘cypress’, ‘supersparc’, ‘hypersparc’, ‘leon’, ‘leon3’, ‘f930’,
‘f934’, ‘sparclite86x’, ‘tsc701’, ‘ultrasparc’, ‘ultrasparc3’, ‘niagara’,
‘niagara2’, ‘niagara3’ and ‘niagara4’. With native Solaris and GNU/Linux
toolchains, ‘native’ can also be used.

Chapter 3: GCC Command Options 313

-mv8plus
-mno-v8plus

With ‘-mv8plus’, GCC generates code for the SPARC-V8+ ABI. The difference
from the V8 ABI is that the global and out registers are considered 64 bits
wide. This is enabled by default on Solaris in 32-bit mode for all SPARC-V9
processors.

-mvis
-mno-vis With ‘-mvis’, GCC generates code that takes advantage of the UltraSPARC

Visual Instruction Set extensions. The default is ‘-mno-vis’.

-mvis2
-mno-vis2

With ‘-mvis2’, GCC generates code that takes advantage of version 2.0 of the
UltraSPARC Visual Instruction Set extensions. The default is ‘-mvis2’ when
targeting a cpu that supports such instructions, such as UltraSPARC-III and
later. Setting ‘-mvis2’ also sets ‘-mvis’.

-mvis3
-mno-vis3

With ‘-mvis3’, GCC generates code that takes advantage of version 3.0 of the
UltraSPARC Visual Instruction Set extensions. The default is ‘-mvis3’ when
targeting a cpu that supports such instructions, such as niagara-3 and later.
Setting ‘-mvis3’ also sets ‘-mvis2’ and ‘-mvis’.

-mcbcond
-mno-cbcond

With ‘-mcbcond’, GCC generates code that takes advantage of compare-and-
branch instructions, as defined in the Sparc Architecture 2011. The default
is ‘-mcbcond’ when targeting a cpu that supports such instructions, such as
niagara-4 and later.

-mpopc
-mno-popc

With ‘-mpopc’, GCC generates code that takes advantage of the UltraSPARC
population count instruction. The default is ‘-mpopc’ when targeting a cpu
that supports such instructions, such as Niagara-2 and later.

-mfmaf
-mno-fmaf

With ‘-mfmaf’, GCC generates code that takes advantage of the UltraSPARC
Fused Multiply-Add Floating-point extensions. The default is ‘-mfmaf’ when
targeting a cpu that supports such instructions, such as Niagara-3 and later.

-mfix-at697f
Enable the documented workaround for the single erratum of the Atmel AT697F
processor (which corresponds to erratum #13 of the AT697E processor).

-mfix-ut699
Enable the documented workarounds for the floating-point errata and the data
cache nullify errata of the UT699 processor.

314 Using the GNU Compiler Collection (GCC)

These ‘-m’ options are supported in addition to the above on SPARC-V9 processors in
64-bit environments:

-m32
-m64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets

int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and
long and pointer to 64 bits.

-mcmodel=which
Set the code model to one of

‘medlow’ The Medium/Low code model: 64-bit addresses, programs must be
linked in the low 32 bits of memory. Programs can be statically or
dynamically linked.

‘medmid’ The Medium/Middle code model: 64-bit addresses, programs must
be linked in the low 44 bits of memory, the text and data segments
must be less than 2GB in size and the data segment must be located
within 2GB of the text segment.

‘medany’ The Medium/Anywhere code model: 64-bit addresses, programs
may be linked anywhere in memory, the text and data segments
must be less than 2GB in size and the data segment must be located
within 2GB of the text segment.

‘embmedany’
The Medium/Anywhere code model for embedded systems: 64-bit
addresses, the text and data segments must be less than 2GB in
size, both starting anywhere in memory (determined at link time).
The global register %g4 points to the base of the data segment.
Programs are statically linked and PIC is not supported.

-mmemory-model=mem-model
Set the memory model in force on the processor to one of

‘default’ The default memory model for the processor and operating system.

‘rmo’ Relaxed Memory Order

‘pso’ Partial Store Order

‘tso’ Total Store Order

‘sc’ Sequential Consistency

These memory models are formally defined in Appendix D of the Sparc V9
architecture manual, as set in the processor’s PSTATE.MM field.

-mstack-bias
-mno-stack-bias

With ‘-mstack-bias’, GCC assumes that the stack pointer, and frame pointer
if present, are offset by −2047 which must be added back when making stack
frame references. This is the default in 64-bit mode. Otherwise, assume no
such offset is present.

Chapter 3: GCC Command Options 315

3.17.45 SPU Options

These ‘-m’ options are supported on the SPU:

-mwarn-reloc
-merror-reloc

The loader for SPU does not handle dynamic relocations. By default, GCC
gives an error when it generates code that requires a dynamic relocation.
‘-mno-error-reloc’ disables the error, ‘-mwarn-reloc’ generates a warning
instead.

-msafe-dma
-munsafe-dma

Instructions that initiate or test completion of DMA must not be reordered
with respect to loads and stores of the memory that is being accessed. With
‘-munsafe-dma’ you must use the volatile keyword to protect memory ac-
cesses, but that can lead to inefficient code in places where the memory is
known to not change. Rather than mark the memory as volatile, you can use
‘-msafe-dma’ to tell the compiler to treat the DMA instructions as potentially
affecting all memory.

-mbranch-hints
By default, GCC generates a branch hint instruction to avoid pipeline stalls for
always-taken or probably-taken branches. A hint is not generated closer than 8
instructions away from its branch. There is little reason to disable them, except
for debugging purposes, or to make an object a little bit smaller.

-msmall-mem
-mlarge-mem

By default, GCC generates code assuming that addresses are never larger than
18 bits. With ‘-mlarge-mem’ code is generated that assumes a full 32-bit ad-
dress.

-mstdmain
By default, GCC links against startup code that assumes the SPU-style
main function interface (which has an unconventional parameter list). With
‘-mstdmain’, GCC links your program against startup code that assumes a
C99-style interface to main, including a local copy of argv strings.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed regis-
ter is one that the register allocator cannot use. This is useful when compiling
kernel code. A register range is specified as two registers separated by a dash.
Multiple register ranges can be specified separated by a comma.

-mea32
-mea64 Compile code assuming that pointers to the PPU address space accessed via the

__ea named address space qualifier are either 32 or 64 bits wide. The default
is 32 bits. As this is an ABI-changing option, all object code in an executable
must be compiled with the same setting.

316 Using the GNU Compiler Collection (GCC)

-maddress-space-conversion
-mno-address-space-conversion

Allow/disallow treating the __ea address space as superset of the generic ad-
dress space. This enables explicit type casts between __ea and generic pointer
as well as implicit conversions of generic pointers to __ea pointers. The default
is to allow address space pointer conversions.

-mcache-size=cache-size
This option controls the version of libgcc that the compiler links to an executable
and selects a software-managed cache for accessing variables in the __ea address
space with a particular cache size. Possible options for cache-size are ‘8’, ‘16’,
‘32’, ‘64’ and ‘128’. The default cache size is 64KB.

-matomic-updates
-mno-atomic-updates

This option controls the version of libgcc that the compiler links to an executable
and selects whether atomic updates to the software-managed cache of PPU-side
variables are used. If you use atomic updates, changes to a PPU variable from
SPU code using the __ea named address space qualifier do not interfere with
changes to other PPU variables residing in the same cache line from PPU code.
If you do not use atomic updates, such interference may occur; however, writing
back cache lines is more efficient. The default behavior is to use atomic updates.

-mdual-nops
-mdual-nops=n

By default, GCC inserts nops to increase dual issue when it expects it to increase
performance. n can be a value from 0 to 10. A smaller n inserts fewer nops. 10
is the default, 0 is the same as ‘-mno-dual-nops’. Disabled with ‘-Os’.

-mhint-max-nops=n
Maximum number of nops to insert for a branch hint. A branch hint must be
at least 8 instructions away from the branch it is affecting. GCC inserts up to
n nops to enforce this, otherwise it does not generate the branch hint.

-mhint-max-distance=n
The encoding of the branch hint instruction limits the hint to be within 256
instructions of the branch it is affecting. By default, GCC makes sure it is
within 125.

-msafe-hints
Work around a hardware bug that causes the SPU to stall indefinitely. By
default, GCC inserts the hbrp instruction to make sure this stall won’t happen.

3.17.46 Options for System V

These additional options are available on System V Release 4 for compatibility with other
compilers on those systems:

-G Create a shared object. It is recommended that ‘-symbolic’ or ‘-shared’ be
used instead.

-Qy Identify the versions of each tool used by the compiler, in a .ident assembler
directive in the output.

Chapter 3: GCC Command Options 317

-Qn Refrain from adding .ident directives to the output file (this is the default).

-YP,dirs Search the directories dirs, and no others, for libraries specified with ‘-l’.

-Ym,dir Look in the directory dir to find the M4 preprocessor. The assembler uses this
option.

3.17.47 TILE-Gx Options

These ‘-m’ options are supported on the TILE-Gx:

-mcmodel=small
Generate code for the small model. The distance for direct calls is limited to
500M in either direction. PC-relative addresses are 32 bits. Absolute addresses
support the full address range.

-mcmodel=large
Generate code for the large model. There is no limitation on call distance,
pc-relative addresses, or absolute addresses.

-mcpu=name
Selects the type of CPU to be targeted. Currently the only supported type is
‘tilegx’.

-m32
-m64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets

int, long, and pointer to 32 bits. The 64-bit environment sets int to 32 bits and
long and pointer to 64 bits.

-mbig-endian
-mlittle-endian

Generate code in big/little endian mode, respectively.

3.17.48 TILEPro Options

These ‘-m’ options are supported on the TILEPro:

-mcpu=name
Selects the type of CPU to be targeted. Currently the only supported type is
‘tilepro’.

-m32 Generate code for a 32-bit environment, which sets int, long, and pointer to 32
bits. This is the only supported behavior so the flag is essentially ignored.

3.17.49 V850 Options

These ‘-m’ options are defined for V850 implementations:

-mlong-calls
-mno-long-calls

Treat all calls as being far away (near). If calls are assumed to be far away, the
compiler always loads the function’s address into a register, and calls indirect
through the pointer.

318 Using the GNU Compiler Collection (GCC)

-mno-ep
-mep Do not optimize (do optimize) basic blocks that use the same index pointer 4

or more times to copy pointer into the ep register, and use the shorter sld and
sst instructions. The ‘-mep’ option is on by default if you optimize.

-mno-prolog-function
-mprolog-function

Do not use (do use) external functions to save and restore registers at the
prologue and epilogue of a function. The external functions are slower, but use
less code space if more than one function saves the same number of registers.
The ‘-mprolog-function’ option is on by default if you optimize.

-mspace Try to make the code as small as possible. At present, this just turns on the
‘-mep’ and ‘-mprolog-function’ options.

-mtda=n Put static or global variables whose size is n bytes or less into the tiny data
area that register ep points to. The tiny data area can hold up to 256 bytes in
total (128 bytes for byte references).

-msda=n Put static or global variables whose size is n bytes or less into the small data
area that register gp points to. The small data area can hold up to 64 kilobytes.

-mzda=n Put static or global variables whose size is n bytes or less into the first 32
kilobytes of memory.

-mv850 Specify that the target processor is the V850.

-mv850e3v5
Specify that the target processor is the V850E3V5. The preprocessor constant
‘__v850e3v5__’ is defined if this option is used.

-mv850e2v4
Specify that the target processor is the V850E3V5. This is an alias for the
‘-mv850e3v5’ option.

-mv850e2v3
Specify that the target processor is the V850E2V3. The preprocessor constant
‘__v850e2v3__’ is defined if this option is used.

-mv850e2 Specify that the target processor is the V850E2. The preprocessor constant
‘__v850e2__’ is defined if this option is used.

-mv850e1 Specify that the target processor is the V850E1. The preprocessor constants
‘__v850e1__’ and ‘__v850e__’ are defined if this option is used.

-mv850es Specify that the target processor is the V850ES. This is an alias for the
‘-mv850e1’ option.

-mv850e Specify that the target processor is the V850E. The preprocessor constant
‘__v850e__’ is defined if this option is used.
If neither ‘-mv850’ nor ‘-mv850e’ nor ‘-mv850e1’ nor ‘-mv850e2’ nor
‘-mv850e2v3’ nor ‘-mv850e3v5’ are defined then a default target processor is
chosen and the relevant ‘__v850*__’ preprocessor constant is defined.
The preprocessor constants ‘__v850’ and ‘__v851__’ are always defined, regard-
less of which processor variant is the target.

Chapter 3: GCC Command Options 319

-mdisable-callt
-mno-disable-callt

This option suppresses generation of the CALLT instruction for the v850e,
v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850 architecture.
This option is enabled by default when the RH850 ABI is in use (see
‘-mrh850-abi’), and disabled by default when the GCC ABI is in use. If
CALLT instructions are being generated then the C preprocessor symbol
__V850_CALLT__ will be defined.

-mrelax
-mno-relax

Pass on (or do not pass on) the ‘-mrelax’ command line option to the assembler.

-mlong-jumps
-mno-long-jumps

Disable (or re-enable) the generation of PC-relative jump instructions.

-msoft-float
-mhard-float

Disable (or re-enable) the generation of hardware floating point instructions.
This option is only significant when the target architecture is ‘V850E2V3’ or
higher. If hardware floating point instructions are being generated then the C
preprocessor symbol __FPU_OK__ will be defined, otherwise the symbol __NO_
FPU__ will be defined.

-mloop Enables the use of the e3v5 LOOP instruction. The use of this instruction is
not enabled by default when the e3v5 architecture is selected because its use is
still experimental.

-mrh850-abi
-mghs Enables support for the RH850 version of the V850 ABI. This is the default.

With this version of the ABI the following rules apply:
• Integer sized structures and unions are returned via a memory pointer

rather than a register.
• Large structures and unions (more than 8 bytes in size) are passed by value.
• Functions are aligned to 16-bit boundaries.
• The ‘-m8byte-align’ command line option is supported.
• The ‘-mdisable-callt’ command line option is enabled by default. The

‘-mno-disable-callt’ command line option is not supported.

When this version of the ABI is enabled the C preprocessor symbol __V850_
RH850_ABI__ is defined.

-mgcc-abi
Enables support for the old GCC version of the V850 ABI. With this version
of the ABI the following rules apply:
• Integer sized structures and unions are returned in register r10.
• Large structures and unions (more than 8 bytes in size) are passed by

reference.

320 Using the GNU Compiler Collection (GCC)

• Functions are aligned to 32-bit boundaries, unless optimizing for size.
• The ‘-m8byte-align’ command line option is not supported.
• The ‘-mdisable-callt’ command line option is supported but not enabled

by default.

When this version of the ABI is enabled the C preprocessor symbol __V850_
GCC_ABI__ is defined.

-m8byte-align
-mno-8byte-align

Enables support for doubles and long long types to be aligned on 8-byte
boundaries. The default is to restrict the alignment of all objects to at most
4-bytes. When ‘-m8byte-align’ is in effect the C preprocessor symbol __V850_
8BYTE_ALIGN__ will be defined.

-mbig-switch
Generate code suitable for big switch tables. Use this option only if the assem-
bler/linker complain about out of range branches within a switch table.

-mapp-regs
This option causes r2 and r5 to be used in the code generated by the compiler.
This setting is the default.

-mno-app-regs
This option causes r2 and r5 to be treated as fixed registers.

3.17.50 VAX Options

These ‘-m’ options are defined for the VAX:

-munix Do not output certain jump instructions (aobleq and so on) that the Unix
assembler for the VAX cannot handle across long ranges.

-mgnu Do output those jump instructions, on the assumption that the GNU assembler
is being used.

-mg Output code for G-format floating-point numbers instead of D-format.

3.17.51 VMS Options

These ‘-m’ options are defined for the VMS implementations:

-mvms-return-codes
Return VMS condition codes from main. The default is to return POSIX-style
condition (e.g. error) codes.

-mdebug-main=prefix
Flag the first routine whose name starts with prefix as the main routine for the
debugger.

-mmalloc64
Default to 64-bit memory allocation routines.

-mpointer-size=size
Set the default size of pointers. Possible options for size are ‘32’ or ‘short’ for
32 bit pointers, ‘64’ or ‘long’ for 64 bit pointers, and ‘no’ for supporting only
32 bit pointers. The later option disables pragma pointer_size.

Chapter 3: GCC Command Options 321

3.17.52 VxWorks Options

The options in this section are defined for all VxWorks targets. Options specific to the
target hardware are listed with the other options for that target.

-mrtp GCC can generate code for both VxWorks kernels and real time processes
(RTPs). This option switches from the former to the latter. It also defines
the preprocessor macro __RTP__.

-non-static
Link an RTP executable against shared libraries rather than static libraries.
The options ‘-static’ and ‘-shared’ can also be used for RTPs (see Section 3.13
[Link Options], page 166); ‘-static’ is the default.

-Bstatic
-Bdynamic

These options are passed down to the linker. They are defined for compatibility
with Diab.

-Xbind-lazy
Enable lazy binding of function calls. This option is equivalent to ‘-Wl,-z,now’
and is defined for compatibility with Diab.

-Xbind-now
Disable lazy binding of function calls. This option is the default and is defined
for compatibility with Diab.

3.17.53 x86-64 Options

These are listed under See Section 3.17.17 [i386 and x86-64 Options], page 225.

3.17.54 Xstormy16 Options

These options are defined for Xstormy16:

-msim Choose startup files and linker script suitable for the simulator.

3.17.55 Xtensa Options

These options are supported for Xtensa targets:

-mconst16
-mno-const16

Enable or disable use of CONST16 instructions for loading constant values. The
CONST16 instruction is currently not a standard option from Tensilica. When
enabled, CONST16 instructions are always used in place of the standard L32R in-
structions. The use of CONST16 is enabled by default only if the L32R instruction
is not available.

-mfused-madd
-mno-fused-madd

Enable or disable use of fused multiply/add and multiply/subtract instructions
in the floating-point option. This has no effect if the floating-point option
is not also enabled. Disabling fused multiply/add and multiply/subtract in-
structions forces the compiler to use separate instructions for the multiply and

322 Using the GNU Compiler Collection (GCC)

add/subtract operations. This may be desirable in some cases where strict
IEEE 754-compliant results are required: the fused multiply add/subtract in-
structions do not round the intermediate result, thereby producing results with
more bits of precision than specified by the IEEE standard. Disabling fused
multiply add/subtract instructions also ensures that the program output is not
sensitive to the compiler’s ability to combine multiply and add/subtract oper-
ations.

-mserialize-volatile
-mno-serialize-volatile

When this option is enabled, GCC inserts MEMW instructions before volatile
memory references to guarantee sequential consistency. The default is
‘-mserialize-volatile’. Use ‘-mno-serialize-volatile’ to omit the MEMW
instructions.

-mforce-no-pic
For targets, like GNU/Linux, where all user-mode Xtensa code must be
position-independent code (PIC), this option disables PIC for compiling kernel
code.

-mtext-section-literals
-mno-text-section-literals

Control the treatment of literal pools. The default is ‘-mno-text-section-literals’,
which places literals in a separate section in the output file. This allows the
literal pool to be placed in a data RAM/ROM, and it also allows the linker to
combine literal pools from separate object files to remove redundant literals
and improve code size. With ‘-mtext-section-literals’, the literals are
interspersed in the text section in order to keep them as close as possible to
their references. This may be necessary for large assembly files.

-mtarget-align
-mno-target-align

When this option is enabled, GCC instructs the assembler to automatically align
instructions to reduce branch penalties at the expense of some code density. The
assembler attempts to widen density instructions to align branch targets and the
instructions following call instructions. If there are not enough preceding safe
density instructions to align a target, no widening is performed. The default is
‘-mtarget-align’. These options do not affect the treatment of auto-aligned
instructions like LOOP, which the assembler always aligns, either by widening
density instructions or by inserting NOP instructions.

-mlongcalls
-mno-longcalls

When this option is enabled, GCC instructs the assembler to translate direct
calls to indirect calls unless it can determine that the target of a direct call is
in the range allowed by the call instruction. This translation typically occurs
for calls to functions in other source files. Specifically, the assembler translates
a direct CALL instruction into an L32R followed by a CALLX instruction. The
default is ‘-mno-longcalls’. This option should be used in programs where the
call target can potentially be out of range. This option is implemented in the

Chapter 3: GCC Command Options 323

assembler, not the compiler, so the assembly code generated by GCC still shows
direct call instructions—look at the disassembled object code to see the actual
instructions. Note that the assembler uses an indirect call for every cross-file
call, not just those that really are out of range.

3.17.56 zSeries Options

These are listed under See Section 3.17.40 [S/390 and zSeries Options], page 298.

3.18 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code genera-
tion.

Most of them have both positive and negative forms; the negative form of ‘-ffoo’ is
‘-fno-foo’. In the table below, only one of the forms is listed—the one that is not the
default. You can figure out the other form by either removing ‘no-’ or adding it.

-fbounds-check
For front ends that support it, generate additional code to check that indices
used to access arrays are within the declared range. This is currently only
supported by the Java and Fortran front ends, where this option defaults to
true and false respectively.

-fstack-reuse=reuse-level
This option controls stack space reuse for user declared local/auto variables
and compiler generated temporaries. reuse level can be ‘all’, ‘named_vars’,
or ‘none’. ‘all’ enables stack reuse for all local variables and temporaries,
‘named_vars’ enables the reuse only for user defined local variables with names,
and ‘none’ disables stack reuse completely. The default value is ‘all’. The op-
tion is needed when the program extends the lifetime of a scoped local variable
or a compiler generated temporary beyond the end point defined by the lan-
guage. When a lifetime of a variable ends, and if the variable lives in memory,
the optimizing compiler has the freedom to reuse its stack space with other
temporaries or scoped local variables whose live range does not overlap with it.
Legacy code extending local lifetime will likely to break with the stack reuse
optimization.
For example,

int *p;

{

int local1;

p = &local1;

local1 = 10;

....

}

{

int local2;

local2 = 20;

...

}

if (*p == 10) // out of scope use of local1

324 Using the GNU Compiler Collection (GCC)

{

}

Another example:

struct A

{

A(int k) : i(k), j(k) { }

int i;

int j;

};

A *ap;

void foo(const A& ar)

{

ap = &ar;

}

void bar()

{

foo(A(10)); // temp object’s lifetime ends when foo returns

{

A a(20);

....

}

ap->i+= 10; // ap references out of scope temp whose space

// is reused with a. What is the value of ap->i?

}

The lifetime of a compiler generated temporary is well defined by the C++
standard. When a lifetime of a temporary ends, and if the temporary lives
in memory, the optimizing compiler has the freedom to reuse its stack space
with other temporaries or scoped local variables whose live range does not
overlap with it. However some of the legacy code relies on the behavior of older
compilers in which temporaries’ stack space is not reused, the aggressive stack
reuse can lead to runtime errors. This option is used to control the temporary
stack reuse optimization.

-ftrapv This option generates traps for signed overflow on addition, subtraction, mul-
tiplication operations.

-fwrapv This option instructs the compiler to assume that signed arithmetic overflow of
addition, subtraction and multiplication wraps around using twos-complement
representation. This flag enables some optimizations and disables others. This
option is enabled by default for the Java front end, as required by the Java
language specification.

-fexceptions
Enable exception handling. Generates extra code needed to propagate excep-
tions. For some targets, this implies GCC generates frame unwind information
for all functions, which can produce significant data size overhead, although
it does not affect execution. If you do not specify this option, GCC enables

Chapter 3: GCC Command Options 325

it by default for languages like C++ that normally require exception handling,
and disables it for languages like C that do not normally require it. However,
you may need to enable this option when compiling C code that needs to inter-
operate properly with exception handlers written in C++. You may also wish
to disable this option if you are compiling older C++ programs that don’t use
exception handling.

-fnon-call-exceptions
Generate code that allows trapping instructions to throw exceptions. Note that
this requires platform-specific runtime support that does not exist everywhere.
Moreover, it only allows trapping instructions to throw exceptions, i.e. memory
references or floating-point instructions. It does not allow exceptions to be
thrown from arbitrary signal handlers such as SIGALRM.

-fdelete-dead-exceptions
Consider that instructions that may throw exceptions but don’t otherwise con-
tribute to the execution of the program can be optimized away. This option is
enabled by default for the Ada front end, as permitted by the Ada language
specification. Optimization passes that cause dead exceptions to be removed
are enabled independently at different optimization levels.

-funwind-tables
Similar to ‘-fexceptions’, except that it just generates any needed static data,
but does not affect the generated code in any other way. You normally do
not need to enable this option; instead, a language processor that needs this
handling enables it on your behalf.

-fasynchronous-unwind-tables
Generate unwind table in DWARF 2 format, if supported by target machine.
The table is exact at each instruction boundary, so it can be used for stack
unwinding from asynchronous events (such as debugger or garbage collector).

-fno-gnu-unique
On systems with recent GNU assembler and C library, the C++ compiler uses
the STB_GNU_UNIQUE binding to make sure that definitions of template static
data members and static local variables in inline functions are unique even in
the presence of RTLD_LOCAL; this is necessary to avoid problems with a library
used by two different RTLD_LOCAL plugins depending on a definition in one of
them and therefore disagreeing with the other one about the binding of the
symbol. But this causes dlclose to be ignored for affected DSOs; if your
program relies on reinitialization of a DSO via dlclose and dlopen, you can
use ‘-fno-gnu-unique’.

-fpcc-struct-return
Return “short” struct and union values in memory like longer ones, rather
than in registers. This convention is less efficient, but it has the advantage
of allowing intercallability between GCC-compiled files and files compiled with
other compilers, particularly the Portable C Compiler (pcc).
The precise convention for returning structures in memory depends on the tar-
get configuration macros.

326 Using the GNU Compiler Collection (GCC)

Short structures and unions are those whose size and alignment match that of
some integer type.
Warning: code compiled with the ‘-fpcc-struct-return’ switch is not binary
compatible with code compiled with the ‘-freg-struct-return’ switch. Use
it to conform to a non-default application binary interface.

-freg-struct-return
Return struct and union values in registers when possible. This is more effi-
cient for small structures than ‘-fpcc-struct-return’.
If you specify neither ‘-fpcc-struct-return’ nor ‘-freg-struct-return’,
GCC defaults to whichever convention is standard for the target. If there is
no standard convention, GCC defaults to ‘-fpcc-struct-return’, except on
targets where GCC is the principal compiler. In those cases, we can choose
the standard, and we chose the more efficient register return alternative.
Warning: code compiled with the ‘-freg-struct-return’ switch is not binary
compatible with code compiled with the ‘-fpcc-struct-return’ switch. Use
it to conform to a non-default application binary interface.

-fshort-enums
Allocate to an enum type only as many bytes as it needs for the declared range of
possible values. Specifically, the enum type is equivalent to the smallest integer
type that has enough room.
Warning: the ‘-fshort-enums’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Use it to conform
to a non-default application binary interface.

-fshort-double
Use the same size for double as for float.
Warning: the ‘-fshort-double’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Use it to conform
to a non-default application binary interface.

-fshort-wchar
Override the underlying type for ‘wchar_t’ to be ‘short unsigned int’ instead
of the default for the target. This option is useful for building programs to run
under WINE.
Warning: the ‘-fshort-wchar’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Use it to conform
to a non-default application binary interface.

-fno-common
In C code, controls the placement of uninitialized global variables. Unix C
compilers have traditionally permitted multiple definitions of such variables in
different compilation units by placing the variables in a common block. This
is the behavior specified by ‘-fcommon’, and is the default for GCC on most
targets. On the other hand, this behavior is not required by ISO C, and on
some targets may carry a speed or code size penalty on variable references.
The ‘-fno-common’ option specifies that the compiler should place uninitialized

Chapter 3: GCC Command Options 327

global variables in the data section of the object file, rather than generating
them as common blocks. This has the effect that if the same variable is declared
(without extern) in two different compilations, you get a multiple-definition
error when you link them. In this case, you must compile with ‘-fcommon’
instead. Compiling with ‘-fno-common’ is useful on targets for which it provides
better performance, or if you wish to verify that the program will work on other
systems that always treat uninitialized variable declarations this way.

-fno-ident
Ignore the ‘#ident’ directive.

-finhibit-size-directive
Don’t output a .size assembler directive, or anything else that would cause
trouble if the function is split in the middle, and the two halves are placed at lo-
cations far apart in memory. This option is used when compiling ‘crtstuff.c’;
you should not need to use it for anything else.

-fverbose-asm
Put extra commentary information in the generated assembly code to make it
more readable. This option is generally only of use to those who actually need
to read the generated assembly code (perhaps while debugging the compiler
itself).

‘-fno-verbose-asm’, the default, causes the extra information to be omitted
and is useful when comparing two assembler files.

-frecord-gcc-switches
This switch causes the command line used to invoke the compiler to be recorded
into the object file that is being created. This switch is only implemented on
some targets and the exact format of the recording is target and binary file
format dependent, but it usually takes the form of a section containing ASCII
text. This switch is related to the ‘-fverbose-asm’ switch, but that switch
only records information in the assembler output file as comments, so it never
reaches the object file. See also ‘-grecord-gcc-switches’ for another way of
storing compiler options into the object file.

-fpic Generate position-independent code (PIC) suitable for use in a shared library,
if supported for the target machine. Such code accesses all constant addresses
through a global offset table (GOT). The dynamic loader resolves the GOT
entries when the program starts (the dynamic loader is not part of GCC; it
is part of the operating system). If the GOT size for the linked executable
exceeds a machine-specific maximum size, you get an error message from the
linker indicating that ‘-fpic’ does not work; in that case, recompile with ‘-fPIC’
instead. (These maximums are 8k on the SPARC and 32k on the m68k and
RS/6000. The 386 has no such limit.)

Position-independent code requires special support, and therefore works only on
certain machines. For the 386, GCC supports PIC for System V but not for the
Sun 386i. Code generated for the IBM RS/6000 is always position-independent.

When this flag is set, the macros __pic__ and __PIC__ are defined to 1.

328 Using the GNU Compiler Collection (GCC)

-fPIC If supported for the target machine, emit position-independent code, suitable
for dynamic linking and avoiding any limit on the size of the global offset table.
This option makes a difference on the m68k, PowerPC and SPARC.

Position-independent code requires special support, and therefore works only
on certain machines.

When this flag is set, the macros __pic__ and __PIC__ are defined to 2.

-fpie
-fPIE These options are similar to ‘-fpic’ and ‘-fPIC’, but generated position inde-

pendent code can be only linked into executables. Usually these options are
used when ‘-pie’ GCC option is used during linking.

‘-fpie’ and ‘-fPIE’ both define the macros __pie__ and __PIE__. The macros
have the value 1 for ‘-fpie’ and 2 for ‘-fPIE’.

-fno-jump-tables
Do not use jump tables for switch statements even where it would be more effi-
cient than other code generation strategies. This option is of use in conjunction
with ‘-fpic’ or ‘-fPIC’ for building code that forms part of a dynamic linker
and cannot reference the address of a jump table. On some targets, jump tables
do not require a GOT and this option is not needed.

-ffixed-reg
Treat the register named reg as a fixed register; generated code should never
refer to it (except perhaps as a stack pointer, frame pointer or in some other
fixed role).

reg must be the name of a register. The register names accepted are machine-
specific and are defined in the REGISTER_NAMES macro in the machine descrip-
tion macro file.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-used-reg
Treat the register named reg as an allocable register that is clobbered by func-
tion calls. It may be allocated for temporaries or variables that do not live
across a call. Functions compiled this way do not save and restore the register
reg.

It is an error to use this flag with the frame pointer or stack pointer. Use of this
flag for other registers that have fixed pervasive roles in the machine’s execution
model produces disastrous results.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-saved-reg
Treat the register named reg as an allocable register saved by functions. It may
be allocated even for temporaries or variables that live across a call. Functions
compiled this way save and restore the register reg if they use it.

It is an error to use this flag with the frame pointer or stack pointer. Use of this
flag for other registers that have fixed pervasive roles in the machine’s execution
model produces disastrous results.

Chapter 3: GCC Command Options 329

A different sort of disaster results from the use of this flag for a register in which
function values may be returned.
This flag does not have a negative form, because it specifies a three-way choice.

-fpack-struct[=n]
Without a value specified, pack all structure members together without holes.
When a value is specified (which must be a small power of two), pack structure
members according to this value, representing the maximum alignment (that
is, objects with default alignment requirements larger than this are output
potentially unaligned at the next fitting location.
Warning: the ‘-fpack-struct’ switch causes GCC to generate code that is
not binary compatible with code generated without that switch. Additionally,
it makes the code suboptimal. Use it to conform to a non-default application
binary interface.

-finstrument-functions
Generate instrumentation calls for entry and exit to functions. Just after func-
tion entry and just before function exit, the following profiling functions are
called with the address of the current function and its call site. (On some plat-
forms, __builtin_return_address does not work beyond the current function,
so the call site information may not be available to the profiling functions oth-
erwise.)

void __cyg_profile_func_enter (void *this_fn,

void *call_site);

void __cyg_profile_func_exit (void *this_fn,

void *call_site);

The first argument is the address of the start of the current function, which
may be looked up exactly in the symbol table.
This instrumentation is also done for functions expanded inline in other func-
tions. The profiling calls indicate where, conceptually, the inline function is
entered and exited. This means that addressable versions of such functions
must be available. If all your uses of a function are expanded inline, this may
mean an additional expansion of code size. If you use ‘extern inline’ in your
C code, an addressable version of such functions must be provided. (This is
normally the case anyway, but if you get lucky and the optimizer always ex-
pands the functions inline, you might have gotten away without providing static
copies.)
A function may be given the attribute no_instrument_function, in which case
this instrumentation is not done. This can be used, for example, for the profiling
functions listed above, high-priority interrupt routines, and any functions from
which the profiling functions cannot safely be called (perhaps signal handlers,
if the profiling routines generate output or allocate memory).

-finstrument-functions-exclude-file-list=file,file,...
Set the list of functions that are excluded from instrumentation (see the descrip-
tion of -finstrument-functions). If the file that contains a function definition
matches with one of file, then that function is not instrumented. The match is
done on substrings: if the file parameter is a substring of the file name, it is
considered to be a match.

330 Using the GNU Compiler Collection (GCC)

For example:
-finstrument-functions-exclude-file-list=/bits/stl,include/sys

excludes any inline function defined in files whose pathnames contain /bits/stl
or include/sys.
If, for some reason, you want to include letter ’,’ in one of sym, write ’\,’.
For example, -finstrument-functions-exclude-file-list=’\,\,tmp’
(note the single quote surrounding the option).

-finstrument-functions-exclude-function-list=sym,sym,...
This is similar to -finstrument-functions-exclude-file-list, but this
option sets the list of function names to be excluded from instrumentation.
The function name to be matched is its user-visible name, such as
vector<int> blah(const vector<int> &), not the internal mangled name
(e.g., _Z4blahRSt6vectorIiSaIiEE). The match is done on substrings: if the
sym parameter is a substring of the function name, it is considered to be
a match. For C99 and C++ extended identifiers, the function name must be
given in UTF-8, not using universal character names.

-fstack-check
Generate code to verify that you do not go beyond the boundary of the stack.
You should specify this flag if you are running in an environment with multiple
threads, but you only rarely need to specify it in a single-threaded environment
since stack overflow is automatically detected on nearly all systems if there is
only one stack.
Note that this switch does not actually cause checking to be done; the operating
system or the language runtime must do that. The switch causes generation of
code to ensure that they see the stack being extended.
You can additionally specify a string parameter: no means no checking, generic
means force the use of old-style checking, specific means use the best checking
method and is equivalent to bare ‘-fstack-check’.
Old-style checking is a generic mechanism that requires no specific target sup-
port in the compiler but comes with the following drawbacks:
1. Modified allocation strategy for large objects: they are always allocated

dynamically if their size exceeds a fixed threshold.
2. Fixed limit on the size of the static frame of functions: when it is topped

by a particular function, stack checking is not reliable and a warning is
issued by the compiler.

3. Inefficiency: because of both the modified allocation strategy and the
generic implementation, code performance is hampered.

Note that old-style stack checking is also the fallback method for specific if
no target support has been added in the compiler.

-fstack-limit-register=reg
-fstack-limit-symbol=sym
-fno-stack-limit

Generate code to ensure that the stack does not grow beyond a certain value,
either the value of a register or the address of a symbol. If a larger stack is

Chapter 3: GCC Command Options 331

required, a signal is raised at run time. For most targets, the signal is raised
before the stack overruns the boundary, so it is possible to catch the signal
without taking special precautions.
For instance, if the stack starts at absolute address ‘0x80000000’ and grows
downwards, you can use the flags ‘-fstack-limit-symbol=__stack_limit’
and ‘-Wl,--defsym,__stack_limit=0x7ffe0000’ to enforce a stack limit of
128KB. Note that this may only work with the GNU linker.

-fsplit-stack
Generate code to automatically split the stack before it overflows. The resulting
program has a discontiguous stack which can only overflow if the program is
unable to allocate any more memory. This is most useful when running threaded
programs, as it is no longer necessary to calculate a good stack size to use for
each thread. This is currently only implemented for the i386 and x86 64 back
ends running GNU/Linux.
When code compiled with ‘-fsplit-stack’ calls code compiled without
‘-fsplit-stack’, there may not be much stack space available for the
latter code to run. If compiling all code, including library code, with
‘-fsplit-stack’ is not an option, then the linker can fix up these calls so that
the code compiled without ‘-fsplit-stack’ always has a large stack. Support
for this is implemented in the gold linker in GNU binutils release 2.21 and
later.

-fleading-underscore
This option and its counterpart, ‘-fno-leading-underscore’, forcibly change
the way C symbols are represented in the object file. One use is to help link
with legacy assembly code.
Warning: the ‘-fleading-underscore’ switch causes GCC to generate code
that is not binary compatible with code generated without that switch. Use it
to conform to a non-default application binary interface. Not all targets provide
complete support for this switch.

-ftls-model=model
Alter the thread-local storage model to be used (see Section 6.61 [Thread-
Local], page 697). The model argument should be one of global-dynamic,
local-dynamic, initial-exec or local-exec. Note that the choice is subject
to optimization: the compiler may use a more efficient model for symbols not
visible outside of the translation unit, or if ‘-fpic’ is not given on the command
line.
The default without ‘-fpic’ is initial-exec; with ‘-fpic’ the default is
global-dynamic.

-fvisibility=default|internal|hidden|protected
Set the default ELF image symbol visibility to the specified option—all symbols
are marked with this unless overridden within the code. Using this feature can
very substantially improve linking and load times of shared object libraries,
produce more optimized code, provide near-perfect API export and prevent
symbol clashes. It is strongly recommended that you use this in any shared
objects you distribute.

332 Using the GNU Compiler Collection (GCC)

Despite the nomenclature, default always means public; i.e., available to be
linked against from outside the shared object. protected and internal are
pretty useless in real-world usage so the only other commonly used option is
hidden. The default if ‘-fvisibility’ isn’t specified is default, i.e., make
every symbol public—this causes the same behavior as previous versions of
GCC.

A good explanation of the benefits offered by ensuring ELF symbols have
the correct visibility is given by “How To Write Shared Libraries” by Ulrich
Drepper (which can be found at http://people.redhat.com/~drepper/)—
however a superior solution made possible by this option to marking things
hidden when the default is public is to make the default hidden and
mark things public. This is the norm with DLLs on Windows and with
‘-fvisibility=hidden’ and __attribute__ ((visibility("default")))
instead of __declspec(dllexport) you get almost identical semantics with
identical syntax. This is a great boon to those working with cross-platform
projects.

For those adding visibility support to existing code, you may find ‘#pragma GCC
visibility’ of use. This works by you enclosing the declarations you wish to
set visibility for with (for example) ‘#pragma GCC visibility push(hidden)’
and ‘#pragma GCC visibility pop’. Bear in mind that symbol visibility should
be viewed as part of the API interface contract and thus all new code should
always specify visibility when it is not the default; i.e., declarations only for
use within the local DSO should always be marked explicitly as hidden as so
to avoid PLT indirection overheads—making this abundantly clear also aids
readability and self-documentation of the code. Note that due to ISO C++
specification requirements, operator new and operator delete must always
be of default visibility.

Be aware that headers from outside your project, in particular system head-
ers and headers from any other library you use, may not be expecting to be
compiled with visibility other than the default. You may need to explicitly say
‘#pragma GCC visibility push(default)’ before including any such headers.

‘extern’ declarations are not affected by ‘-fvisibility’, so a lot of code can be
recompiled with ‘-fvisibility=hidden’ with no modifications. However, this
means that calls to extern functions with no explicit visibility use the PLT, so
it is more effective to use __attribute ((visibility)) and/or #pragma GCC
visibility to tell the compiler which extern declarations should be treated
as hidden.

Note that ‘-fvisibility’ does affect C++ vague linkage entities. This means
that, for instance, an exception class that is be thrown between DSOs must
be explicitly marked with default visibility so that the ‘type_info’ nodes are
unified between the DSOs.

An overview of these techniques, their benefits and how to use them is at
http://gcc.gnu.org/wiki/Visibility.

http://people.redhat.com/~drepper/
http://gcc.gnu.org/wiki/Visibility

Chapter 3: GCC Command Options 333

-fstrict-volatile-bitfields
This option should be used if accesses to volatile bit-fields (or other structure
fields, although the compiler usually honors those types anyway) should use a
single access of the width of the field’s type, aligned to a natural alignment if
possible. For example, targets with memory-mapped peripheral registers might
require all such accesses to be 16 bits wide; with this flag you can declare
all peripheral bit-fields as unsigned short (assuming short is 16 bits on these
targets) to force GCC to use 16-bit accesses instead of, perhaps, a more efficient
32-bit access.
If this option is disabled, the compiler uses the most efficient instruction. In
the previous example, that might be a 32-bit load instruction, even though
that accesses bytes that do not contain any portion of the bit-field, or memory-
mapped registers unrelated to the one being updated.
In some cases, such as when the packed attribute is applied to a structure
field, it may not be possible to access the field with a single read or write that
is correctly aligned for the target machine. In this case GCC falls back to
generating multiple accesses rather than code that will fault or truncate the
result at run time.
Note: Due to restrictions of the C/C++11 memory model, write accesses are not
allowed to touch non bit-field members. It is therefore recommended to define
all bits of the field’s type as bit-field members.
The default value of this option is determined by the application binary interface
for the target processor.

-fsync-libcalls
This option controls whether any out-of-line instance of the __sync family of
functions may be used to implement the C++11 __atomic family of functions.
The default value of this option is enabled, thus the only useful form of the
option is ‘-fno-sync-libcalls’. This option is used in the implementation of
the ‘libatomic’ runtime library.

3.19 Environment Variables Affecting GCC

This section describes several environment variables that affect how GCC operates. Some
of them work by specifying directories or prefixes to use when searching for various kinds
of files. Some are used to specify other aspects of the compilation environment.

Note that you can also specify places to search using options such as ‘-B’, ‘-I’ and
‘-L’ (see Section 3.14 [Directory Options], page 170). These take precedence over places
specified using environment variables, which in turn take precedence over those specified by
the configuration of GCC. See Section “Controlling the Compilation Driver ‘gcc’” in GNU
Compiler Collection (GCC) Internals.

LANG
LC_CTYPE
LC_MESSAGES
LC_ALL These environment variables control the way that GCC uses localization infor-

mation which allows GCC to work with different national conventions. GCC

334 Using the GNU Compiler Collection (GCC)

inspects the locale categories LC_CTYPE and LC_MESSAGES if it has been config-
ured to do so. These locale categories can be set to any value supported by
your installation. A typical value is ‘en_GB.UTF-8’ for English in the United
Kingdom encoded in UTF-8.

The LC_CTYPE environment variable specifies character classification. GCC uses
it to determine the character boundaries in a string; this is needed for some
multibyte encodings that contain quote and escape characters that are otherwise
interpreted as a string end or escape.

The LC_MESSAGES environment variable specifies the language to use in diag-
nostic messages.

If the LC_ALL environment variable is set, it overrides the value of LC_CTYPE and
LC_MESSAGES; otherwise, LC_CTYPE and LC_MESSAGES default to the value of the
LANG environment variable. If none of these variables are set, GCC defaults to
traditional C English behavior.

TMPDIR If TMPDIR is set, it specifies the directory to use for temporary files. GCC uses
temporary files to hold the output of one stage of compilation which is to be
used as input to the next stage: for example, the output of the preprocessor,
which is the input to the compiler proper.

GCC_COMPARE_DEBUG
Setting GCC_COMPARE_DEBUG is nearly equivalent to passing ‘-fcompare-debug’
to the compiler driver. See the documentation of this option for more details.

GCC_EXEC_PREFIX
If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the
subprograms executed by the compiler. No slash is added when this prefix is
combined with the name of a subprogram, but you can specify a prefix that
ends with a slash if you wish.

If GCC_EXEC_PREFIX is not set, GCC attempts to figure out an appropriate
prefix to use based on the pathname it is invoked with.

If GCC cannot find the subprogram using the specified prefix, it tries looking
in the usual places for the subprogram.

The default value of GCC_EXEC_PREFIX is ‘prefix/lib/gcc/’ where prefix is
the prefix to the installed compiler. In many cases prefix is the value of prefix
when you ran the ‘configure’ script.

Other prefixes specified with ‘-B’ take precedence over this prefix.

This prefix is also used for finding files such as ‘crt0.o’ that are used for linking.

In addition, the prefix is used in an unusual way in finding the directories
to search for header files. For each of the standard directories whose name
normally begins with ‘/usr/local/lib/gcc’ (more precisely, with the value of
GCC_INCLUDE_DIR), GCC tries replacing that beginning with the specified prefix
to produce an alternate directory name. Thus, with ‘-Bfoo/’, GCC searches
‘foo/bar’ just before it searches the standard directory ‘/usr/local/lib/bar’.
If a standard directory begins with the configured prefix then the value of prefix
is replaced by GCC_EXEC_PREFIX when looking for header files.

Chapter 3: GCC Command Options 335

COMPILER_PATH
The value of COMPILER_PATH is a colon-separated list of directories, much like
PATH. GCC tries the directories thus specified when searching for subprograms,
if it can’t find the subprograms using GCC_EXEC_PREFIX.

LIBRARY_PATH
The value of LIBRARY_PATH is a colon-separated list of directories, much like
PATH. When configured as a native compiler, GCC tries the directories thus
specified when searching for special linker files, if it can’t find them using GCC_
EXEC_PREFIX. Linking using GCC also uses these directories when searching for
ordinary libraries for the ‘-l’ option (but directories specified with ‘-L’ come
first).

LANG This variable is used to pass locale information to the compiler. One way in
which this information is used is to determine the character set to be used when
character literals, string literals and comments are parsed in C and C++. When
the compiler is configured to allow multibyte characters, the following values
for LANG are recognized:

‘C-JIS’ Recognize JIS characters.

‘C-SJIS’ Recognize SJIS characters.

‘C-EUCJP’ Recognize EUCJP characters.

If LANG is not defined, or if it has some other value, then the compiler uses
mblen and mbtowc as defined by the default locale to recognize and translate
multibyte characters.

Some additional environment variables affect the behavior of the preprocessor.

CPATH
C_INCLUDE_PATH
CPLUS_INCLUDE_PATH
OBJC_INCLUDE_PATH

Each variable’s value is a list of directories separated by a special character,
much like PATH, in which to look for header files. The special character, PATH_
SEPARATOR, is target-dependent and determined at GCC build time. For Mi-
crosoft Windows-based targets it is a semicolon, and for almost all other targets
it is a colon.
CPATH specifies a list of directories to be searched as if specified with ‘-I’, but
after any paths given with ‘-I’ options on the command line. This environment
variable is used regardless of which language is being preprocessed.
The remaining environment variables apply only when preprocessing the par-
ticular language indicated. Each specifies a list of directories to be searched as
if specified with ‘-isystem’, but after any paths given with ‘-isystem’ options
on the command line.
In all these variables, an empty element instructs the compiler to search its
current working directory. Empty elements can appear at the beginning or end
of a path. For instance, if the value of CPATH is :/special/include, that has
the same effect as ‘-I. -I/special/include’.

336 Using the GNU Compiler Collection (GCC)

DEPENDENCIES_OUTPUT
If this variable is set, its value specifies how to output dependencies for Make
based on the non-system header files processed by the compiler. System header
files are ignored in the dependency output.
The value of DEPENDENCIES_OUTPUT can be just a file name, in which case the
Make rules are written to that file, guessing the target name from the source
file name. Or the value can have the form ‘file target’, in which case the
rules are written to file file using target as the target name.
In other words, this environment variable is equivalent to combining the options
‘-MM’ and ‘-MF’ (see Section 3.11 [Preprocessor Options], page 155), with an
optional ‘-MT’ switch too.

SUNPRO_DEPENDENCIES
This variable is the same as DEPENDENCIES_OUTPUT (see above), except that
system header files are not ignored, so it implies ‘-M’ rather than ‘-MM’. However,
the dependence on the main input file is omitted. See Section 3.11 [Preprocessor
Options], page 155.

3.20 Using Precompiled Headers

Often large projects have many header files that are included in every source file. The time
the compiler takes to process these header files over and over again can account for nearly
all of the time required to build the project. To make builds faster, GCC allows you to
precompile a header file.

To create a precompiled header file, simply compile it as you would any other file, if
necessary using the ‘-x’ option to make the driver treat it as a C or C++ header file. You
may want to use a tool like make to keep the precompiled header up-to-date when the
headers it contains change.

A precompiled header file is searched for when #include is seen in the compilation. As
it searches for the included file (see Section “Search Path” in The C Preprocessor) the
compiler looks for a precompiled header in each directory just before it looks for the include
file in that directory. The name searched for is the name specified in the #include with
‘.gch’ appended. If the precompiled header file can’t be used, it is ignored.

For instance, if you have #include "all.h", and you have ‘all.h.gch’ in the same
directory as ‘all.h’, then the precompiled header file is used if possible, and the original
header is used otherwise.

Alternatively, you might decide to put the precompiled header file in a directory and use
‘-I’ to ensure that directory is searched before (or instead of) the directory containing the
original header. Then, if you want to check that the precompiled header file is always used,
you can put a file of the same name as the original header in this directory containing an
#error command.

This also works with ‘-include’. So yet another way to use precompiled headers, good
for projects not designed with precompiled header files in mind, is to simply take most
of the header files used by a project, include them from another header file, precompile
that header file, and ‘-include’ the precompiled header. If the header files have guards
against multiple inclusion, they are skipped because they’ve already been included (in the
precompiled header).

Chapter 3: GCC Command Options 337

If you need to precompile the same header file for different languages, targets, or compiler
options, you can instead make a directory named like ‘all.h.gch’, and put each precompiled
header in the directory, perhaps using ‘-o’. It doesn’t matter what you call the files in the
directory; every precompiled header in the directory is considered. The first precompiled
header encountered in the directory that is valid for this compilation is used; they’re searched
in no particular order.

There are many other possibilities, limited only by your imagination, good sense, and the
constraints of your build system.

A precompiled header file can be used only when these conditions apply:

• Only one precompiled header can be used in a particular compilation.

• A precompiled header can’t be used once the first C token is seen. You can have
preprocessor directives before a precompiled header; you cannot include a precompiled
header from inside another header.

• The precompiled header file must be produced for the same language as the current
compilation. You can’t use a C precompiled header for a C++ compilation.

• The precompiled header file must have been produced by the same compiler binary as
the current compilation is using.

• Any macros defined before the precompiled header is included must either be defined
in the same way as when the precompiled header was generated, or must not affect the
precompiled header, which usually means that they don’t appear in the precompiled
header at all.

The ‘-D’ option is one way to define a macro before a precompiled header is included;
using a #define can also do it. There are also some options that define macros im-
plicitly, like ‘-O’ and ‘-Wdeprecated’; the same rule applies to macros defined this
way.

• If debugging information is output when using the precompiled header, using ‘-g’ or
similar, the same kind of debugging information must have been output when building
the precompiled header. However, a precompiled header built using ‘-g’ can be used
in a compilation when no debugging information is being output.

• The same ‘-m’ options must generally be used when building and using the precompiled
header. See Section 3.17 [Submodel Options], page 180, for any cases where this rule
is relaxed.

• Each of the following options must be the same when building and using the precom-
piled header:

-fexceptions

• Some other command-line options starting with ‘-f’, ‘-p’, or ‘-O’ must be defined in
the same way as when the precompiled header was generated. At present, it’s not clear
which options are safe to change and which are not; the safest choice is to use exactly
the same options when generating and using the precompiled header. The following
are known to be safe:

-fmessage-length= -fpreprocessed -fsched-interblock

-fsched-spec -fsched-spec-load -fsched-spec-load-dangerous

-fsched-verbose=number -fschedule-insns -fvisibility=

-pedantic-errors

338 Using the GNU Compiler Collection (GCC)

For all of these except the last, the compiler automatically ignores the precompiled header
if the conditions aren’t met. If you find an option combination that doesn’t work and
doesn’t cause the precompiled header to be ignored, please consider filing a bug report, see
Chapter 12 [Bugs], page 761.

If you do use differing options when generating and using the precompiled header, the
actual behavior is a mixture of the behavior for the options. For instance, if you use ‘-g’ to
generate the precompiled header but not when using it, you may or may not get debugging
information for routines in the precompiled header.

Chapter 4: C Implementation-defined behavior 339

4 C Implementation-defined behavior

A conforming implementation of ISO C is required to document its choice of behavior in
each of the areas that are designated “implementation defined”. The following lists all such
areas, along with the section numbers from the ISO/IEC 9899:1990, ISO/IEC 9899:1999
and ISO/IEC 9899:2011 standards. Some areas are only implementation-defined in one
version of the standard.

Some choices depend on the externally determined ABI for the platform (including stan-
dard character encodings) which GCC follows; these are listed as “determined by ABI”
below. See Chapter 9 [Binary Compatibility], page 731, and http://gcc.gnu.org/
readings.html. Some choices are documented in the preprocessor manual. See Section
“Implementation-defined behavior” in The C Preprocessor. Some choices are made by
the library and operating system (or other environment when compiling for a freestanding
environment); refer to their documentation for details.

4.1 Translation

• How a diagnostic is identified (C90 3.7, C99 and C11 3.10, C90, C99 and C11 5.1.1.3).

Diagnostics consist of all the output sent to stderr by GCC.
• Whether each nonempty sequence of white-space characters other than new-line is

retained or replaced by one space character in translation phase 3 (C90, C99 and C11
5.1.1.2).

See Section “Implementation-defined behavior” in The C Preprocessor.

4.2 Environment

The behavior of most of these points are dependent on the implementation of the C library,
and are not defined by GCC itself.
• The mapping between physical source file multibyte characters and the source character

set in translation phase 1 (C90, C99 and C11 5.1.1.2).

See Section “Implementation-defined behavior” in The C Preprocessor.

4.3 Identifiers

• Which additional multibyte characters may appear in identifiers and their correspon-
dence to universal character names (C99 and C11 6.4.2).

See Section “Implementation-defined behavior” in The C Preprocessor.
• The number of significant initial characters in an identifier (C90 6.1.2, C90, C99 and

C11 5.2.4.1, C99 and C11 6.4.2).

For internal names, all characters are significant. For external names, the number of
significant characters are defined by the linker; for almost all targets, all characters are
significant.

• Whether case distinctions are significant in an identifier with external linkage (C90
6.1.2).

This is a property of the linker. C99 and C11 require that case distinctions are always
significant in identifiers with external linkage and systems without this property are
not supported by GCC.

http://gcc.gnu.org/readings.html
http://gcc.gnu.org/readings.html

340 Using the GNU Compiler Collection (GCC)

4.4 Characters

• The number of bits in a byte (C90 3.4, C99 and C11 3.6).

Determined by ABI.
• The values of the members of the execution character set (C90, C99 and C11 5.2.1).

Determined by ABI.
• The unique value of the member of the execution character set produced for each of

the standard alphabetic escape sequences (C90, C99 and C11 5.2.2).

Determined by ABI.
• The value of a char object into which has been stored any character other than a

member of the basic execution character set (C90 6.1.2.5, C99 and C11 6.2.5).

Determined by ABI.
• Which of signed char or unsigned char has the same range, representation, and be-

havior as “plain” char (C90 6.1.2.5, C90 6.2.1.1, C99 and C11 6.2.5, C99 and C11
6.3.1.1).

Determined by ABI. The options ‘-funsigned-char’ and ‘-fsigned-char’ change the
default. See Section 3.4 [Options Controlling C Dialect], page 31.

• The mapping of members of the source character set (in character constants and string
literals) to members of the execution character set (C90 6.1.3.4, C99 and C11 6.4.4.4,
C90, C99 and C11 5.1.1.2).

Determined by ABI.
• The value of an integer character constant containing more than one character or

containing a character or escape sequence that does not map to a single-byte execution
character (C90 6.1.3.4, C99 and C11 6.4.4.4).

See Section “Implementation-defined behavior” in The C Preprocessor.
• The value of a wide character constant containing more than one multibyte character or

a single multibyte character that maps to multiple members of the extended execution
character set, or containing a multibyte character or escape sequence not represented
in the extended execution character set (C90 6.1.3.4, C99 and C11 6.4.4.4).

See Section “Implementation-defined behavior” in The C Preprocessor.
• The current locale used to convert a wide character constant consisting of a single

multibyte character that maps to a member of the extended execution character set
into a corresponding wide character code (C90 6.1.3.4, C99 and C11 6.4.4.4).

See Section “Implementation-defined behavior” in The C Preprocessor.
• Whether differently-prefixed wide string literal tokens can be concatenated and, if so,

the treatment of the resulting multibyte character sequence (C11 6.4.5).

Such tokens may not be concatenated.
• The current locale used to convert a wide string literal into corresponding wide char-

acter codes (C90 6.1.4, C99 and C11 6.4.5).

See Section “Implementation-defined behavior” in The C Preprocessor.
• The value of a string literal containing a multibyte character or escape sequence not

represented in the execution character set (C90 6.1.4, C99 and C11 6.4.5).

See Section “Implementation-defined behavior” in The C Preprocessor.

Chapter 4: C Implementation-defined behavior 341

• The encoding of any of wchar_t, char16_t, and char32_t where the corresponding
standard encoding macro (__STDC_ISO_10646__, __STDC_UTF_16__, or __STDC_UTF_
32__) is not defined (C11 6.10.8.2).

See Section “Implementation-defined behavior” in The C Preprocessor. char16_t and
char32_t literals are always encoded in UTF-16 and UTF-32 respectively.

4.5 Integers

• Any extended integer types that exist in the implementation (C99 and C11 6.2.5).

GCC does not support any extended integer types.
• Whether signed integer types are represented using sign and magnitude, two’s comple-

ment, or one’s complement, and whether the extraordinary value is a trap representa-
tion or an ordinary value (C99 and C11 6.2.6.2).

GCC supports only two’s complement integer types, and all bit patterns are ordinary
values.

• The rank of any extended integer type relative to another extended integer type with
the same precision (C99 and C11 6.3.1.1).

GCC does not support any extended integer types.
• The result of, or the signal raised by, converting an integer to a signed integer type

when the value cannot be represented in an object of that type (C90 6.2.1.2, C99 and
C11 6.3.1.3).

For conversion to a type of width N , the value is reduced modulo 2N to be within range
of the type; no signal is raised.

• The results of some bitwise operations on signed integers (C90 6.3, C99 and C11 6.5).

Bitwise operators act on the representation of the value including both the sign and
value bits, where the sign bit is considered immediately above the highest-value value
bit. Signed ‘>>’ acts on negative numbers by sign extension.
GCC does not use the latitude given in C99 and C11 only to treat certain aspects of
signed ‘<<’ as undefined, but this is subject to change.

• The sign of the remainder on integer division (C90 6.3.5).

GCC always follows the C99 and C11 requirement that the result of division is truncated
towards zero.

4.6 Floating point

• The accuracy of the floating-point operations and of the library functions in <math.h>
and <complex.h> that return floating-point results (C90, C99 and C11 5.2.4.2.2).

The accuracy is unknown.
• The rounding behaviors characterized by non-standard values of FLT_ROUNDS

(C90, C99 and C11 5.2.4.2.2).

GCC does not use such values.
• The evaluation methods characterized by non-standard negative values of FLT_EVAL_

METHOD (C99 and C11 5.2.4.2.2).

GCC does not use such values.

342 Using the GNU Compiler Collection (GCC)

• The direction of rounding when an integer is converted to a floating-point number that
cannot exactly represent the original value (C90 6.2.1.3, C99 and C11 6.3.1.4).

C99 Annex F is followed.

• The direction of rounding when a floating-point number is converted to a narrower
floating-point number (C90 6.2.1.4, C99 and C11 6.3.1.5).

C99 Annex F is followed.

• How the nearest representable value or the larger or smaller representable value im-
mediately adjacent to the nearest representable value is chosen for certain floating
constants (C90 6.1.3.1, C99 and C11 6.4.4.2).

C99 Annex F is followed.

• Whether and how floating expressions are contracted when not disallowed by the FP_
CONTRACT pragma (C99 and C11 6.5).

Expressions are currently only contracted if ‘-ffp-contract=fast’,
‘-funsafe-math-optimizations’ or ‘-ffast-math’ are used. This is subject
to change.

• The default state for the FENV_ACCESS pragma (C99 and C11 7.6.1).

This pragma is not implemented, but the default is to “off” unless ‘-frounding-math’
is used in which case it is “on”.

• Additional floating-point exceptions, rounding modes, environments, and classifica-
tions, and their macro names (C99 and C11 7.6, C99 and C11 7.12).

This is dependent on the implementation of the C library, and is not defined by GCC
itself.

• The default state for the FP_CONTRACT pragma (C99 and C11 7.12.2).

This pragma is not implemented. Expressions are currently only contracted if
‘-ffp-contract=fast’, ‘-funsafe-math-optimizations’ or ‘-ffast-math’ are used.
This is subject to change.

• Whether the “inexact” floating-point exception can be raised when the rounded result
actually does equal the mathematical result in an IEC 60559 conformant implementa-
tion (C99 F.9).

This is dependent on the implementation of the C library, and is not defined by GCC
itself.

• Whether the “underflow” (and “inexact”) floating-point exception can be raised when
a result is tiny but not inexact in an IEC 60559 conformant implementation (C99 F.9).

This is dependent on the implementation of the C library, and is not defined by GCC
itself.

4.7 Arrays and pointers

• The result of converting a pointer to an integer or vice versa (C90 6.3.4, C99 and C11
6.3.2.3).

Chapter 4: C Implementation-defined behavior 343

A cast from pointer to integer discards most-significant bits if the pointer representation
is larger than the integer type, sign-extends1 if the pointer representation is smaller
than the integer type, otherwise the bits are unchanged.
A cast from integer to pointer discards most-significant bits if the pointer representation
is smaller than the integer type, extends according to the signedness of the integer type
if the pointer representation is larger than the integer type, otherwise the bits are
unchanged.
When casting from pointer to integer and back again, the resulting pointer must ref-
erence the same object as the original pointer, otherwise the behavior is undefined.
That is, one may not use integer arithmetic to avoid the undefined behavior of pointer
arithmetic as proscribed in C99 and C11 6.5.6/8.

• The size of the result of subtracting two pointers to elements of the same array (C90
6.3.6, C99 and C11 6.5.6).

The value is as specified in the standard and the type is determined by the ABI.

4.8 Hints

• The extent to which suggestions made by using the register storage-class specifier
are effective (C90 6.5.1, C99 and C11 6.7.1).

The register specifier affects code generation only in these ways:
• When used as part of the register variable extension, see Section 6.44 [Explicit Reg

Vars], page 466.
• When ‘-O0’ is in use, the compiler allocates distinct stack memory for all variables

that do not have the register storage-class specifier; if register is specified, the
variable may have a shorter lifespan than the code would indicate and may never
be placed in memory.

• On some rare x86 targets, setjmp doesn’t save the registers in all circumstances.
In those cases, GCC doesn’t allocate any variables in registers unless they are
marked register.

• The extent to which suggestions made by using the inline function specifier are effective
(C99 and C11 6.7.4).

GCC will not inline any functions if the ‘-fno-inline’ option is used or if ‘-O0’ is
used. Otherwise, GCC may still be unable to inline a function for many reasons; the
‘-Winline’ option may be used to determine if a function has not been inlined and why
not.

4.9 Structures, unions, enumerations, and bit-fields

• A member of a union object is accessed using a member of a different type (C90 6.3.2.3).

The relevant bytes of the representation of the object are treated as an object of the type
used for the access. See [Type-punning], page 124. This may be a trap representation.

• Whether a “plain” int bit-field is treated as a signed int bit-field or as an unsigned
int bit-field (C90 6.5.2, C90 6.5.2.1, C99 and C11 6.7.2, C99 and C11 6.7.2.1).

1 Future versions of GCC may zero-extend, or use a target-defined ptr_extend pattern. Do not rely on
sign extension.

344 Using the GNU Compiler Collection (GCC)

By default it is treated as signed int but this may be changed by the
‘-funsigned-bitfields’ option.

• Allowable bit-field types other than _Bool, signed int, and unsigned int (C99 and
C11 6.7.2.1).

Other integer types, such as long int, and enumerated types are permitted even in
strictly conforming mode.

• Whether atomic types are permitted for bit-fields (C11 6.7.2.1).

Atomic types are not permitted for bit-fields.
• Whether a bit-field can straddle a storage-unit boundary (C90 6.5.2.1, C99 and C11

6.7.2.1).

Determined by ABI.
• The order of allocation of bit-fields within a unit (C90 6.5.2.1, C99 and C11 6.7.2.1).

Determined by ABI.
• The alignment of non-bit-field members of structures (C90 6.5.2.1, C99 and C11

6.7.2.1).

Determined by ABI.
• The integer type compatible with each enumerated type (C90 6.5.2.2, C99 and C11

6.7.2.2).

Normally, the type is unsigned int if there are no negative values in the enumeration,
otherwise int. If ‘-fshort-enums’ is specified, then if there are negative values it is
the first of signed char, short and int that can represent all the values, otherwise it
is the first of unsigned char, unsigned short and unsigned int that can represent
all the values.
On some targets, ‘-fshort-enums’ is the default; this is determined by the ABI.

4.10 Qualifiers

• What constitutes an access to an object that has volatile-qualified type (C90 6.5.3, C99
and C11 6.7.3).

Such an object is normally accessed by pointers and used for accessing hardware. In
most expressions, it is intuitively obvious what is a read and what is a write. For
example

volatile int *dst = somevalue;

volatile int *src = someothervalue;

*dst = *src;

will cause a read of the volatile object pointed to by src and store the value into the
volatile object pointed to by dst. There is no guarantee that these reads and writes
are atomic, especially for objects larger than int.
However, if the volatile storage is not being modified, and the value of the volatile
storage is not used, then the situation is less obvious. For example

volatile int *src = somevalue;

*src;

According to the C standard, such an expression is an rvalue whose type is the unqual-
ified version of its original type, i.e. int. Whether GCC interprets this as a read of

Chapter 4: C Implementation-defined behavior 345

the volatile object being pointed to or only as a request to evaluate the expression for
its side-effects depends on this type.
If it is a scalar type, or on most targets an aggregate type whose only member object
is of a scalar type, or a union type whose member objects are of scalar types, the
expression is interpreted by GCC as a read of the volatile object; in the other cases,
the expression is only evaluated for its side-effects.

4.11 Declarators

• The maximum number of declarators that may modify an arithmetic, structure or
union type (C90 6.5.4).

GCC is only limited by available memory.

4.12 Statements

• The maximum number of case values in a switch statement (C90 6.6.4.2).

GCC is only limited by available memory.

4.13 Preprocessing directives

See Section “Implementation-defined behavior” in The C Preprocessor, for details of these
aspects of implementation-defined behavior.
• The locations within #pragma directives where header name preprocessing tokens are

recognized (C11 6.4, C11 6.4.7).

• How sequences in both forms of header names are mapped to headers or external source
file names (C90 6.1.7, C99 and C11 6.4.7).

• Whether the value of a character constant in a constant expression that controls con-
ditional inclusion matches the value of the same character constant in the execution
character set (C90 6.8.1, C99 and C11 6.10.1).

• Whether the value of a single-character character constant in a constant expression
that controls conditional inclusion may have a negative value (C90 6.8.1, C99 and C11
6.10.1).

• The places that are searched for an included ‘<>’ delimited header, and how the places
are specified or the header is identified (C90 6.8.2, C99 and C11 6.10.2).

• How the named source file is searched for in an included ‘""’ delimited header (C90
6.8.2, C99 and C11 6.10.2).

• The method by which preprocessing tokens (possibly resulting from macro expansion)
in a #include directive are combined into a header name (C90 6.8.2, C99 and C11
6.10.2).

• The nesting limit for #include processing (C90 6.8.2, C99 and C11 6.10.2).

• Whether the ‘#’ operator inserts a ‘\’ character before the ‘\’ character that begins
a universal character name in a character constant or string literal (C99 and C11
6.10.3.2).

• The behavior on each recognized non-STDC #pragma directive (C90 6.8.6, C99 and C11
6.10.6).

346 Using the GNU Compiler Collection (GCC)

See Section “Pragmas” in The C Preprocessor, for details of pragmas accepted by GCC
on all targets. See Section 6.59 [Pragmas Accepted by GCC], page 690, for details of
target-specific pragmas.

• The definitions for __DATE__ and __TIME__ when respectively, the date and time of
translation are not available (C90 6.8.8, C99 6.10.8, C11 6.10.8.1).

4.14 Library functions

The behavior of most of these points are dependent on the implementation of the C library,
and are not defined by GCC itself.
• The null pointer constant to which the macro NULL expands (C90 7.1.6, C99 7.17, C11

7.19).

In <stddef.h>, NULL expands to ((void *)0). GCC does not provide the other headers
which define NULL and some library implementations may use other definitions in those
headers.

4.15 Architecture

• The values or expressions assigned to the macros specified in the headers <float.h>,
<limits.h>, and <stdint.h> (C90, C99 and C11 5.2.4.2, C99 7.18.2, C99 7.18.3, C11
7.20.2, C11 7.20.3).

Determined by ABI.
• The result of attempting to indirectly access an object with automatic or thread storage

duration from a thread other than the one with which it is associated (C11 6.2.4).

Such accesses are supported, subject to the same requirements for synchronization for
concurrent accesses as for concurrent accesses to any object.

• The number, order, and encoding of bytes in any object (when not explicitly specified
in this International Standard) (C99 and C11 6.2.6.1).

Determined by ABI.
• Whether any extended alignments are supported and the contexts in which they are

supported (C11 6.2.8).

Extended alignments up to 228 (bytes) are supported for objects of automatic storage
duration. Alignments supported for objects of static and thread storage duration are
determined by the ABI.

• Valid alignment values other than those returned by an Alignof expression for funda-
mental types, if any (C11 6.2.8).

Valid alignments are powers of 2 up to and including 228.
• The value of the result of the sizeof and _Alignof operators (C90 6.3.3.4, C99 and

C11 6.5.3.4).

Determined by ABI.

4.16 Locale-specific behavior

The behavior of these points are dependent on the implementation of the C library, and are
not defined by GCC itself.

Chapter 5: C++ Implementation-defined behavior 347

5 C++ Implementation-defined behavior

A conforming implementation of ISO C++ is required to document its choice of behavior
in each of the areas that are designated “implementation defined”. The following lists all
such areas, along with the section numbers from the ISO/IEC 14882:1998 and ISO/IEC
14882:2003 standards. Some areas are only implementation-defined in one version of the
standard.

Some choices depend on the externally determined ABI for the platform (including stan-
dard character encodings) which GCC follows; these are listed as “determined by ABI”
below. See Chapter 9 [Binary Compatibility], page 731, and http://gcc.gnu.org/
readings.html. Some choices are documented in the preprocessor manual. See Section
“Implementation-defined behavior” in The C Preprocessor. Some choices are documented
in the corresponding document for the C language. See Chapter 4 [C Implementation],
page 339. Some choices are made by the library and operating system (or other environ-
ment when compiling for a freestanding environment); refer to their documentation for
details.

5.1 Conditionally-supported behavior

Each implementation shall include documentation that identifies all conditionally-supported
constructs that it does not support (C++0x 1.4).

• Whether an argument of class type with a non-trivial copy constructor or destructor
can be passed to ... (C++0x 5.2.2).

Such argument passing is not supported.

5.2 Exception handling

• In the situation where no matching handler is found, it is implementation-defined
whether or not the stack is unwound before std::terminate() is called (C++98 15.5.1).

The stack is not unwound before std::terminate is called.

http://gcc.gnu.org/readings.html
http://gcc.gnu.org/readings.html

Chapter 6: Extensions to the C Language Family 349

6 Extensions to the C Language Family

GNU C provides several language features not found in ISO standard C. (The ‘-pedantic’
option directs GCC to print a warning message if any of these features is used.) To test for
the availability of these features in conditional compilation, check for a predefined macro
__GNUC__, which is always defined under GCC.

These extensions are available in C and Objective-C. Most of them are also available in
C++. See Chapter 7 [Extensions to the C++ Language], page 701, for extensions that apply
only to C++.

Some features that are in ISO C99 but not C90 or C++ are also, as extensions, accepted
by GCC in C90 mode and in C++.

6.1 Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an expression in GNU C.
This allows you to use loops, switches, and local variables within an expression.

Recall that a compound statement is a sequence of statements surrounded by braces; in
this construct, parentheses go around the braces. For example:

({ int y = foo (); int z;

if (y > 0) z = y;

else z = - y;

z; })

is a valid (though slightly more complex than necessary) expression for the absolute value
of foo ().

The last thing in the compound statement should be an expression followed by a semi-
colon; the value of this subexpression serves as the value of the entire construct. (If you use
some other kind of statement last within the braces, the construct has type void, and thus
effectively no value.)

This feature is especially useful in making macro definitions “safe” (so that they evaluate
each operand exactly once). For example, the “maximum” function is commonly defined
as a macro in standard C as follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either a or b twice, with bad results if the operand has side
effects. In GNU C, if you know the type of the operands (here taken as int), you can define
the macro safely as follows:

#define maxint(a,b) \

({int _a = (a), _b = (b); _a > _b ? _a : _b; })

Embedded statements are not allowed in constant expressions, such as the value of an
enumeration constant, the width of a bit-field, or the initial value of a static variable.

If you don’t know the type of the operand, you can still do this, but you must use typeof
or __auto_type (see Section 6.6 [Typeof], page 356).

In G++, the result value of a statement expression undergoes array and function pointer
decay, and is returned by value to the enclosing expression. For instance, if A is a class,
then

350 Using the GNU Compiler Collection (GCC)

A a;

({a;}).Foo ()

constructs a temporary A object to hold the result of the statement expression, and that is
used to invoke Foo. Therefore the this pointer observed by Foo is not the address of a.

In a statement expression, any temporaries created within a statement are destroyed at
that statement’s end. This makes statement expressions inside macros slightly different
from function calls. In the latter case temporaries introduced during argument evaluation
are destroyed at the end of the statement that includes the function call. In the statement
expression case they are destroyed during the statement expression. For instance,

#define macro(a) ({__typeof__(a) b = (a); b + 3; })

template<typename T> T function(T a) { T b = a; return b + 3; }

void foo ()

{

macro (X ());

function (X ());

}

has different places where temporaries are destroyed. For the macro case, the temporary
X is destroyed just after the initialization of b. In the function case that temporary is
destroyed when the function returns.

These considerations mean that it is probably a bad idea to use statement expressions of
this form in header files that are designed to work with C++. (Note that some versions of
the GNU C Library contained header files using statement expressions that lead to precisely
this bug.)

Jumping into a statement expression with goto or using a switch statement outside the
statement expression with a case or default label inside the statement expression is not
permitted. Jumping into a statement expression with a computed goto (see Section 6.3
[Labels as Values], page 351) has undefined behavior. Jumping out of a statement expres-
sion is permitted, but if the statement expression is part of a larger expression then it is
unspecified which other subexpressions of that expression have been evaluated except where
the language definition requires certain subexpressions to be evaluated before or after the
statement expression. In any case, as with a function call, the evaluation of a statement
expression is not interleaved with the evaluation of other parts of the containing expression.
For example,

foo (), (({ bar1 (); goto a; 0; }) + bar2 ()), baz();

calls foo and bar1 and does not call baz but may or may not call bar2. If bar2 is called,
it is called after foo and before bar1.

6.2 Locally Declared Labels

GCC allows you to declare local labels in any nested block scope. A local label is just like
an ordinary label, but you can only reference it (with a goto statement, or by taking its
address) within the block in which it is declared.

A local label declaration looks like this:
__label__ label;

or

Chapter 6: Extensions to the C Language Family 351

__label__ label1, label2, /* . . . */;

Local label declarations must come at the beginning of the block, before any ordinary
declarations or statements.

The label declaration defines the label name, but does not define the label itself. You must
do this in the usual way, with label:, within the statements of the statement expression.

The local label feature is useful for complex macros. If a macro contains nested loops,
a goto can be useful for breaking out of them. However, an ordinary label whose scope
is the whole function cannot be used: if the macro can be expanded several times in one
function, the label is multiply defined in that function. A local label avoids this problem.
For example:

#define SEARCH(value, array, target) \

do { \

__label__ found; \

typeof (target) _SEARCH_target = (target); \

typeof (*(array)) *_SEARCH_array = (array); \

int i, j; \

int value; \

for (i = 0; i < max; i++) \

for (j = 0; j < max; j++) \

if (_SEARCH_array[i][j] == _SEARCH_target) \

{ (value) = i; goto found; } \

(value) = -1; \

found:; \

} while (0)

This could also be written using a statement expression:
#define SEARCH(array, target) \

({ \

__label__ found; \

typeof (target) _SEARCH_target = (target); \

typeof (*(array)) *_SEARCH_array = (array); \

int i, j; \

int value; \

for (i = 0; i < max; i++) \

for (j = 0; j < max; j++) \

if (_SEARCH_array[i][j] == _SEARCH_target) \

{ value = i; goto found; } \

value = -1; \

found: \

value; \

})

Local label declarations also make the labels they declare visible to nested functions, if
there are any. See Section 6.4 [Nested Functions], page 352, for details.

6.3 Labels as Values

You can get the address of a label defined in the current function (or a containing function)
with the unary operator ‘&&’. The value has type void *. This value is a constant and can
be used wherever a constant of that type is valid. For example:

void *ptr;

/* . . . */

ptr = &&foo;

352 Using the GNU Compiler Collection (GCC)

To use these values, you need to be able to jump to one. This is done with the computed
goto statement1, goto *exp;. For example,

goto *ptr;

Any expression of type void * is allowed.

One way of using these constants is in initializing a static array that serves as a jump
table:

static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:
goto *array[i];

Note that this does not check whether the subscript is in bounds—array indexing in C never
does that.

Such an array of label values serves a purpose much like that of the switch statement.
The switch statement is cleaner, so use that rather than an array unless the problem does
not fit a switch statement very well.

Another use of label values is in an interpreter for threaded code. The labels within the
interpreter function can be stored in the threaded code for super-fast dispatching.

You may not use this mechanism to jump to code in a different function. If you do that,
totally unpredictable things happen. The best way to avoid this is to store the label address
only in automatic variables and never pass it as an argument.

An alternate way to write the above example is
static const int array[] = { &&foo - &&foo, &&bar - &&foo,

&&hack - &&foo };

goto *(&&foo + array[i]);

This is more friendly to code living in shared libraries, as it reduces the number of dynamic
relocations that are needed, and by consequence, allows the data to be read-only.

The &&foo expressions for the same label might have different values if the contain-
ing function is inlined or cloned. If a program relies on them being always the same,
__attribute__((__noinline__,__noclone__)) should be used to prevent inlining and
cloning. If &&foo is used in a static variable initializer, inlining and cloning is forbidden.

6.4 Nested Functions

A nested function is a function defined inside another function. Nested functions are sup-
ported as an extension in GNU C, but are not supported by GNU C++.

The nested function’s name is local to the block where it is defined. For example, here
we define a nested function named square, and call it twice:

foo (double a, double b)

{

double square (double z) { return z * z; }

return square (a) + square (b);

}

1 The analogous feature in Fortran is called an assigned goto, but that name seems inappropriate in C,
where one can do more than simply store label addresses in label variables.

Chapter 6: Extensions to the C Language Family 353

The nested function can access all the variables of the containing function that are visible
at the point of its definition. This is called lexical scoping. For example, here we show a
nested function which uses an inherited variable named offset:

bar (int *array, int offset, int size)

{

int access (int *array, int index)

{ return array[index + offset]; }

int i;

/* . . . */

for (i = 0; i < size; i++)

/* . . . */ access (array, i) /* . . . */

}

Nested function definitions are permitted within functions in the places where variable
definitions are allowed; that is, in any block, mixed with the other declarations and state-
ments in the block.

It is possible to call the nested function from outside the scope of its name by storing its
address or passing the address to another function:

hack (int *array, int size)

{

void store (int index, int value)

{ array[index] = value; }

intermediate (store, size);

}

Here, the function intermediate receives the address of store as an argument. If
intermediate calls store, the arguments given to store are used to store into array.
But this technique works only so long as the containing function (hack, in this example)
does not exit.

If you try to call the nested function through its address after the containing function
exits, all hell breaks loose. If you try to call it after a containing scope level exits, and if it
refers to some of the variables that are no longer in scope, you may be lucky, but it’s not
wise to take the risk. If, however, the nested function does not refer to anything that has
gone out of scope, you should be safe.

GCC implements taking the address of a nested function using a technique called tram-
polines. This technique was described in Lexical Closures for C++ (Thomas M. Breuel,
USENIX C++ Conference Proceedings, October 17-21, 1988).

A nested function can jump to a label inherited from a containing function, provided
the label is explicitly declared in the containing function (see Section 6.2 [Local Labels],
page 350). Such a jump returns instantly to the containing function, exiting the nested
function that did the goto and any intermediate functions as well. Here is an example:

354 Using the GNU Compiler Collection (GCC)

bar (int *array, int offset, int size)

{

__label__ failure;

int access (int *array, int index)

{

if (index > size)

goto failure;

return array[index + offset];

}

int i;

/* . . . */

for (i = 0; i < size; i++)

/* . . . */ access (array, i) /* . . . */

/* . . . */

return 0;

/* Control comes here from access

if it detects an error. */

failure:

return -1;

}

A nested function always has no linkage. Declaring one with extern or static is erro-
neous. If you need to declare the nested function before its definition, use auto (which is
otherwise meaningless for function declarations).

bar (int *array, int offset, int size)

{

__label__ failure;

auto int access (int *, int);

/* . . . */

int access (int *array, int index)

{

if (index > size)

goto failure;

return array[index + offset];

}

/* . . . */

}

6.5 Constructing Function Calls

Using the built-in functions described below, you can record the arguments a function
received, and call another function with the same arguments, without knowing the number
or types of the arguments.

You can also record the return value of that function call, and later return that value,
without knowing what data type the function tried to return (as long as your caller expects
that data type).

However, these built-in functions may interact badly with some sophisticated features or
other extensions of the language. It is, therefore, not recommended to use them outside
very simple functions acting as mere forwarders for their arguments.

[Built-in Function]void * __builtin_apply_args ()
This built-in function returns a pointer to data describing how to perform a call with
the same arguments as are passed to the current function.

Chapter 6: Extensions to the C Language Family 355

The function saves the arg pointer register, structure value address, and all registers
that might be used to pass arguments to a function into a block of memory allocated
on the stack. Then it returns the address of that block.

[Built-in Function]void * __builtin_apply (void (*function)(), void
*arguments, size t size)

This built-in function invokes function with a copy of the parameters described by
arguments and size.
The value of arguments should be the value returned by __builtin_apply_args.
The argument size specifies the size of the stack argument data, in bytes.
This function returns a pointer to data describing how to return whatever value is
returned by function. The data is saved in a block of memory allocated on the stack.
It is not always simple to compute the proper value for size. The value is used by
__builtin_apply to compute the amount of data that should be pushed on the stack
and copied from the incoming argument area.

[Built-in Function]void __builtin_return (void *result)
This built-in function returns the value described by result from the containing func-
tion. You should specify, for result, a value returned by __builtin_apply.

[Built-in Function]__builtin_va_arg_pack ()
This built-in function represents all anonymous arguments of an inline function. It
can be used only in inline functions that are always inlined, never compiled as a
separate function, such as those using __attribute__ ((__always_inline__)) or _
_attribute__ ((__gnu_inline__)) extern inline functions. It must be only passed
as last argument to some other function with variable arguments. This is useful for
writing small wrapper inlines for variable argument functions, when using preproces-
sor macros is undesirable. For example:

extern int myprintf (FILE *f, const char *format, ...);

extern inline __attribute__ ((__gnu_inline__)) int

myprintf (FILE *f, const char *format, ...)

{

int r = fprintf (f, "myprintf: ");

if (r < 0)

return r;

int s = fprintf (f, format, __builtin_va_arg_pack ());

if (s < 0)

return s;

return r + s;

}

[Built-in Function]size_t __builtin_va_arg_pack_len ()
This built-in function returns the number of anonymous arguments of an inline func-
tion. It can be used only in inline functions that are always inlined, never compiled as
a separate function, such as those using __attribute__ ((__always_inline__)) or
__attribute__ ((__gnu_inline__)) extern inline functions. For example following
does link- or run-time checking of open arguments for optimized code:

#ifdef __OPTIMIZE__

extern inline __attribute__((__gnu_inline__)) int

myopen (const char *path, int oflag, ...)

356 Using the GNU Compiler Collection (GCC)

{

if (__builtin_va_arg_pack_len () > 1)

warn_open_too_many_arguments ();

if (__builtin_constant_p (oflag))

{

if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)

{

warn_open_missing_mode ();

return __open_2 (path, oflag);

}

return open (path, oflag, __builtin_va_arg_pack ());

}

if (__builtin_va_arg_pack_len () < 1)

return __open_2 (path, oflag);

return open (path, oflag, __builtin_va_arg_pack ());

}

#endif

6.6 Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The syntax of using of
this keyword looks like sizeof, but the construct acts semantically like a type name defined
with typedef.

There are two ways of writing the argument to typeof: with an expression or with a
type. Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of pointers to functions; the type described is that of the
values of the functions.

Here is an example with a typename as the argument:
typeof (int *)

Here the type described is that of pointers to int.
If you are writing a header file that must work when included in ISO C programs, write

__typeof__ instead of typeof. See Section 6.45 [Alternate Keywords], page 468.
A typeof construct can be used anywhere a typedef name can be used. For example,

you can use it in a declaration, in a cast, or inside of sizeof or typeof.
The operand of typeof is evaluated for its side effects if and only if it is an expression of

variably modified type or the name of such a type.
typeof is often useful in conjunction with statement expressions (see Section 6.1 [State-

ment Exprs], page 349). Here is how the two together can be used to define a safe “max-
imum” macro which operates on any arithmetic type and evaluates each of its arguments
exactly once:

#define max(a,b) \

({ typeof (a) _a = (a); \

typeof (b) _b = (b); \

_a > _b ? _a : _b; })

The reason for using names that start with underscores for the local variables is to avoid
conflicts with variable names that occur within the expressions that are substituted for a

Chapter 6: Extensions to the C Language Family 357

and b. Eventually we hope to design a new form of declaration syntax that allows you to
declare variables whose scopes start only after their initializers; this will be a more reliable
way to prevent such conflicts.

Some more examples of the use of typeof:

• This declares y with the type of what x points to.
typeof (*x) y;

• This declares y as an array of such values.
typeof (*x) y[4];

• This declares y as an array of pointers to characters:
typeof (typeof (char *)[4]) y;

It is equivalent to the following traditional C declaration:
char *y[4];

To see the meaning of the declaration using typeof, and why it might be a useful way
to write, rewrite it with these macros:

#define pointer(T) typeof(T *)

#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:
array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4 pointers to char.

In GNU C, but not GNU C++, you may also declare the type of a variable as __auto_type.
In that case, the declaration must declare only one variable, whose declarator must just be
an identifier, the declaration must be initialized, and the type of the variable is determined
by the initializer; the name of the variable is not in scope until after the initializer. (In C++,
you should use C++11 auto for this purpose.) Using __auto_type, the “maximum” macro
above could be written as:

#define max(a,b) \

({ __auto_type _a = (a); \

__auto_type _b = (b); \

_a > _b ? _a : _b; })

Using __auto_type instead of typeof has two advantages:

• Each argument to the macro appears only once in the expansion of the macro. This
prevents the size of the macro expansion growing exponentially when calls to such
macros are nested inside arguments of such macros.

• If the argument to the macro has variably modified type, it is evaluated only once when
using __auto_type, but twice if typeof is used.

Compatibility Note: In addition to typeof, GCC 2 supported a more limited extension
that permitted one to write

typedef T = expr;

with the effect of declaring T to have the type of the expression expr. This extension does
not work with GCC 3 (versions between 3.0 and 3.2 crash; 3.2.1 and later give an error).
Code that relies on it should be rewritten to use typeof:

typedef typeof(expr) T;

This works with all versions of GCC.

358 Using the GNU Compiler Collection (GCC)

6.7 Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then if the first operand
is nonzero, its value is the value of the conditional expression.

Therefore, the expression
x ? : y

has the value of x if that is nonzero; otherwise, the value of y.
This example is perfectly equivalent to

x ? x : y

In this simple case, the ability to omit the middle operand is not especially useful. When it
becomes useful is when the first operand does, or may (if it is a macro argument), contain a
side effect. Then repeating the operand in the middle would perform the side effect twice.
Omitting the middle operand uses the value already computed without the undesirable
effects of recomputing it.

6.8 128-bit integers

As an extension the integer scalar type __int128 is supported for targets which have an
integer mode wide enough to hold 128 bits. Simply write __int128 for a signed 128-bit
integer, or unsigned __int128 for an unsigned 128-bit integer. There is no support in GCC
for expressing an integer constant of type __int128 for targets with long long integer less
than 128 bits wide.

6.9 Double-Word Integers

ISO C99 supports data types for integers that are at least 64 bits wide, and as an extension
GCC supports them in C90 mode and in C++. Simply write long long int for a signed
integer, or unsigned long long int for an unsigned integer. To make an integer constant
of type long long int, add the suffix ‘LL’ to the integer. To make an integer constant of
type unsigned long long int, add the suffix ‘ULL’ to the integer.

You can use these types in arithmetic like any other integer types. Addition, subtraction,
and bitwise boolean operations on these types are open-coded on all types of machines.
Multiplication is open-coded if the machine supports a fullword-to-doubleword widening
multiply instruction. Division and shifts are open-coded only on machines that provide
special support. The operations that are not open-coded use special library routines that
come with GCC.

There may be pitfalls when you use long long types for function arguments without
function prototypes. If a function expects type int for its argument, and you pass a value
of type long long int, confusion results because the caller and the subroutine disagree
about the number of bytes for the argument. Likewise, if the function expects long long
int and you pass int. The best way to avoid such problems is to use prototypes.

6.10 Complex Numbers

ISO C99 supports complex floating data types, and as an extension GCC supports them in
C90 mode and in C++. GCC also supports complex integer data types which are not part
of ISO C99. You can declare complex types using the keyword _Complex. As an extension,
the older GNU keyword __complex__ is also supported.

Chapter 6: Extensions to the C Language Family 359

For example, ‘_Complex double x;’ declares x as a variable whose real part and imagi-
nary part are both of type double. ‘_Complex short int y;’ declares y to have real and
imaginary parts of type short int; this is not likely to be useful, but it shows that the set
of complex types is complete.

To write a constant with a complex data type, use the suffix ‘i’ or ‘j’ (either one; they
are equivalent). For example, 2.5fi has type _Complex float and 3i has type _Complex
int. Such a constant always has a pure imaginary value, but you can form any complex
value you like by adding one to a real constant. This is a GNU extension; if you have
an ISO C99 conforming C library (such as the GNU C Library), and want to construct
complex constants of floating type, you should include <complex.h> and use the macros I
or _Complex_I instead.

To extract the real part of a complex-valued expression exp, write __real__ exp. Like-
wise, use __imag__ to extract the imaginary part. This is a GNU extension; for values of
floating type, you should use the ISO C99 functions crealf, creal, creall, cimagf, cimag
and cimagl, declared in <complex.h> and also provided as built-in functions by GCC.

The operator ‘~’ performs complex conjugation when used on a value with a complex
type. This is a GNU extension; for values of floating type, you should use the ISO C99
functions conjf, conj and conjl, declared in <complex.h> and also provided as built-in
functions by GCC.

GCC can allocate complex automatic variables in a noncontiguous fashion; it’s even
possible for the real part to be in a register while the imaginary part is on the stack (or vice
versa). Only the DWARF 2 debug info format can represent this, so use of DWARF 2 is
recommended. If you are using the stabs debug info format, GCC describes a noncontiguous
complex variable as if it were two separate variables of noncomplex type. If the variable’s
actual name is foo, the two fictitious variables are named foo$real and foo$imag. You
can examine and set these two fictitious variables with your debugger.

6.11 Additional Floating Types

As an extension, GNU C supports additional floating types, __float80 and __float128
to support 80-bit (XFmode) and 128-bit (TFmode) floating types. Support for additional
types includes the arithmetic operators: add, subtract, multiply, divide; unary arithmetic
operators; relational operators; equality operators; and conversions to and from integer and
other floating types. Use a suffix ‘w’ or ‘W’ in a literal constant of type __float80 and ‘q’ or
‘Q’ for _float128. You can declare complex types using the corresponding internal complex
type, XCmode for __float80 type and TCmode for __float128 type:

typedef _Complex float __attribute__((mode(TC))) _Complex128;

typedef _Complex float __attribute__((mode(XC))) _Complex80;

Not all targets support additional floating-point types. __float80 and __float128 types
are supported on i386, x86 64 and IA-64 targets. The __float128 type is supported on
hppa HP-UX targets.

6.12 Half-Precision Floating Point

On ARM targets, GCC supports half-precision (16-bit) floating point via the __fp16 type.
You must enable this type explicitly with the ‘-mfp16-format’ command-line option in
order to use it.

360 Using the GNU Compiler Collection (GCC)

ARM supports two incompatible representations for half-precision floating-point values.
You must choose one of the representations and use it consistently in your program.

Specifying ‘-mfp16-format=ieee’ selects the IEEE 754-2008 format. This format can
represent normalized values in the range of 2−14 to 65504. There are 11 bits of significand
precision, approximately 3 decimal digits.

Specifying ‘-mfp16-format=alternative’ selects the ARM alternative format. This rep-
resentation is similar to the IEEE format, but does not support infinities or NaNs. Instead,
the range of exponents is extended, so that this format can represent normalized values in
the range of 2−14 to 131008.

The __fp16 type is a storage format only. For purposes of arithmetic and other oper-
ations, __fp16 values in C or C++ expressions are automatically promoted to float. In
addition, you cannot declare a function with a return value or parameters of type __fp16.

Note that conversions from double to __fp16 involve an intermediate conversion to
float. Because of rounding, this can sometimes produce a different result than a direct
conversion.

ARM provides hardware support for conversions between __fp16 and float values as an
extension to VFP and NEON (Advanced SIMD). GCC generates code using these hardware
instructions if you compile with options to select an FPU that provides them; for example,
‘-mfpu=neon-fp16 -mfloat-abi=softfp’, in addition to the ‘-mfp16-format’ option to
select a half-precision format.

Language-level support for the __fp16 data type is independent of whether GCC gen-
erates code using hardware floating-point instructions. In cases where hardware support
is not specified, GCC implements conversions between __fp16 and float values as library
calls.

6.13 Decimal Floating Types

As an extension, GNU C supports decimal floating types as defined in the N1312 draft of
ISO/IEC WDTR24732. Support for decimal floating types in GCC will evolve as the draft
technical report changes. Calling conventions for any target might also change. Not all
targets support decimal floating types.

The decimal floating types are _Decimal32, _Decimal64, and _Decimal128. They use a
radix of ten, unlike the floating types float, double, and long double whose radix is not
specified by the C standard but is usually two.

Support for decimal floating types includes the arithmetic operators add, subtract, mul-
tiply, divide; unary arithmetic operators; relational operators; equality operators; and con-
versions to and from integer and other floating types. Use a suffix ‘df’ or ‘DF’ in a literal
constant of type _Decimal32, ‘dd’ or ‘DD’ for _Decimal64, and ‘dl’ or ‘DL’ for _Decimal128.

GCC support of decimal float as specified by the draft technical report is incomplete:

• When the value of a decimal floating type cannot be represented in the integer type to
which it is being converted, the result is undefined rather than the result value specified
by the draft technical report.

• GCC does not provide the C library functionality associated with ‘math.h’, ‘fenv.h’,
‘stdio.h’, ‘stdlib.h’, and ‘wchar.h’, which must come from a separate C library

Chapter 6: Extensions to the C Language Family 361

implementation. Because of this the GNU C compiler does not define macro __STDC_
DEC_FP__ to indicate that the implementation conforms to the technical report.

Types _Decimal32, _Decimal64, and _Decimal128 are supported by the DWARF 2
debug information format.

6.14 Hex Floats

ISO C99 supports floating-point numbers written not only in the usual decimal notation,
such as 1.55e1, but also numbers such as 0x1.fp3 written in hexadecimal format. As
a GNU extension, GCC supports this in C90 mode (except in some cases when strictly
conforming) and in C++. In that format the ‘0x’ hex introducer and the ‘p’ or ‘P’ exponent
field are mandatory. The exponent is a decimal number that indicates the power of 2 by
which the significant part is multiplied. Thus ‘0x1.f’ is 1 15

16
, ‘p3’ multiplies it by 8, and the

value of 0x1.fp3 is the same as 1.55e1.
Unlike for floating-point numbers in the decimal notation the exponent is always required

in the hexadecimal notation. Otherwise the compiler would not be able to resolve the
ambiguity of, e.g., 0x1.f. This could mean 1.0f or 1.9375 since ‘f’ is also the extension
for floating-point constants of type float.

6.15 Fixed-Point Types

As an extension, GNU C supports fixed-point types as defined in the N1169 draft of ISO/IEC
DTR 18037. Support for fixed-point types in GCC will evolve as the draft technical report
changes. Calling conventions for any target might also change. Not all targets support
fixed-point types.

The fixed-point types are short _Fract, _Fract, long _Fract, long long _Fract,
unsigned short _Fract, unsigned _Fract, unsigned long _Fract, unsigned long long
_Fract, _Sat short _Fract, _Sat _Fract, _Sat long _Fract, _Sat long long _Fract,
_Sat unsigned short _Fract, _Sat unsigned _Fract, _Sat unsigned long _Fract, _Sat
unsigned long long _Fract, short _Accum, _Accum, long _Accum, long long _Accum,
unsigned short _Accum, unsigned _Accum, unsigned long _Accum, unsigned long long
_Accum, _Sat short _Accum, _Sat _Accum, _Sat long _Accum, _Sat long long _Accum,
_Sat unsigned short _Accum, _Sat unsigned _Accum, _Sat unsigned long _Accum, _Sat
unsigned long long _Accum.

Fixed-point data values contain fractional and optional integral parts. The format of
fixed-point data varies and depends on the target machine.

Support for fixed-point types includes:
• prefix and postfix increment and decrement operators (++, --)
• unary arithmetic operators (+, -, !)
• binary arithmetic operators (+, -, *, /)
• binary shift operators (<<, >>)
• relational operators (<, <=, >=, >)
• equality operators (==, !=)
• assignment operators (+=, -=, *=, /=, <<=, >>=)
• conversions to and from integer, floating-point, or fixed-point types

362 Using the GNU Compiler Collection (GCC)

Use a suffix in a fixed-point literal constant:

• ‘hr’ or ‘HR’ for short _Fract and _Sat short _Fract

• ‘r’ or ‘R’ for _Fract and _Sat _Fract

• ‘lr’ or ‘LR’ for long _Fract and _Sat long _Fract

• ‘llr’ or ‘LLR’ for long long _Fract and _Sat long long _Fract

• ‘uhr’ or ‘UHR’ for unsigned short _Fract and _Sat unsigned short _Fract

• ‘ur’ or ‘UR’ for unsigned _Fract and _Sat unsigned _Fract

• ‘ulr’ or ‘ULR’ for unsigned long _Fract and _Sat unsigned long _Fract

• ‘ullr’ or ‘ULLR’ for unsigned long long _Fract and _Sat unsigned long long
_Fract

• ‘hk’ or ‘HK’ for short _Accum and _Sat short _Accum

• ‘k’ or ‘K’ for _Accum and _Sat _Accum

• ‘lk’ or ‘LK’ for long _Accum and _Sat long _Accum

• ‘llk’ or ‘LLK’ for long long _Accum and _Sat long long _Accum

• ‘uhk’ or ‘UHK’ for unsigned short _Accum and _Sat unsigned short _Accum

• ‘uk’ or ‘UK’ for unsigned _Accum and _Sat unsigned _Accum

• ‘ulk’ or ‘ULK’ for unsigned long _Accum and _Sat unsigned long _Accum

• ‘ullk’ or ‘ULLK’ for unsigned long long _Accum and _Sat unsigned long long
_Accum

GCC support of fixed-point types as specified by the draft technical report is incomplete:

• Pragmas to control overflow and rounding behaviors are not implemented.

Fixed-point types are supported by the DWARF 2 debug information format.

6.16 Named Address Spaces

As an extension, GNU C supports named address spaces as defined in the N1275 draft of
ISO/IEC DTR 18037. Support for named address spaces in GCC will evolve as the draft
technical report changes. Calling conventions for any target might also change. At present,
only the AVR, SPU, M32C, and RL78 targets support address spaces other than the generic
address space.

Address space identifiers may be used exactly like any other C type qualifier (e.g., const
or volatile). See the N1275 document for more details.

6.16.1 AVR Named Address Spaces

On the AVR target, there are several address spaces that can be used in order to put read-
only data into the flash memory and access that data by means of the special instructions
LPM or ELPM needed to read from flash.

Per default, any data including read-only data is located in RAM (the generic address
space) so that non-generic address spaces are needed to locate read-only data in flash
memory and to generate the right instructions to access this data without using (inline)
assembler code.

Chapter 6: Extensions to the C Language Family 363

__flash The __flash qualifier locates data in the .progmem.data section. Data is read
using the LPM instruction. Pointers to this address space are 16 bits wide.

__flash1
__flash2
__flash3
__flash4
__flash5 These are 16-bit address spaces locating data in section .progmemN.data where

N refers to address space __flashN. The compiler sets the RAMPZ segment
register appropriately before reading data by means of the ELPM instruction.

__memx This is a 24-bit address space that linearizes flash and RAM: If the high bit
of the address is set, data is read from RAM using the lower two bytes as
RAM address. If the high bit of the address is clear, data is read from flash
with RAMPZ set according to the high byte of the address. See Section 6.57.8
[__builtin_avr_flash_segment], page 595.
Objects in this address space are located in .progmemx.data.

Example

char my_read (const __flash char ** p)

{

/* p is a pointer to RAM that points to a pointer to flash.

The first indirection of p reads that flash pointer

from RAM and the second indirection reads a char from this

flash address. */

return **p;

}

/* Locate array[] in flash memory */

const __flash int array[] = { 3, 5, 7, 11, 13, 17, 19 };

int i = 1;

int main (void)

{

/* Return 17 by reading from flash memory */

return array[array[i]];

}

For each named address space supported by avr-gcc there is an equally named but uppercase
built-in macro defined. The purpose is to facilitate testing if respective address space
support is available or not:

#ifdef __FLASH

const __flash int var = 1;

int read_var (void)

{

return var;

}

#else

#include <avr/pgmspace.h> /* From AVR-LibC */

const int var PROGMEM = 1;

364 Using the GNU Compiler Collection (GCC)

int read_var (void)

{

return (int) pgm_read_word (&var);

}

#endif /* __FLASH */

Notice that attribute [progmem], page 414 locates data in flash but accesses to these data
read from generic address space, i.e. from RAM, so that you need special accessors like
pgm_read_byte from AVR-LibC together with attribute progmem.
Limitations and caveats

• Reading across the 64 KiB section boundary of the __flash or __flashN address spaces
shows undefined behavior. The only address space that supports reading across the
64 KiB flash segment boundaries is __memx.

• If you use one of the __flashN address spaces you must arrange your linker script to
locate the .progmemN.data sections according to your needs.

• Any data or pointers to the non-generic address spaces must be qualified as const,
i.e. as read-only data. This still applies if the data in one of these address spaces like
software version number or calibration lookup table are intended to be changed after
load time by, say, a boot loader. In this case the right qualification is const volatile
so that the compiler must not optimize away known values or insert them as immediates
into operands of instructions.

• The following code initializes a variable pfoo located in static storage with a 24-bit
address:

extern const __memx char foo;

const __memx void *pfoo = &foo;

Such code requires at least binutils 2.23, see PR13503.

6.16.2 M32C Named Address Spaces

On the M32C target, with the R8C and M16C CPU variants, variables qualified with __far
are accessed using 32-bit addresses in order to access memory beyond the first 64 Ki bytes.
If __far is used with the M32CM or M32C CPU variants, it has no effect.

6.16.3 RL78 Named Address Spaces

On the RL78 target, variables qualified with __far are accessed with 32-bit pointers (20-
bit addresses) rather than the default 16-bit addresses. Non-far variables are assumed to
appear in the topmost 64 KiB of the address space.

6.16.4 SPU Named Address Spaces

On the SPU target variables may be declared as belonging to another address space by
qualifying the type with the __ea address space identifier:

extern int __ea i;

The compiler generates special code to access the variable i. It may use runtime library
support, or generate special machine instructions to access that address space.

6.17 Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the last element of a
structure that is really a header for a variable-length object:

http://nongnu.org/avr-libc/user-manual/
http://sourceware.org/PR13503

Chapter 6: Extensions to the C Language Family 365

struct line {

int length;

char contents[0];

};

struct line *thisline = (struct line *)

malloc (sizeof (struct line) + this_length);

thisline->length = this_length;

In ISO C90, you would have to give contents a length of 1, which means either you
waste space or complicate the argument to malloc.

In ISO C99, you would use a flexible array member, which is slightly different in syntax
and semantics:

• Flexible array members are written as contents[] without the 0.

• Flexible array members have incomplete type, and so the sizeof operator may not
be applied. As a quirk of the original implementation of zero-length arrays, sizeof
evaluates to zero.

• Flexible array members may only appear as the last member of a struct that is
otherwise non-empty.

• A structure containing a flexible array member, or a union containing such a structure
(possibly recursively), may not be a member of a structure or an element of an array.
(However, these uses are permitted by GCC as extensions.)

GCC versions before 3.0 allowed zero-length arrays to be statically initialized, as if they
were flexible arrays. In addition to those cases that were useful, it also allowed initializations
in situations that would corrupt later data. Non-empty initialization of zero-length arrays is
now treated like any case where there are more initializer elements than the array holds, in
that a suitable warning about “excess elements in array” is given, and the excess elements
(all of them, in this case) are ignored.

Instead GCC allows static initialization of flexible array members. This is equivalent to
defining a new structure containing the original structure followed by an array of sufficient
size to contain the data. E.g. in the following, f1 is constructed as if it were declared like
f2.

struct f1 {

int x; int y[];

} f1 = { 1, { 2, 3, 4 } };

struct f2 {

struct f1 f1; int data[3];

} f2 = { { 1 }, { 2, 3, 4 } };

The convenience of this extension is that f1 has the desired type, eliminating the need to
consistently refer to f2.f1.

This has symmetry with normal static arrays, in that an array of unknown size is also
written with [].

Of course, this extension only makes sense if the extra data comes at the end of a top-level
object, as otherwise we would be overwriting data at subsequent offsets. To avoid undue
complication and confusion with initialization of deeply nested arrays, we simply disallow
any non-empty initialization except when the structure is the top-level object. For example:

366 Using the GNU Compiler Collection (GCC)

struct foo { int x; int y[]; };

struct bar { struct foo z; };

struct foo a = { 1, { 2, 3, 4 } }; // Valid.
struct bar b = { { 1, { 2, 3, 4 } } }; // Invalid.
struct bar c = { { 1, { } } }; // Valid.
struct foo d[1] = { { 1 { 2, 3, 4 } } }; // Invalid.

6.18 Structures With No Members

GCC permits a C structure to have no members:
struct empty {

};

The structure has size zero. In C++, empty structures are part of the language. G++
treats empty structures as if they had a single member of type char.

6.19 Arrays of Variable Length

Variable-length automatic arrays are allowed in ISO C99, and as an extension GCC accepts
them in C90 mode and in C++. These arrays are declared like any other automatic arrays,
but with a length that is not a constant expression. The storage is allocated at the point
of declaration and deallocated when the block scope containing the declaration exits. For
example:

FILE *

concat_fopen (char *s1, char *s2, char *mode)

{

char str[strlen (s1) + strlen (s2) + 1];

strcpy (str, s1);

strcat (str, s2);

return fopen (str, mode);

}

Jumping or breaking out of the scope of the array name deallocates the storage. Jumping
into the scope is not allowed; you get an error message for it.

As an extension, GCC accepts variable-length arrays as a member of a structure or a
union. For example:

void

foo (int n)

{

struct S { int x[n]; };

}

You can use the function alloca to get an effect much like variable-length arrays. The
function alloca is available in many other C implementations (but not in all). On the
other hand, variable-length arrays are more elegant.

There are other differences between these two methods. Space allocated with alloca
exists until the containing function returns. The space for a variable-length array is deal-
located as soon as the array name’s scope ends. (If you use both variable-length arrays
and alloca in the same function, deallocation of a variable-length array also deallocates
anything more recently allocated with alloca.)

You can also use variable-length arrays as arguments to functions:

Chapter 6: Extensions to the C Language Family 367

struct entry

tester (int len, char data[len][len])

{

/* . . . */

}

The length of an array is computed once when the storage is allocated and is remembered
for the scope of the array in case you access it with sizeof.

If you want to pass the array first and the length afterward, you can use a forward
declaration in the parameter list—another GNU extension.

struct entry

tester (int len; char data[len][len], int len)

{

/* . . . */

}

The ‘int len’ before the semicolon is a parameter forward declaration, and it serves the
purpose of making the name len known when the declaration of data is parsed.

You can write any number of such parameter forward declarations in the parameter list.
They can be separated by commas or semicolons, but the last one must end with a semicolon,
which is followed by the “real” parameter declarations. Each forward declaration must
match a “real” declaration in parameter name and data type. ISO C99 does not support
parameter forward declarations.

6.20 Macros with a Variable Number of Arguments.

In the ISO C standard of 1999, a macro can be declared to accept a variable number of
arguments much as a function can. The syntax for defining the macro is similar to that of
a function. Here is an example:

#define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)

Here ‘...’ is a variable argument. In the invocation of such a macro, it represents the
zero or more tokens until the closing parenthesis that ends the invocation, including any
commas. This set of tokens replaces the identifier __VA_ARGS__ in the macro body wherever
it appears. See the CPP manual for more information.

GCC has long supported variadic macros, and used a different syntax that allowed you
to give a name to the variable arguments just like any other argument. Here is an example:

#define debug(format, args...) fprintf (stderr, format, args)

This is in all ways equivalent to the ISO C example above, but arguably more readable and
descriptive.

GNU CPP has two further variadic macro extensions, and permits them to be used with
either of the above forms of macro definition.

In standard C, you are not allowed to leave the variable argument out entirely; but you
are allowed to pass an empty argument. For example, this invocation is invalid in ISO C,
because there is no comma after the string:

debug ("A message")

GNU CPP permits you to completely omit the variable arguments in this way. In the
above examples, the compiler would complain, though since the expansion of the macro still
has the extra comma after the format string.

368 Using the GNU Compiler Collection (GCC)

To help solve this problem, CPP behaves specially for variable arguments used with the
token paste operator, ‘##’. If instead you write

#define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)

and if the variable arguments are omitted or empty, the ‘##’ operator causes the preprocessor
to remove the comma before it. If you do provide some variable arguments in your macro
invocation, GNU CPP does not complain about the paste operation and instead places the
variable arguments after the comma. Just like any other pasted macro argument, these
arguments are not macro expanded.

6.21 Slightly Looser Rules for Escaped Newlines

Recently, the preprocessor has relaxed its treatment of escaped newlines. Previously, the
newline had to immediately follow a backslash. The current implementation allows white-
space in the form of spaces, horizontal and vertical tabs, and form feeds between the back-
slash and the subsequent newline. The preprocessor issues a warning, but treats it as a valid
escaped newline and combines the two lines to form a single logical line. This works within
comments and tokens, as well as between tokens. Comments are not treated as whitespace
for the purposes of this relaxation, since they have not yet been replaced with spaces.

6.22 Non-Lvalue Arrays May Have Subscripts

In ISO C99, arrays that are not lvalues still decay to pointers, and may be subscripted,
although they may not be modified or used after the next sequence point and the unary
‘&’ operator may not be applied to them. As an extension, GNU C allows such arrays to
be subscripted in C90 mode, though otherwise they do not decay to pointers outside C99
mode. For example, this is valid in GNU C though not valid in C90:

struct foo {int a[4];};

struct foo f();

bar (int index)

{

return f().a[index];

}

6.23 Arithmetic on void- and Function-Pointers

In GNU C, addition and subtraction operations are supported on pointers to void and on
pointers to functions. This is done by treating the size of a void or of a function as 1.

A consequence of this is that sizeof is also allowed on void and on function types, and
returns 1.

The option ‘-Wpointer-arith’ requests a warning if these extensions are used.

6.24 Non-Constant Initializers

As in standard C++ and ISO C99, the elements of an aggregate initializer for an automatic
variable are not required to be constant expressions in GNU C. Here is an example of an
initializer with run-time varying elements:

foo (float f, float g)

Chapter 6: Extensions to the C Language Family 369

{

float beat_freqs[2] = { f-g, f+g };

/* . . . */

}

6.25 Compound Literals

ISO C99 supports compound literals. A compound literal looks like a cast containing an
initializer. Its value is an object of the type specified in the cast, containing the elements
specified in the initializer; it is an lvalue. As an extension, GCC supports compound literals
in C90 mode and in C++, though the semantics are somewhat different in C++.

Usually, the specified type is a structure. Assume that struct foo and structure are
declared as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a compound literal:
structure = ((struct foo) {x + y, ’a’, 0});

This is equivalent to writing the following:
{

struct foo temp = {x + y, ’a’, 0};

structure = temp;

}

You can also construct an array, though this is dangerous in C++, as explained below.
If all the elements of the compound literal are (made up of) simple constant expressions,
suitable for use in initializers of objects of static storage duration, then the compound literal
can be coerced to a pointer to its first element and used in such an initializer, as shown
here:

char **foo = (char *[]) { "x", "y", "z" };

Compound literals for scalar types and union types are also allowed, but then the com-
pound literal is equivalent to a cast.

As a GNU extension, GCC allows initialization of objects with static storage duration
by compound literals (which is not possible in ISO C99, because the initializer is not a
constant). It is handled as if the object is initialized only with the bracket enclosed list if
the types of the compound literal and the object match. The initializer list of the compound
literal must be constant. If the object being initialized has array type of unknown size, the
size is determined by compound literal size.

static struct foo x = (struct foo) {1, ’a’, ’b’};

static int y[] = (int []) {1, 2, 3};

static int z[] = (int [3]) {1};

The above lines are equivalent to the following:
static struct foo x = {1, ’a’, ’b’};

static int y[] = {1, 2, 3};

static int z[] = {1, 0, 0};

In C, a compound literal designates an unnamed object with static or automatic storage
duration. In C++, a compound literal designates a temporary object, which only lives until
the end of its full-expression. As a result, well-defined C code that takes the address of
a subobject of a compound literal can be undefined in C++. For instance, if the array
compound literal example above appeared inside a function, any subsequent use of ‘foo’ in

370 Using the GNU Compiler Collection (GCC)

C++ has undefined behavior because the lifetime of the array ends after the declaration of
‘foo’. As a result, the C++ compiler now rejects the conversion of a temporary array to a
pointer.

As an optimization, the C++ compiler sometimes gives array compound literals longer
lifetimes: when the array either appears outside a function or has const-qualified type. If
‘foo’ and its initializer had elements of ‘char *const’ type rather than ‘char *’, or if ‘foo’
were a global variable, the array would have static storage duration. But it is probably
safest just to avoid the use of array compound literals in code compiled as C++.

6.26 Designated Initializers

Standard C90 requires the elements of an initializer to appear in a fixed order, the same as
the order of the elements in the array or structure being initialized.

In ISO C99 you can give the elements in any order, specifying the array indices or structure
field names they apply to, and GNU C allows this as an extension in C90 mode as well.
This extension is not implemented in GNU C++.

To specify an array index, write ‘[index] =’ before the element value. For example,
int a[6] = { [4] = 29, [2] = 15 };

is equivalent to
int a[6] = { 0, 0, 15, 0, 29, 0 };

The index values must be constant expressions, even if the array being initialized is auto-
matic.

An alternative syntax for this that has been obsolete since GCC 2.5 but GCC still accepts
is to write ‘[index]’ before the element value, with no ‘=’.

To initialize a range of elements to the same value, write ‘[first ... last] = value’.
This is a GNU extension. For example,

int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };

If the value in it has side-effects, the side-effects happen only once, not for each initialized
field by the range initializer.
Note that the length of the array is the highest value specified plus one.

In a structure initializer, specify the name of a field to initialize with ‘.fieldname =’
before the element value. For example, given the following structure,

struct point { int x, y; };

the following initialization
struct point p = { .y = yvalue, .x = xvalue };

is equivalent to
struct point p = { xvalue, yvalue };

Another syntax that has the same meaning, obsolete since GCC 2.5, is ‘fieldname:’, as
shown here:

struct point p = { y: yvalue, x: xvalue };

Omitted field members are implicitly initialized the same as objects that have static
storage duration.

The ‘[index]’ or ‘.fieldname’ is known as a designator. You can also use a designator
(or the obsolete colon syntax) when initializing a union, to specify which element of the
union should be used. For example,

Chapter 6: Extensions to the C Language Family 371

union foo { int i; double d; };

union foo f = { .d = 4 };

converts 4 to a double to store it in the union using the second element. By contrast,
casting 4 to type union foo stores it into the union as the integer i, since it is an integer.
(See Section 6.28 [Cast to Union], page 371.)

You can combine this technique of naming elements with ordinary C initialization of
successive elements. Each initializer element that does not have a designator applies to the
next consecutive element of the array or structure. For example,

int a[6] = { [1] = v1, v2, [4] = v4 };

is equivalent to
int a[6] = { 0, v1, v2, 0, v4, 0 };

Labeling the elements of an array initializer is especially useful when the indices are
characters or belong to an enum type. For example:

int whitespace[256]

= { [’ ’] = 1, [’\t’] = 1, [’\h’] = 1,

[’\f’] = 1, [’\n’] = 1, [’\r’] = 1 };

You can also write a series of ‘.fieldname’ and ‘[index]’ designators before an ‘=’ to
specify a nested subobject to initialize; the list is taken relative to the subobject correspond-
ing to the closest surrounding brace pair. For example, with the ‘struct point’ declaration
above:

struct point ptarray[10] = { [2].y = yv2, [2].x = xv2, [0].x = xv0 };

If the same field is initialized multiple times, it has the value from the last initialization.
If any such overridden initialization has side-effect, it is unspecified whether the side-effect
happens or not. Currently, GCC discards them and issues a warning.

6.27 Case Ranges

You can specify a range of consecutive values in a single case label, like this:
case low ... high:

This has the same effect as the proper number of individual case labels, one for each integer
value from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:
case ’A’ ... ’Z’:

Be careful: Write spaces around the ..., for otherwise it may be parsed wrong when you
use it with integer values. For example, write this:

case 1 ... 5:

rather than this:
case 1...5:

6.28 Cast to a Union Type

A cast to union type is similar to other casts, except that the type specified is a union type.
You can specify the type either with union tag or with a typedef name. A cast to union
is actually a constructor, not a cast, and hence does not yield an lvalue like normal casts.
(See Section 6.25 [Compound Literals], page 369.)

372 Using the GNU Compiler Collection (GCC)

The types that may be cast to the union type are those of the members of the union.
Thus, given the following union and variables:

union foo { int i; double d; };

int x;

double y;

both x and y can be cast to type union foo.
Using the cast as the right-hand side of an assignment to a variable of union type is

equivalent to storing in a member of the union:
union foo u;

/* . . . */

u = (union foo) x ≡ u.i = x

u = (union foo) y ≡ u.d = y

You can also use the union cast as a function argument:
void hack (union foo);

/* . . . */

hack ((union foo) x);

6.29 Mixed Declarations and Code

ISO C99 and ISO C++ allow declarations and code to be freely mixed within compound
statements. As an extension, GNU C also allows this in C90 mode. For example, you could
do:

int i;

/* . . . */

i++;

int j = i + 2;

Each identifier is visible from where it is declared until the end of the enclosing block.

6.30 Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your program which help
the compiler optimize function calls and check your code more carefully.

The keyword __attribute__ allows you to specify special attributes when making a
declaration. This keyword is followed by an attribute specification inside double parenthe-
ses. The following attributes are currently defined for functions on all targets: aligned,
alloc_size, alloc_align, assume_aligned, noreturn, returns_twice, noinline,
noclone, always_inline, flatten, pure, const, nothrow, sentinel, format, format_
arg, no_instrument_function, no_split_stack, section, constructor, destructor,
used, unused, deprecated, weak, malloc, alias, ifunc, warn_unused_result,
nonnull, returns_nonnull, gnu_inline, externally_visible, hot, cold, artificial,
no_sanitize_address, no_address_safety_analysis, no_sanitize_undefined, error
and warning. Several other attributes are defined for functions on particular target
systems. Other attributes, including section are supported for variables declarations
(see Section 6.36 [Variable Attributes], page 409) and for types (see Section 6.37 [Type
Attributes], page 418).

GCC plugins may provide their own attributes.
You may also specify attributes with ‘__’ preceding and following each keyword. This

allows you to use them in header files without being concerned about a possible macro of
the same name. For example, you may use __noreturn__ instead of noreturn.

Chapter 6: Extensions to the C Language Family 373

See Section 6.31 [Attribute Syntax], page 405, for details of the exact syntax for using
attributes.

alias ("target")
The alias attribute causes the declaration to be emitted as an alias for another
symbol, which must be specified. For instance,

void __f () { /* Do something. */; }

void f () __attribute__ ((weak, alias ("__f")));

defines ‘f’ to be a weak alias for ‘__f’. In C++, the mangled name for the target
must be used. It is an error if ‘__f’ is not defined in the same translation unit.
Not all target machines support this attribute.

aligned (alignment)
This attribute specifies a minimum alignment for the function, measured in
bytes.
You cannot use this attribute to decrease the alignment of a function, only
to increase it. However, when you explicitly specify a function alignment this
overrides the effect of the ‘-falign-functions’ (see Section 3.10 [Optimize
Options], page 101) option for this function.
Note that the effectiveness of aligned attributes may be limited by inherent
limitations in your linker. On many systems, the linker is only able to arrange
for functions to be aligned up to a certain maximum alignment. (For some
linkers, the maximum supported alignment may be very very small.) See your
linker documentation for further information.
The aligned attribute can also be used for variables and fields (see Section 6.36
[Variable Attributes], page 409.)

alloc_size
The alloc_size attribute is used to tell the compiler that the function return
value points to memory, where the size is given by one or two of the func-
tions parameters. GCC uses this information to improve the correctness of
__builtin_object_size.
The function parameter(s) denoting the allocated size are specified by one or
two integer arguments supplied to the attribute. The allocated size is either
the value of the single function argument specified or the product of the two
function arguments specified. Argument numbering starts at one.
For instance,

void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))

void* my_realloc(void*, size_t) __attribute__((alloc_size(2)))

declares that my_calloc returns memory of the size given by the product of
parameter 1 and 2 and that my_realloc returns memory of the size given by
parameter 2.

alloc_align
The alloc_align attribute is used to tell the compiler that the function return
value points to memory, where the returned pointer minimum alignment is given
by one of the functions parameters. GCC uses this information to improve
pointer alignment analysis.

374 Using the GNU Compiler Collection (GCC)

The function parameter denoting the allocated alignment is specified by one
integer argument, whose number is the argument of the attribute. Argument
numbering starts at one.
For instance,

void* my_memalign(size_t, size_t) __attribute__((alloc_align(1)))

declares that my_memalign returns memory with minimum alignment given by
parameter 1.

assume_aligned
The assume_aligned attribute is used to tell the compiler that the function
return value points to memory, where the returned pointer minimum alignment
is given by the first argument. If the attribute has two arguments, the second
argument is misalignment offset.
For instance

void* my_alloc1(size_t) __attribute__((assume_aligned(16)))

void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8)))

declares that my_alloc1 returns 16-byte aligned pointer and that my_alloc2
returns a pointer whose value modulo 32 is equal to 8.

always_inline
Generally, functions are not inlined unless optimization is specified. For func-
tions declared inline, this attribute inlines the function even if no optimization
level is specified.

gnu_inline
This attribute should be used with a function that is also declared with the
inline keyword. It directs GCC to treat the function as if it were defined in
gnu90 mode even when compiling in C99 or gnu99 mode.
If the function is declared extern, then this definition of the function is used
only for inlining. In no case is the function compiled as a standalone function,
not even if you take its address explicitly. Such an address becomes an external
reference, as if you had only declared the function, and had not defined it. This
has almost the effect of a macro. The way to use this is to put a function
definition in a header file with this attribute, and put another copy of the
function, without extern, in a library file. The definition in the header file
causes most calls to the function to be inlined. If any uses of the function
remain, they refer to the single copy in the library. Note that the two definitions
of the functions need not be precisely the same, although if they do not have
the same effect your program may behave oddly.
In C, if the function is neither extern nor static, then the function is compiled
as a standalone function, as well as being inlined where possible.
This is how GCC traditionally handled functions declared inline. Since ISO
C99 specifies a different semantics for inline, this function attribute is provided
as a transition measure and as a useful feature in its own right. This attribute
is available in GCC 4.1.3 and later. It is available if either of the preproces-
sor macros __GNUC_GNU_INLINE__ or __GNUC_STDC_INLINE__ are defined. See
Section 6.39 [An Inline Function is As Fast As a Macro], page 424.

Chapter 6: Extensions to the C Language Family 375

In C++, this attribute does not depend on extern in any way, but it still requires
the inline keyword to enable its special behavior.

artificial
This attribute is useful for small inline wrappers that if possible should appear
during debugging as a unit. Depending on the debug info format it either means
marking the function as artificial or using the caller location for all instructions
within the inlined body.

bank_switch
When added to an interrupt handler with the M32C port, causes the prologue
and epilogue to use bank switching to preserve the registers rather than saving
them on the stack.

flatten Generally, inlining into a function is limited. For a function marked with this
attribute, every call inside this function is inlined, if possible. Whether the
function itself is considered for inlining depends on its size and the current
inlining parameters.

error ("message")
If this attribute is used on a function declaration and a call to such a func-
tion is not eliminated through dead code elimination or other optimizations,
an error that includes message is diagnosed. This is useful for compile-time
checking, especially together with __builtin_constant_p and inline functions
where checking the inline function arguments is not possible through extern
char [(condition) ? 1 : -1]; tricks. While it is possible to leave the function
undefined and thus invoke a link failure, when using this attribute the problem
is diagnosed earlier and with exact location of the call even in presence of inline
functions or when not emitting debugging information.

warning ("message")
If this attribute is used on a function declaration and a call to such a function is
not eliminated through dead code elimination or other optimizations, a warning
that includes message is diagnosed. This is useful for compile-time checking, es-
pecially together with __builtin_constant_p and inline functions. While it is
possible to define the function with a message in .gnu.warning* section, when
using this attribute the problem is diagnosed earlier and with exact location
of the call even in presence of inline functions or when not emitting debugging
information.

cdecl On the Intel 386, the cdecl attribute causes the compiler to assume that the
calling function pops off the stack space used to pass arguments. This is useful
to override the effects of the ‘-mrtd’ switch.

const Many functions do not examine any values except their arguments, and have
no effects except the return value. Basically this is just slightly more strict
class than the pure attribute below, since function is not allowed to read global
memory.

Note that a function that has pointer arguments and examines the data pointed
to must not be declared const. Likewise, a function that calls a non-const

376 Using the GNU Compiler Collection (GCC)

function usually must not be const. It does not make sense for a const function
to return void.

The attribute const is not implemented in GCC versions earlier than 2.5. An
alternative way to declare that a function has no side effects, which works in
the current version and in some older versions, is as follows:

typedef int intfn ();

extern const intfn square;

This approach does not work in GNU C++ from 2.6.0 on, since the language
specifies that the ‘const’ must be attached to the return value.

constructor
destructor
constructor (priority)
destructor (priority)

The constructor attribute causes the function to be called automatically be-
fore execution enters main (). Similarly, the destructor attribute causes the
function to be called automatically after main () completes or exit () is called.
Functions with these attributes are useful for initializing data that is used im-
plicitly during the execution of the program.

You may provide an optional integer priority to control the order in which
constructor and destructor functions are run. A constructor with a smaller
priority number runs before a constructor with a larger priority number; the
opposite relationship holds for destructors. So, if you have a constructor that
allocates a resource and a destructor that deallocates the same resource, both
functions typically have the same priority. The priorities for constructor and
destructor functions are the same as those specified for namespace-scope C++
objects (see Section 7.7 [C++ Attributes], page 707).

These attributes are not currently implemented for Objective-C.

deprecated
deprecated (msg)

The deprecated attribute results in a warning if the function is used anywhere
in the source file. This is useful when identifying functions that are expected
to be removed in a future version of a program. The warning also includes the
location of the declaration of the deprecated function, to enable users to easily
find further information about why the function is deprecated, or what they
should do instead. Note that the warnings only occurs for uses:

int old_fn () __attribute__ ((deprecated));

int old_fn ();

int (*fn_ptr)() = old_fn;

results in a warning on line 3 but not line 2. The optional msg argument, which
must be a string, is printed in the warning if present.

The deprecated attribute can also be used for variables and types (see
Section 6.36 [Variable Attributes], page 409, see Section 6.37 [Type Attributes],
page 418.)

Chapter 6: Extensions to the C Language Family 377

disinterrupt
On Epiphany and MeP targets, this attribute causes the compiler to emit in-
structions to disable interrupts for the duration of the given function.

dllexport
On Microsoft Windows targets and Symbian OS targets the dllexport at-
tribute causes the compiler to provide a global pointer to a pointer in a DLL,
so that it can be referenced with the dllimport attribute. On Microsoft Win-
dows targets, the pointer name is formed by combining _imp__ and the function
or variable name.

You can use __declspec(dllexport) as a synonym for __attribute__
((dllexport)) for compatibility with other compilers.

On systems that support the visibility attribute, this attribute also implies
“default” visibility. It is an error to explicitly specify any other visibility.

In previous versions of GCC, the dllexport attribute was ignored for inlined
functions, unless the ‘-fkeep-inline-functions’ flag had been used. The
default behavior now is to emit all dllexported inline functions; however, this
can cause object file-size bloat, in which case the old behavior can be restored
by using ‘-fno-keep-inline-dllexport’.

The attribute is also ignored for undefined symbols.

When applied to C++ classes, the attribute marks defined non-inlined member
functions and static data members as exports. Static consts initialized in-class
are not marked unless they are also defined out-of-class.

For Microsoft Windows targets there are alternative methods for including the
symbol in the DLL’s export table such as using a ‘.def’ file with an EXPORTS
section or, with GNU ld, using the ‘--export-all’ linker flag.

dllimport
On Microsoft Windows and Symbian OS targets, the dllimport attribute
causes the compiler to reference a function or variable via a global pointer
to a pointer that is set up by the DLL exporting the symbol. The attribute
implies extern. On Microsoft Windows targets, the pointer name is formed by
combining _imp__ and the function or variable name.

You can use __declspec(dllimport) as a synonym for __attribute__
((dllimport)) for compatibility with other compilers.

On systems that support the visibility attribute, this attribute also implies
“default” visibility. It is an error to explicitly specify any other visibility.

Currently, the attribute is ignored for inlined functions. If the attribute is ap-
plied to a symbol definition, an error is reported. If a symbol previously declared
dllimport is later defined, the attribute is ignored in subsequent references,
and a warning is emitted. The attribute is also overridden by a subsequent
declaration as dllexport.

When applied to C++ classes, the attribute marks non-inlined member functions
and static data members as imports. However, the attribute is ignored for
virtual methods to allow creation of vtables using thunks.

378 Using the GNU Compiler Collection (GCC)

On the SH Symbian OS target the dllimport attribute also has another affect—
it can cause the vtable and run-time type information for a class to be exported.
This happens when the class has a dllimported constructor or a non-inline, non-
pure virtual function and, for either of those two conditions, the class also has
an inline constructor or destructor and has a key function that is defined in the
current translation unit.

For Microsoft Windows targets the use of the dllimport attribute on functions
is not necessary, but provides a small performance benefit by eliminating a
thunk in the DLL. The use of the dllimport attribute on imported variables
was required on older versions of the GNU linker, but can now be avoided
by passing the ‘--enable-auto-import’ switch to the GNU linker. As with
functions, using the attribute for a variable eliminates a thunk in the DLL.

One drawback to using this attribute is that a pointer to a variable marked
as dllimport cannot be used as a constant address. However, a pointer to a
function with the dllimport attribute can be used as a constant initializer;
in this case, the address of a stub function in the import lib is referenced.
On Microsoft Windows targets, the attribute can be disabled for functions by
setting the ‘-mnop-fun-dllimport’ flag.

eightbit_data
Use this attribute on the H8/300, H8/300H, and H8S to indicate that the
specified variable should be placed into the eight-bit data section. The compiler
generates more efficient code for certain operations on data in the eight-bit data
area. Note the eight-bit data area is limited to 256 bytes of data.

You must use GAS and GLD from GNU binutils version 2.7 or later for this
attribute to work correctly.

exception
Use this attribute on the NDS32 target to indicate that the specified function
is an exception handler. The compiler will generate corresponding sections for
use in an exception handler.

exception_handler
Use this attribute on the Blackfin to indicate that the specified function is an
exception handler. The compiler generates function entry and exit sequences
suitable for use in an exception handler when this attribute is present.

externally_visible
This attribute, attached to a global variable or function, nullifies the effect
of the ‘-fwhole-program’ command-line option, so the object remains visible
outside the current compilation unit.

If ‘-fwhole-program’ is used together with ‘-flto’ and gold is used as the
linker plugin, externally_visible attributes are automatically added to func-
tions (not variable yet due to a current gold issue) that are accessed outside of
LTO objects according to resolution file produced by gold. For other linkers
that cannot generate resolution file, explicit externally_visible attributes
are still necessary.

Chapter 6: Extensions to the C Language Family 379

far On 68HC11 and 68HC12 the far attribute causes the compiler to use a call-
ing convention that takes care of switching memory banks when entering and
leaving a function. This calling convention is also the default when using the
‘-mlong-calls’ option.
On 68HC12 the compiler uses the call and rtc instructions to call and return
from a function.
On 68HC11 the compiler generates a sequence of instructions to invoke a board-
specific routine to switch the memory bank and call the real function. The
board-specific routine simulates a call. At the end of a function, it jumps to a
board-specific routine instead of using rts. The board-specific return routine
simulates the rtc.
On MeP targets this causes the compiler to use a calling convention that as-
sumes the called function is too far away for the built-in addressing modes.

fast_interrupt
Use this attribute on the M32C and RX ports to indicate that the specified
function is a fast interrupt handler. This is just like the interrupt attribute,
except that freit is used to return instead of reit.

fastcall On the Intel 386, the fastcall attribute causes the compiler to pass the first
argument (if of integral type) in the register ECX and the second argument (if
of integral type) in the register EDX. Subsequent and other typed arguments
are passed on the stack. The called function pops the arguments off the stack.
If the number of arguments is variable all arguments are pushed on the stack.

thiscall On the Intel 386, the thiscall attribute causes the compiler to pass the first
argument (if of integral type) in the register ECX. Subsequent and other typed
arguments are passed on the stack. The called function pops the arguments
off the stack. If the number of arguments is variable all arguments are pushed
on the stack. The thiscall attribute is intended for C++ non-static member
functions. As a GCC extension, this calling convention can be used for C
functions and for static member methods.

format (archetype, string-index, first-to-check)
The format attribute specifies that a function takes printf, scanf, strftime
or strfmon style arguments that should be type-checked against a format string.
For example, the declaration:

extern int

my_printf (void *my_object, const char *my_format, ...)

__attribute__ ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my_printf for consistency
with the printf style format string argument my_format.
The parameter archetype determines how the format string is interpreted, and
should be printf, scanf, strftime, gnu_printf, gnu_scanf, gnu_strftime
or strfmon. (You can also use __printf__, __scanf__, __strftime__ or __
strfmon__.) On MinGW targets, ms_printf, ms_scanf, and ms_strftime are
also present. archetype values such as printf refer to the formats accepted by
the system’s C runtime library, while values prefixed with ‘gnu_’ always refer to

380 Using the GNU Compiler Collection (GCC)

the formats accepted by the GNU C Library. On Microsoft Windows targets,
values prefixed with ‘ms_’ refer to the formats accepted by the ‘msvcrt.dll’
library. The parameter string-index specifies which argument is the format
string argument (starting from 1), while first-to-check is the number of the
first argument to check against the format string. For functions where the
arguments are not available to be checked (such as vprintf), specify the third
parameter as zero. In this case the compiler only checks the format string for
consistency. For strftime formats, the third parameter is required to be zero.
Since non-static C++ methods have an implicit this argument, the arguments
of such methods should be counted from two, not one, when giving values for
string-index and first-to-check.
In the example above, the format string (my_format) is the second argument
of the function my_print, and the arguments to check start with the third
argument, so the correct parameters for the format attribute are 2 and 3.
The format attribute allows you to identify your own functions that take for-
mat strings as arguments, so that GCC can check the calls to these functions
for errors. The compiler always (unless ‘-ffreestanding’ or ‘-fno-builtin’
is used) checks formats for the standard library functions printf, fprintf,
sprintf, scanf, fscanf, sscanf, strftime, vprintf, vfprintf and vsprintf
whenever such warnings are requested (using ‘-Wformat’), so there is no need
to modify the header file ‘stdio.h’. In C99 mode, the functions snprintf,
vsnprintf, vscanf, vfscanf and vsscanf are also checked. Except in strictly
conforming C standard modes, the X/Open function strfmon is also checked
as are printf_unlocked and fprintf_unlocked. See Section 3.4 [Options
Controlling C Dialect], page 31.
For Objective-C dialects, NSString (or __NSString__) is recognized in the
same context. Declarations including these format attributes are parsed for
correct syntax, however the result of checking of such format strings is not yet
defined, and is not carried out by this version of the compiler.
The target may also provide additional types of format checks. See Section 6.58
[Format Checks Specific to Particular Target Machines], page 689.

format_arg (string-index)
The format_arg attribute specifies that a function takes a format string for
a printf, scanf, strftime or strfmon style function and modifies it (for ex-
ample, to translate it into another language), so the result can be passed to
a printf, scanf, strftime or strfmon style function (with the remaining ar-
guments to the format function the same as they would have been for the
unmodified string). For example, the declaration:

extern char *

my_dgettext (char *my_domain, const char *my_format)

__attribute__ ((format_arg (2)));

causes the compiler to check the arguments in calls to a printf, scanf,
strftime or strfmon type function, whose format string argument is a
call to the my_dgettext function, for consistency with the format string
argument my_format. If the format_arg attribute had not been specified, all
the compiler could tell in such calls to format functions would be that the

Chapter 6: Extensions to the C Language Family 381

format string argument is not constant; this would generate a warning when
‘-Wformat-nonliteral’ is used, but the calls could not be checked without
the attribute.
The parameter string-index specifies which argument is the format string argu-
ment (starting from one). Since non-static C++ methods have an implicit this
argument, the arguments of such methods should be counted from two.
The format_arg attribute allows you to identify your own functions that modify
format strings, so that GCC can check the calls to printf, scanf, strftime or
strfmon type function whose operands are a call to one of your own function.
The compiler always treats gettext, dgettext, and dcgettext in this manner
except when strict ISO C support is requested by ‘-ansi’ or an appropriate
‘-std’ option, or ‘-ffreestanding’ or ‘-fno-builtin’ is used. See Section 3.4
[Options Controlling C Dialect], page 31.
For Objective-C dialects, the format-arg attribute may refer to an NSString
reference for compatibility with the format attribute above.
The target may also allow additional types in format-arg attributes. See
Section 6.58 [Format Checks Specific to Particular Target Machines], page 689.

function_vector
Use this attribute on the H8/300, H8/300H, and H8S to indicate that the spec-
ified function should be called through the function vector. Calling a function
through the function vector reduces code size, however; the function vector
has a limited size (maximum 128 entries on the H8/300 and 64 entries on the
H8/300H and H8S) and shares space with the interrupt vector.
On SH2A targets, this attribute declares a function to be called using the TBR
relative addressing mode. The argument to this attribute is the entry number of
the same function in a vector table containing all the TBR relative addressable
functions. For correct operation the TBR must be setup accordingly to point to
the start of the vector table before any functions with this attribute are invoked.
Usually a good place to do the initialization is the startup routine. The TBR
relative vector table can have at max 256 function entries. The jumps to these
functions are generated using a SH2A specific, non delayed branch instruction
JSR/N @(disp8,TBR). You must use GAS and GLD from GNU binutils version
2.7 or later for this attribute to work correctly.
Please refer the example of M16C target, to see the use of this attribute while
declaring a function,
In an application, for a function being called once, this attribute saves at least 8
bytes of code; and if other successive calls are being made to the same function,
it saves 2 bytes of code per each of these calls.
On M16C/M32C targets, the function_vector attribute declares a special
page subroutine call function. Use of this attribute reduces the code size by 2
bytes for each call generated to the subroutine. The argument to the attribute is
the vector number entry from the special page vector table which contains the 16
low-order bits of the subroutine’s entry address. Each vector table has special
page number (18 to 255) that is used in jsrs instructions. Jump addresses
of the routines are generated by adding 0x0F0000 (in case of M16C targets)

382 Using the GNU Compiler Collection (GCC)

or 0xFF0000 (in case of M32C targets), to the 2-byte addresses set in the
vector table. Therefore you need to ensure that all the special page vector
routines should get mapped within the address range 0x0F0000 to 0x0FFFFF
(for M16C) and 0xFF0000 to 0xFFFFFF (for M32C).
In the following example 2 bytes are saved for each call to function foo.

void foo (void) __attribute__((function_vector(0x18)));

void foo (void)

{

}

void bar (void)

{

foo();

}

If functions are defined in one file and are called in another file, then be sure
to write this declaration in both files.
This attribute is ignored for R8C target.

ifunc ("resolver")
The ifunc attribute is used to mark a function as an indirect function using the
STT GNU IFUNC symbol type extension to the ELF standard. This allows
the resolution of the symbol value to be determined dynamically at load time,
and an optimized version of the routine can be selected for the particular pro-
cessor or other system characteristics determined then. To use this attribute,
first define the implementation functions available, and a resolver function that
returns a pointer to the selected implementation function. The implementation
functions’ declarations must match the API of the function being implemented,
the resolver’s declaration is be a function returning pointer to void function
returning void:

void *my_memcpy (void *dst, const void *src, size_t len)

{

...

}

static void (*resolve_memcpy (void)) (void)

{

return my_memcpy; // we’ll just always select this routine

}

The exported header file declaring the function the user calls would contain:
extern void *memcpy (void *, const void *, size_t);

allowing the user to call this as a regular function, unaware of the implementa-
tion. Finally, the indirect function needs to be defined in the same translation
unit as the resolver function:

void *memcpy (void *, const void *, size_t)

__attribute__ ((ifunc ("resolve_memcpy")));

Indirect functions cannot be weak, and require a recent binutils (at least version
2.20.1), and GNU C library (at least version 2.11.1).

interrupt
Use this attribute on the ARC, ARM, AVR, CR16, Epiphany, M32C, M32R/D,
m68k, MeP, MIPS, MSP430, RL78, RX and Xstormy16 ports to indicate that

Chapter 6: Extensions to the C Language Family 383

the specified function is an interrupt handler. The compiler generates function
entry and exit sequences suitable for use in an interrupt handler when this
attribute is present. With Epiphany targets it may also generate a special
section with code to initialize the interrupt vector table.
Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, MicroBlaze,
and SH processors can be specified via the interrupt_handler attribute.
Note, on the ARC, you must specify the kind of interrupt to be handled in a
parameter to the interrupt attribute like this:

void f () __attribute__ ((interrupt ("ilink1")));

Permissible values for this parameter are: ilink1 and ilink2.
Note, on the AVR, the hardware globally disables interrupts when an interrupt
is executed. The first instruction of an interrupt handler declared with this
attribute is a SEI instruction to re-enable interrupts. See also the signal
function attribute that does not insert a SEI instruction. If both signal and
interrupt are specified for the same function, signal is silently ignored.
Note, for the ARM, you can specify the kind of interrupt to be handled by
adding an optional parameter to the interrupt attribute like this:

void f () __attribute__ ((interrupt ("IRQ")));

Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF.
On ARMv7-M the interrupt type is ignored, and the attribute means the func-
tion may be called with a word-aligned stack pointer.
Note, for the MSP430 you can provide an argument to the interrupt attribute
which specifies a name or number. If the argument is a number it indicates
the slot in the interrupt vector table (0 - 31) to which this handler should
be assigned. If the argument is a name it is treated as a symbolic name for
the vector slot. These names should match up with appropriate entries in the
linker script. By default the names watchdog for vector 26, nmi for vector 30
and reset for vector 31 are recognised.
You can also use the following function attributes to modify how normal func-
tions interact with interrupt functions:

critical Critical functions disable interrupts upon entry and restore the pre-
vious interrupt state upon exit. Critical functions cannot also have
the naked or reentrant attributes. They can have the interrupt
attribute.

reentrant
Reentrant functions disable interrupts upon entry and enable them
upon exit. Reentrant functions cannot also have the naked or
critical attributes. They can have the interrupt attribute.

wakeup This attribute only applies to interrupt functions. It is silently
ignored if applied to a non-interrupt function. A wakeup interrupt
function will rouse the processor from any low-power state that it
might be in when the function exits.

On Epiphany targets one or more optional parameters can be added like this:

384 Using the GNU Compiler Collection (GCC)

void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();

Permissible values for these parameters are: reset, software_exception,
page_miss, timer0, timer1, message, dma0, dma1, wand and swi. Multiple
parameters indicate that multiple entries in the interrupt vector table should
be initialized for this function, i.e. for each parameter name, a jump to the
function is emitted in the section ivt entry name. The parameter(s) may be
omitted entirely, in which case no interrupt vector table entry is provided.
Note, on Epiphany targets, interrupts are enabled inside the function unless
the disinterrupt attribute is also specified.
On Epiphany targets, you can also use the following attribute to modify the
behavior of an interrupt handler:

forwarder_section
The interrupt handler may be in external memory which cannot
be reached by a branch instruction, so generate a local memory
trampoline to transfer control. The single parameter identifies the
section where the trampoline is placed.

The following examples are all valid uses of these attributes on Epiphany tar-
gets:

void __attribute__ ((interrupt)) universal_handler ();

void __attribute__ ((interrupt ("dma1"))) dma1_handler ();

void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();

void __attribute__ ((interrupt ("timer0"), disinterrupt))

fast_timer_handler ();

void __attribute__ ((interrupt ("dma0, dma1"), forwarder_section ("tramp")))

external_dma_handler ();

On MIPS targets, you can use the following attributes to modify the behavior
of an interrupt handler:

use_shadow_register_set
Assume that the handler uses a shadow register set, instead of the
main general-purpose registers.

keep_interrupts_masked
Keep interrupts masked for the whole function. Without this at-
tribute, GCC tries to reenable interrupts for as much of the function
as it can.

use_debug_exception_return
Return using the deret instruction. Interrupt handlers that don’t
have this attribute return using eret instead.

You can use any combination of these attributes, as shown below:
void __attribute__ ((interrupt)) v0 ();

void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();

void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();

void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();

void __attribute__ ((interrupt, use_shadow_register_set,

keep_interrupts_masked)) v4 ();

void __attribute__ ((interrupt, use_shadow_register_set,

use_debug_exception_return)) v5 ();

Chapter 6: Extensions to the C Language Family 385

void __attribute__ ((interrupt, keep_interrupts_masked,

use_debug_exception_return)) v6 ();

void __attribute__ ((interrupt, use_shadow_register_set,

keep_interrupts_masked,

use_debug_exception_return)) v7 ();

On NDS32 target, this attribute is to indicate that the specified function is an
interrupt handler. The compiler will generate corresponding sections for use
in an interrupt handler. You can use the following attributes to modify the
behavior:

nested This interrupt service routine is interruptible.

not_nested
This interrupt service routine is not interruptible.

nested_ready
This interrupt service routine is interruptible after PSW.GIE (global
interrupt enable) is set. This allows interrupt service routine to
finish some short critical code before enabling interrupts.

save_all The system will help save all registers into stack before entering
interrupt handler.

partial_save
The system will help save caller registers into stack before entering
interrupt handler.

On RL78, use brk_interrupt instead of interrupt for handlers intended to
be used with the BRK opcode (i.e. those that must end with RETB instead of
RETI).

interrupt_handler
Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH
to indicate that the specified function is an interrupt handler. The compiler
generates function entry and exit sequences suitable for use in an interrupt
handler when this attribute is present.

interrupt_thread
Use this attribute on fido, a subarchitecture of the m68k, to indicate that the
specified function is an interrupt handler that is designed to run as a thread.
The compiler omits generate prologue/epilogue sequences and replaces the re-
turn instruction with a sleep instruction. This attribute is available only on
fido.

isr Use this attribute on ARM to write Interrupt Service Routines. This is an alias
to the interrupt attribute above.

kspisusp When used together with interrupt_handler, exception_handler or nmi_
handler, code is generated to load the stack pointer from the USP register in
the function prologue.

l1_text This attribute specifies a function to be placed into L1 Instruction SRAM.
The function is put into a specific section named .l1.text. With ‘-mfdpic’,
function calls with a such function as the callee or caller uses inlined PLT.

386 Using the GNU Compiler Collection (GCC)

l2 On the Blackfin, this attribute specifies a function to be placed into L2 SRAM.
The function is put into a specific section named .l1.text. With ‘-mfdpic’,
callers of such functions use an inlined PLT.

leaf Calls to external functions with this attribute must return to the current compi-
lation unit only by return or by exception handling. In particular, leaf functions
are not allowed to call callback function passed to it from the current compi-
lation unit or directly call functions exported by the unit or longjmp into the
unit. Leaf function might still call functions from other compilation units and
thus they are not necessarily leaf in the sense that they contain no function
calls at all.

The attribute is intended for library functions to improve dataflow analysis.
The compiler takes the hint that any data not escaping the current compilation
unit can not be used or modified by the leaf function. For example, the sin
function is a leaf function, but qsort is not.

Note that leaf functions might invoke signals and signal handlers might be
defined in the current compilation unit and use static variables. The only com-
pliant way to write such a signal handler is to declare such variables volatile.

The attribute has no effect on functions defined within the current compilation
unit. This is to allow easy merging of multiple compilation units into one, for
example, by using the link-time optimization. For this reason the attribute is
not allowed on types to annotate indirect calls.

long_call/medium_call/short_call
These attributes specify how a particular function is called on ARC, ARM
and Epiphany - with medium_call being specific to ARC. These attributes
override the ‘-mlong-calls’ (see Section 3.17.4 [ARM Options], page 190
and Section 3.17.3 [ARC Options], page 184) and ‘-mmedium-calls’ (see
Section 3.17.3 [ARC Options], page 184) command-line switches and #pragma
long_calls settings. For ARM, the long_call attribute indicates that the
function might be far away from the call site and require a different (more
expensive) calling sequence. The short_call attribute always places the
offset to the function from the call site into the ‘BL’ instruction directly.

For ARC, a function marked with the long_call attribute is always called
using register-indirect jump-and-link instructions, thereby enabling the called
function to be placed anywhere within the 32-bit address space. A function
marked with the medium_call attribute will always be close enough to be called
with an unconditional branch-and-link instruction, which has a 25-bit offset
from the call site. A function marked with the short_call attribute will always
be close enough to be called with a conditional branch-and-link instruction,
which has a 21-bit offset from the call site.

longcall/shortcall
On the Blackfin, RS/6000 and PowerPC, the longcall attribute indicates that
the function might be far away from the call site and require a different (more
expensive) calling sequence. The shortcall attribute indicates that the func-
tion is always close enough for the shorter calling sequence to be used. These

Chapter 6: Extensions to the C Language Family 387

attributes override both the ‘-mlongcall’ switch and, on the RS/6000 and
PowerPC, the #pragma longcall setting.

See Section 3.17.38 [RS/6000 and PowerPC Options], page 281, for more infor-
mation on whether long calls are necessary.

long_call/near/far
These attributes specify how a particular function is called on MIPS. The
attributes override the ‘-mlong-calls’ (see Section 3.17.27 [MIPS Options],
page 258) command-line switch. The long_call and far attributes are syn-
onyms, and cause the compiler to always call the function by first loading its
address into a register, and then using the contents of that register. The near
attribute has the opposite effect; it specifies that non-PIC calls should be made
using the more efficient jal instruction.

malloc The malloc attribute is used to tell the compiler that a function may be treated
as if any non-NULL pointer it returns cannot alias any other pointer valid when
the function returns and that the memory has undefined content. This often
improves optimization. Standard functions with this property include malloc
and calloc. realloc-like functions do not have this property as the memory
pointed to does not have undefined content.

mips16/nomips16
On MIPS targets, you can use the mips16 and nomips16 function attributes to
locally select or turn off MIPS16 code generation. A function with the mips16
attribute is emitted as MIPS16 code, while MIPS16 code generation is dis-
abled for functions with the nomips16 attribute. These attributes override the
‘-mips16’ and ‘-mno-mips16’ options on the command line (see Section 3.17.27
[MIPS Options], page 258).

When compiling files containing mixed MIPS16 and non-MIPS16 code, the pre-
processor symbol __mips16 reflects the setting on the command line, not that
within individual functions. Mixed MIPS16 and non-MIPS16 code may inter-
act badly with some GCC extensions such as __builtin_apply (see Section 6.5
[Constructing Calls], page 354).

micromips/nomicromips
On MIPS targets, you can use the micromips and nomicromips function at-
tributes to locally select or turn off microMIPS code generation. A function with
the micromips attribute is emitted as microMIPS code, while microMIPS code
generation is disabled for functions with the nomicromips attribute. These
attributes override the ‘-mmicromips’ and ‘-mno-micromips’ options on the
command line (see Section 3.17.27 [MIPS Options], page 258).

When compiling files containing mixed microMIPS and non-microMIPS code,
the preprocessor symbol __mips_micromips reflects the setting on the com-
mand line, not that within individual functions. Mixed microMIPS and non-
microMIPS code may interact badly with some GCC extensions such as __
builtin_apply (see Section 6.5 [Constructing Calls], page 354).

388 Using the GNU Compiler Collection (GCC)

model (model-name)
On the M32R/D, use this attribute to set the addressability of an object, and of
the code generated for a function. The identifier model-name is one of small,
medium, or large, representing each of the code models.

Small model objects live in the lower 16MB of memory (so that their addresses
can be loaded with the ld24 instruction), and are callable with the bl instruc-
tion.

Medium model objects may live anywhere in the 32-bit address space (the
compiler generates seth/add3 instructions to load their addresses), and are
callable with the bl instruction.

Large model objects may live anywhere in the 32-bit address space (the com-
piler generates seth/add3 instructions to load their addresses), and may not
be reachable with the bl instruction (the compiler generates the much slower
seth/add3/jl instruction sequence).

On IA-64, use this attribute to set the addressability of an object. At present,
the only supported identifier for model-name is small, indicating addressabil-
ity via “small” (22-bit) addresses (so that their addresses can be loaded with
the addl instruction). Caveat: such addressing is by definition not position
independent and hence this attribute must not be used for objects defined by
shared libraries.

ms_abi/sysv_abi
On 32-bit and 64-bit (i?86|x86 64)-*-* targets, you can use an ABI attribute
to indicate which calling convention should be used for a function. The ms_
abi attribute tells the compiler to use the Microsoft ABI, while the sysv_abi
attribute tells the compiler to use the ABI used on GNU/Linux and other
systems. The default is to use the Microsoft ABI when targeting Windows. On
all other systems, the default is the x86/AMD ABI.

Note, the ms_abi attribute for Microsoft Windows 64-bit targets currently re-
quires the ‘-maccumulate-outgoing-args’ option.

callee_pop_aggregate_return (number)
On 32-bit i?86-*-* targets, you can use this attribute to control how aggregates
are returned in memory. If the caller is responsible for popping the hidden
pointer together with the rest of the arguments, specify number equal to zero.
If callee is responsible for popping the hidden pointer, specify number equal to
one.

The default i386 ABI assumes that the callee pops the stack for hidden pointer.
However, on 32-bit i386 Microsoft Windows targets, the compiler assumes that
the caller pops the stack for hidden pointer.

ms_hook_prologue
On 32-bit i[34567]86-*-* targets and 64-bit x86 64-*-* targets, you can use this
function attribute to make GCC generate the “hot-patching” function prologue
used in Win32 API functions in Microsoft Windows XP Service Pack 2 and
newer.

Chapter 6: Extensions to the C Language Family 389

hotpatch [(prologue-halfwords)]
On S/390 System z targets, you can use this function attribute to make GCC
generate a “hot-patching” function prologue. The hotpatch has no effect on
funtions that are explicitly inline. If the ‘-mhotpatch’ or ‘-mno-hotpatch’
command-line option is used at the same time, the hotpatch attribute takes
precedence. If an argument is given, the maximum allowed value is 1000000.

naked Use this attribute on the ARM, AVR, MCORE, MSP430, NDS32, RL78, RX
and SPU ports to indicate that the specified function does not need pro-
logue/epilogue sequences generated by the compiler. It is up to the programmer
to provide these sequences. The only statements that can be safely included in
naked functions are asm statements that do not have operands. All other state-
ments, including declarations of local variables, if statements, and so forth,
should be avoided. Naked functions should be used to implement the body of
an assembly function, while allowing the compiler to construct the requisite
function declaration for the assembler.

near On 68HC11 and 68HC12 the near attribute causes the compiler to use the
normal calling convention based on jsr and rts. This attribute can be used to
cancel the effect of the ‘-mlong-calls’ option.
On MeP targets this attribute causes the compiler to assume the called func-
tion is close enough to use the normal calling convention, overriding the ‘-mtf’
command-line option.

nesting Use this attribute together with interrupt_handler, exception_handler or
nmi_handler to indicate that the function entry code should enable nested
interrupts or exceptions.

nmi_handler
Use this attribute on the Blackfin to indicate that the specified function is an
NMI handler. The compiler generates function entry and exit sequences suitable
for use in an NMI handler when this attribute is present.

nocompression
On MIPS targets, you can use the nocompression function attribute to locally
turn off MIPS16 and microMIPS code generation. This attribute overrides the
‘-mips16’ and ‘-mmicromips’ options on the command line (see Section 3.17.27
[MIPS Options], page 258).

no_instrument_function
If ‘-finstrument-functions’ is given, profiling function calls are generated at
entry and exit of most user-compiled functions. Functions with this attribute
are not so instrumented.

no_split_stack
If ‘-fsplit-stack’ is given, functions have a small prologue which decides
whether to split the stack. Functions with the no_split_stack attribute do
not have that prologue, and thus may run with only a small amount of stack
space available.

noinline This function attribute prevents a function from being considered for inlining.
If the function does not have side-effects, there are optimizations other than

390 Using the GNU Compiler Collection (GCC)

inlining that cause function calls to be optimized away, although the function
call is live. To keep such calls from being optimized away, put

asm ("");

(see Section 6.41 [Extended Asm], page 427) in the called function, to serve as
a special side-effect.

noclone This function attribute prevents a function from being considered for cloning—a
mechanism that produces specialized copies of functions and which is (currently)
performed by interprocedural constant propagation.

nonnull (arg-index, ...)
The nonnull attribute specifies that some function parameters should be non-
null pointers. For instance, the declaration:

extern void *

my_memcpy (void *dest, const void *src, size_t len)

__attribute__((nonnull (1, 2)));

causes the compiler to check that, in calls to my_memcpy, arguments dest and
src are non-null. If the compiler determines that a null pointer is passed in
an argument slot marked as non-null, and the ‘-Wnonnull’ option is enabled, a
warning is issued. The compiler may also choose to make optimizations based
on the knowledge that certain function arguments will never be null.
If no argument index list is given to the nonnull attribute, all pointer arguments
are marked as non-null. To illustrate, the following declaration is equivalent to
the previous example:

extern void *

my_memcpy (void *dest, const void *src, size_t len)

__attribute__((nonnull));

returns_nonnull
The returns_nonnull attribute specifies that the function return value should
be a non-null pointer. For instance, the declaration:

extern void *

mymalloc (size_t len) __attribute__((returns_nonnull));

lets the compiler optimize callers based on the knowledge that the return value
will never be null.

noreturn A few standard library functions, such as abort and exit, cannot return. GCC
knows this automatically. Some programs define their own functions that never
return. You can declare them noreturn to tell the compiler this fact. For
example,

void fatal () __attribute__ ((noreturn));

void

fatal (/* . . . */)

{

/* . . . */ /* Print error message. */ /* . . . */

exit (1);

}

The noreturn keyword tells the compiler to assume that fatal cannot return.
It can then optimize without regard to what would happen if fatal ever did

Chapter 6: Extensions to the C Language Family 391

return. This makes slightly better code. More importantly, it helps avoid
spurious warnings of uninitialized variables.

The noreturn keyword does not affect the exceptional path when that applies:
a noreturn-marked function may still return to the caller by throwing an ex-
ception or calling longjmp.

Do not assume that registers saved by the calling function are restored before
calling the noreturn function.

It does not make sense for a noreturn function to have a return type other
than void.

The attribute noreturn is not implemented in GCC versions earlier than 2.5.
An alternative way to declare that a function does not return, which works in
the current version and in some older versions, is as follows:

typedef void voidfn ();

volatile voidfn fatal;

This approach does not work in GNU C++.

nothrow The nothrow attribute is used to inform the compiler that a function cannot
throw an exception. For example, most functions in the standard C library can
be guaranteed not to throw an exception with the notable exceptions of qsort
and bsearch that take function pointer arguments. The nothrow attribute is
not implemented in GCC versions earlier than 3.3.

nosave_low_regs
Use this attribute on SH targets to indicate that an interrupt_handler func-
tion should not save and restore registers R0..R7. This can be used on SH3*
and SH4* targets that have a second R0..R7 register bank for non-reentrant
interrupt handlers.

optimize The optimize attribute is used to specify that a function is to be compiled with
different optimization options than specified on the command line. Arguments
can either be numbers or strings. Numbers are assumed to be an optimization
level. Strings that begin with O are assumed to be an optimization option,
while other options are assumed to be used with a -f prefix. You can also
use the ‘#pragma GCC optimize’ pragma to set the optimization options that
affect more than one function. See Section 6.59.13 [Function Specific Option
Pragmas], page 695, for details about the ‘#pragma GCC optimize’ pragma.

This can be used for instance to have frequently-executed functions compiled
with more aggressive optimization options that produce faster and larger code,
while other functions can be compiled with less aggressive options.

OS_main/OS_task
On AVR, functions with the OS_main or OS_task attribute do not save/restore
any call-saved register in their prologue/epilogue.

The OS_main attribute can be used when there is guarantee that interrupts are
disabled at the time when the function is entered. This saves resources when
the stack pointer has to be changed to set up a frame for local variables.

392 Using the GNU Compiler Collection (GCC)

The OS_task attribute can be used when there is no guarantee that interrupts
are disabled at that time when the function is entered like for, e.g. task functions
in a multi-threading operating system. In that case, changing the stack pointer
register is guarded by save/clear/restore of the global interrupt enable flag.
The differences to the naked function attribute are:
• naked functions do not have a return instruction whereas OS_main and

OS_task functions have a RET or RETI return instruction.
• naked functions do not set up a frame for local variables or a frame pointer

whereas OS_main and OS_task do this as needed.

pcs

The pcs attribute can be used to control the calling convention used for a
function on ARM. The attribute takes an argument that specifies the calling
convention to use.
When compiling using the AAPCS ABI (or a variant of it) then valid values for
the argument are "aapcs" and "aapcs-vfp". In order to use a variant other
than "aapcs" then the compiler must be permitted to use the appropriate co-
processor registers (i.e., the VFP registers must be available in order to use
"aapcs-vfp"). For example,

/* Argument passed in r0, and result returned in r0+r1. */

double f2d (float) __attribute__((pcs("aapcs")));

Variadic functions always use the "aapcs" calling convention and the compiler
rejects attempts to specify an alternative.

pure Many functions have no effects except the return value and their return value
depends only on the parameters and/or global variables. Such a function can
be subject to common subexpression elimination and loop optimization just as
an arithmetic operator would be. These functions should be declared with the
attribute pure. For example,

int square (int) __attribute__ ((pure));

says that the hypothetical function square is safe to call fewer times than the
program says.
Some of common examples of pure functions are strlen or memcmp. Inter-
esting non-pure functions are functions with infinite loops or those depending
on volatile memory or other system resource, that may change between two
consecutive calls (such as feof in a multithreading environment).
The attribute pure is not implemented in GCC versions earlier than 2.96.

hot The hot attribute on a function is used to inform the compiler that the func-
tion is a hot spot of the compiled program. The function is optimized more
aggressively and on many target it is placed into special subsection of the text
section so all hot functions appears close together improving locality.
When profile feedback is available, via ‘-fprofile-use’, hot functions are au-
tomatically detected and this attribute is ignored.
The hot attribute on functions is not implemented in GCC versions earlier than
4.3.

Chapter 6: Extensions to the C Language Family 393

The hot attribute on a label is used to inform the compiler that path following
the label are more likely than paths that are not so annotated. This attribute
is used in cases where __builtin_expect cannot be used, for instance with
computed goto or asm goto.
The hot attribute on labels is not implemented in GCC versions earlier than
4.8.

cold The cold attribute on functions is used to inform the compiler that the function
is unlikely to be executed. The function is optimized for size rather than speed
and on many targets it is placed into special subsection of the text section so
all cold functions appears close together improving code locality of non-cold
parts of program. The paths leading to call of cold functions within code are
marked as unlikely by the branch prediction mechanism. It is thus useful to
mark functions used to handle unlikely conditions, such as perror, as cold to
improve optimization of hot functions that do call marked functions in rare
occasions.
When profile feedback is available, via ‘-fprofile-use’, cold functions are
automatically detected and this attribute is ignored.
The cold attribute on functions is not implemented in GCC versions earlier
than 4.3.
The cold attribute on labels is used to inform the compiler that the path
following the label is unlikely to be executed. This attribute is used in cases
where __builtin_expect cannot be used, for instance with computed goto or
asm goto.
The cold attribute on labels is not implemented in GCC versions earlier than
4.8.

no_sanitize_address
no_address_safety_analysis

The no_sanitize_address attribute on functions is used to inform the com-
piler that it should not instrument memory accesses in the function when
compiling with the ‘-fsanitize=address’ option. The no_address_safety_
analysis is a deprecated alias of the no_sanitize_address attribute, new
code should use no_sanitize_address.

no_sanitize_undefined
The no_sanitize_undefined attribute on functions is used to inform the com-
piler that it should not check for undefined behavior in the function when com-
piling with the ‘-fsanitize=undefined’ option.

regparm (number)
On the Intel 386, the regparm attribute causes the compiler to pass arguments
number one to number if they are of integral type in registers EAX, EDX,
and ECX instead of on the stack. Functions that take a variable number of
arguments continue to be passed all of their arguments on the stack.
Beware that on some ELF systems this attribute is unsuitable for global func-
tions in shared libraries with lazy binding (which is the default). Lazy binding
sends the first call via resolving code in the loader, which might assume EAX,

394 Using the GNU Compiler Collection (GCC)

EDX and ECX can be clobbered, as per the standard calling conventions. So-
laris 8 is affected by this. Systems with the GNU C Library version 2.1 or
higher and FreeBSD are believed to be safe since the loaders there save EAX,
EDX and ECX. (Lazy binding can be disabled with the linker or the loader if
desired, to avoid the problem.)

reset Use this attribute on the NDS32 target to indicate that the specified function
is a reset handler. The compiler will generate corresponding sections for use in
a reset handler. You can use the following attributes to provide extra exception
handling:

nmi Provide a user-defined function to handle NMI exception.

warm Provide a user-defined function to handle warm reset exception.

sseregparm
On the Intel 386 with SSE support, the sseregparm attribute causes the com-
piler to pass up to 3 floating-point arguments in SSE registers instead of on the
stack. Functions that take a variable number of arguments continue to pass all
of their floating-point arguments on the stack.

force_align_arg_pointer
On the Intel x86, the force_align_arg_pointer attribute may be applied to
individual function definitions, generating an alternate prologue and epilogue
that realigns the run-time stack if necessary. This supports mixing legacy codes
that run with a 4-byte aligned stack with modern codes that keep a 16-byte
stack for SSE compatibility.

renesas On SH targets this attribute specifies that the function or struct follows the
Renesas ABI.

resbank On the SH2A target, this attribute enables the high-speed register saving and
restoration using a register bank for interrupt_handler routines. Saving to
the bank is performed automatically after the CPU accepts an interrupt that
uses a register bank.
The nineteen 32-bit registers comprising general register R0 to R14, control
register GBR, and system registers MACH, MACL, and PR and the vector
table address offset are saved into a register bank. Register banks are stacked
in first-in last-out (FILO) sequence. Restoration from the bank is executed by
issuing a RESBANK instruction.

returns_twice
The returns_twice attribute tells the compiler that a function may return
more than one time. The compiler ensures that all registers are dead before
calling such a function and emits a warning about the variables that may be
clobbered after the second return from the function. Examples of such functions
are setjmp and vfork. The longjmp-like counterpart of such function, if any,
might need to be marked with the noreturn attribute.

saveall Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that
all registers except the stack pointer should be saved in the prologue regardless
of whether they are used or not.

Chapter 6: Extensions to the C Language Family 395

save_volatiles
Use this attribute on the MicroBlaze to indicate that the function is an interrupt
handler. All volatile registers (in addition to non-volatile registers) are saved
in the function prologue. If the function is a leaf function, only volatiles used
by the function are saved. A normal function return is generated instead of a
return from interrupt.

section ("section-name")
Normally, the compiler places the code it generates in the text section. Some-
times, however, you need additional sections, or you need certain particular
functions to appear in special sections. The section attribute specifies that a
function lives in a particular section. For example, the declaration:

extern void foobar (void) __attribute__ ((section ("bar")));

puts the function foobar in the bar section.
Some file formats do not support arbitrary sections so the section attribute
is not available on all platforms. If you need to map the entire contents of a
module to a particular section, consider using the facilities of the linker instead.

sentinel This function attribute ensures that a parameter in a function call is an explicit
NULL. The attribute is only valid on variadic functions. By default, the sentinel
is located at position zero, the last parameter of the function call. If an optional
integer position argument P is supplied to the attribute, the sentinel must be
located at position P counting backwards from the end of the argument list.

__attribute__ ((sentinel))

is equivalent to

__attribute__ ((sentinel(0)))

The attribute is automatically set with a position of 0 for the built-in functions
execl and execlp. The built-in function execle has the attribute set with a
position of 1.
A valid NULL in this context is defined as zero with any pointer type. If your
system defines the NULL macro with an integer type then you need to add
an explicit cast. GCC replaces stddef.h with a copy that redefines NULL
appropriately.
The warnings for missing or incorrect sentinels are enabled with ‘-Wformat’.

short_call
See long_call/short_call.

shortcall
See longcall/shortcall.

signal Use this attribute on the AVR to indicate that the specified function is an
interrupt handler. The compiler generates function entry and exit sequences
suitable for use in an interrupt handler when this attribute is present.
See also the interrupt function attribute.
The AVR hardware globally disables interrupts when an interrupt is executed.
Interrupt handler functions defined with the signal attribute do not re-enable
interrupts. It is save to enable interrupts in a signal handler. This “save” only

396 Using the GNU Compiler Collection (GCC)

applies to the code generated by the compiler and not to the IRQ layout of the
application which is responsibility of the application.
If both signal and interrupt are specified for the same function, signal is
silently ignored.

sp_switch
Use this attribute on the SH to indicate an interrupt_handler function should
switch to an alternate stack. It expects a string argument that names a global
variable holding the address of the alternate stack.

void *alt_stack;

void f () __attribute__ ((interrupt_handler,

sp_switch ("alt_stack")));

stdcall On the Intel 386, the stdcall attribute causes the compiler to assume that the
called function pops off the stack space used to pass arguments, unless it takes
a variable number of arguments.

syscall_linkage
This attribute is used to modify the IA-64 calling convention by marking all
input registers as live at all function exits. This makes it possible to restart a
system call after an interrupt without having to save/restore the input registers.
This also prevents kernel data from leaking into application code.

target The target attribute is used to specify that a function is to be compiled with
different target options than specified on the command line. This can be used
for instance to have functions compiled with a different ISA (instruction set
architecture) than the default. You can also use the ‘#pragma GCC target’
pragma to set more than one function to be compiled with specific target op-
tions. See Section 6.59.13 [Function Specific Option Pragmas], page 695, for
details about the ‘#pragma GCC target’ pragma.
For instance on a 386, you could compile one function with
target("sse4.1,arch=core2") and another with target("sse4a,arch=amdfam10").
This is equivalent to compiling the first function with ‘-msse4.1’ and
‘-march=core2’ options, and the second function with ‘-msse4a’ and
‘-march=amdfam10’ options. It is up to the user to make sure that a function
is only invoked on a machine that supports the particular ISA it is compiled
for (for example by using cpuid on 386 to determine what feature bits and
architecture family are used).

int core2_func (void) __attribute__ ((__target__ ("arch=core2")));

int sse3_func (void) __attribute__ ((__target__ ("sse3")));

You can either use multiple strings to specify multiple options, or separate the
options with a comma (‘,’).
The target attribute is presently implemented for i386/x86 64, PowerPC, and
Nios II targets only. The options supported are specific to each target.
On the 386, the following options are allowed:

‘abm’
‘no-abm’ Enable/disable the generation of the advanced bit instructions.

‘aes’
‘no-aes’ Enable/disable the generation of the AES instructions.

Chapter 6: Extensions to the C Language Family 397

‘default’ See Section 7.8 [Function Multiversioning], page 708, where it is
used to specify the default function version.

‘mmx’
‘no-mmx’ Enable/disable the generation of the MMX instructions.

‘pclmul’
‘no-pclmul’

Enable/disable the generation of the PCLMUL instructions.

‘popcnt’
‘no-popcnt’

Enable/disable the generation of the POPCNT instruction.

‘sse’
‘no-sse’ Enable/disable the generation of the SSE instructions.

‘sse2’
‘no-sse2’ Enable/disable the generation of the SSE2 instructions.

‘sse3’
‘no-sse3’ Enable/disable the generation of the SSE3 instructions.

‘sse4’
‘no-sse4’ Enable/disable the generation of the SSE4 instructions (both

SSE4.1 and SSE4.2).

‘sse4.1’
‘no-sse4.1’

Enable/disable the generation of the sse4.1 instructions.

‘sse4.2’
‘no-sse4.2’

Enable/disable the generation of the sse4.2 instructions.

‘sse4a’
‘no-sse4a’

Enable/disable the generation of the SSE4A instructions.

‘fma4’
‘no-fma4’ Enable/disable the generation of the FMA4 instructions.

‘xop’
‘no-xop’ Enable/disable the generation of the XOP instructions.

‘lwp’
‘no-lwp’ Enable/disable the generation of the LWP instructions.

‘ssse3’
‘no-ssse3’

Enable/disable the generation of the SSSE3 instructions.

‘cld’
‘no-cld’ Enable/disable the generation of the CLD before string moves.

398 Using the GNU Compiler Collection (GCC)

‘fancy-math-387’
‘no-fancy-math-387’

Enable/disable the generation of the sin, cos, and sqrt instruc-
tions on the 387 floating-point unit.

‘fused-madd’
‘no-fused-madd’

Enable/disable the generation of the fused multiply/add instruc-
tions.

‘ieee-fp’
‘no-ieee-fp’

Enable/disable the generation of floating point that depends on
IEEE arithmetic.

‘inline-all-stringops’
‘no-inline-all-stringops’

Enable/disable inlining of string operations.

‘inline-stringops-dynamically’
‘no-inline-stringops-dynamically’

Enable/disable the generation of the inline code to do small string
operations and calling the library routines for large operations.

‘align-stringops’
‘no-align-stringops’

Do/do not align destination of inlined string operations.

‘recip’
‘no-recip’

Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and
RSQRTPS instructions followed an additional Newton-Raphson
step instead of doing a floating-point division.

‘arch=ARCH’
Specify the architecture to generate code for in compiling the func-
tion.

‘tune=TUNE’
Specify the architecture to tune for in compiling the function.

‘fpmath=FPMATH’
Specify which floating-point unit to use. The target("fpmath=sse,387")
option must be specified as target("fpmath=sse+387") because
the comma would separate different options.

On the PowerPC, the following options are allowed:

‘altivec’
‘no-altivec’

Generate code that uses (does not use) AltiVec instructions.
In 32-bit code, you cannot enable AltiVec instructions unless
‘-mabi=altivec’ is used on the command line.

Chapter 6: Extensions to the C Language Family 399

‘cmpb’
‘no-cmpb’ Generate code that uses (does not use) the compare bytes instruc-

tion implemented on the POWER6 processor and other processors
that support the PowerPC V2.05 architecture.

‘dlmzb’
‘no-dlmzb’

Generate code that uses (does not use) the string-search ‘dlmzb’
instruction on the IBM 405, 440, 464 and 476 processors. This
instruction is generated by default when targeting those processors.

‘fprnd’
‘no-fprnd’

Generate code that uses (does not use) the FP round to integer
instructions implemented on the POWER5+ processor and other
processors that support the PowerPC V2.03 architecture.

‘hard-dfp’
‘no-hard-dfp’

Generate code that uses (does not use) the decimal floating-point
instructions implemented on some POWER processors.

‘isel’
‘no-isel’ Generate code that uses (does not use) ISEL instruction.

‘mfcrf’
‘no-mfcrf’

Generate code that uses (does not use) the move from condition
register field instruction implemented on the POWER4 processor
and other processors that support the PowerPC V2.01 architecture.

‘mfpgpr’
‘no-mfpgpr’

Generate code that uses (does not use) the FP move to/from gen-
eral purpose register instructions implemented on the POWER6X
processor and other processors that support the extended PowerPC
V2.05 architecture.

‘mulhw’
‘no-mulhw’

Generate code that uses (does not use) the half-word multiply and
multiply-accumulate instructions on the IBM 405, 440, 464 and
476 processors. These instructions are generated by default when
targeting those processors.

‘multiple’
‘no-multiple’

Generate code that uses (does not use) the load multiple word
instructions and the store multiple word instructions.

400 Using the GNU Compiler Collection (GCC)

‘update’
‘no-update’

Generate code that uses (does not use) the load or store instruc-
tions that update the base register to the address of the calculated
memory location.

‘popcntb’
‘no-popcntb’

Generate code that uses (does not use) the popcount and double-
precision FP reciprocal estimate instruction implemented on the
POWER5 processor and other processors that support the Pow-
erPC V2.02 architecture.

‘popcntd’
‘no-popcntd’

Generate code that uses (does not use) the popcount instruction
implemented on the POWER7 processor and other processors that
support the PowerPC V2.06 architecture.

‘powerpc-gfxopt’
‘no-powerpc-gfxopt’

Generate code that uses (does not use) the optional PowerPC archi-
tecture instructions in the Graphics group, including floating-point
select.

‘powerpc-gpopt’
‘no-powerpc-gpopt’

Generate code that uses (does not use) the optional PowerPC ar-
chitecture instructions in the General Purpose group, including
floating-point square root.

‘recip-precision’
‘no-recip-precision’

Assume (do not assume) that the reciprocal estimate instructions
provide higher-precision estimates than is mandated by the powerpc
ABI.

‘string’
‘no-string’

Generate code that uses (does not use) the load string instructions
and the store string word instructions to save multiple registers and
do small block moves.

‘vsx’
‘no-vsx’ Generate code that uses (does not use) vector/scalar (VSX) in-

structions, and also enable the use of built-in functions that allow
more direct access to the VSX instruction set. In 32-bit code, you
cannot enable VSX or AltiVec instructions unless ‘-mabi=altivec’
is used on the command line.

Chapter 6: Extensions to the C Language Family 401

‘friz’
‘no-friz’ Generate (do not generate) the friz instruction when the

‘-funsafe-math-optimizations’ option is used to optimize
rounding a floating-point value to 64-bit integer and back to
floating point. The friz instruction does not return the same
value if the floating-point number is too large to fit in an integer.

‘avoid-indexed-addresses’
‘no-avoid-indexed-addresses’

Generate code that tries to avoid (not avoid) the use of indexed
load or store instructions.

‘paired’
‘no-paired’

Generate code that uses (does not use) the generation of PAIRED
simd instructions.

‘longcall’
‘no-longcall’

Generate code that assumes (does not assume) that all calls are far
away so that a longer more expensive calling sequence is required.

‘cpu=CPU’ Specify the architecture to generate code for when compiling the
function. If you select the target("cpu=power7") attribute when
generating 32-bit code, VSX and AltiVec instructions are not gen-
erated unless you use the ‘-mabi=altivec’ option on the command
line.

‘tune=TUNE’
Specify the architecture to tune for when compiling the function.
If you do not specify the target("tune=TUNE") attribute and you
do specify the target("cpu=CPU") attribute, compilation tunes for
the CPU architecture, and not the default tuning specified on the
command line.

When compiling for Nios II, the following options are allowed:

‘custom-insn=N’
‘no-custom-insn’

Each ‘custom-insn=N’ attribute locally enables use of a custom
instruction with encoding N when generating code that uses
insn. Similarly, ‘no-custom-insn’ locally inhibits use of the
custom instruction insn. These target attributes correspond to
the ‘-mcustom-insn=N’ and ‘-mno-custom-insn’ command-line
options, and support the same set of insn keywords. See
Section 3.17.33 [Nios II Options], page 275, for more information.

‘custom-fpu-cfg=name’
This attribute corresponds to the ‘-mcustom-fpu-cfg=name’
command-line option, to select a predefined set of custom
instructions named name. See Section 3.17.33 [Nios II Options],
page 275, for more information.

402 Using the GNU Compiler Collection (GCC)

On the 386/x86 64 and PowerPC back ends, the inliner does not inline a func-
tion that has different target options than the caller, unless the callee has a
subset of the target options of the caller. For example a function declared with
target("sse3") can inline a function with target("sse2"), since -msse3 im-
plies -msse2.

tiny_data
Use this attribute on the H8/300H and H8S to indicate that the specified vari-
able should be placed into the tiny data section. The compiler generates more
efficient code for loads and stores on data in the tiny data section. Note the
tiny data area is limited to slightly under 32KB of data.

trap_exit
Use this attribute on the SH for an interrupt_handler to return using trapa
instead of rte. This attribute expects an integer argument specifying the trap
number to be used.

trapa_handler
On SH targets this function attribute is similar to interrupt_handler but it
does not save and restore all registers.

unused This attribute, attached to a function, means that the function is meant to be
possibly unused. GCC does not produce a warning for this function.

used This attribute, attached to a function, means that code must be emitted for the
function even if it appears that the function is not referenced. This is useful,
for example, when the function is referenced only in inline assembly.
When applied to a member function of a C++ class template, the attribute also
means that the function is instantiated if the class itself is instantiated.

version_id
This IA-64 HP-UX attribute, attached to a global variable or function, renames
a symbol to contain a version string, thus allowing for function level versioning.
HP-UX system header files may use function level versioning for some system
calls.

extern int foo () __attribute__((version_id ("20040821")));

Calls to foo are mapped to calls to foo{20040821}.

visibility ("visibility_type")
This attribute affects the linkage of the declaration to which it is attached.
There are four supported visibility type values: default, hidden, protected or
internal visibility.

void __attribute__ ((visibility ("protected")))

f () { /* Do something. */; }

int i __attribute__ ((visibility ("hidden")));

The possible values of visibility type correspond to the visibility settings in the
ELF gABI.

default Default visibility is the normal case for the object file format. This
value is available for the visibility attribute to override other options
that may change the assumed visibility of entities.

Chapter 6: Extensions to the C Language Family 403

On ELF, default visibility means that the declaration is visible to
other modules and, in shared libraries, means that the declared
entity may be overridden.
On Darwin, default visibility means that the declaration is visible
to other modules.
Default visibility corresponds to “external linkage” in the language.

hidden Hidden visibility indicates that the entity declared has a new form
of linkage, which we call “hidden linkage”. Two declarations of an
object with hidden linkage refer to the same object if they are in
the same shared object.

internal Internal visibility is like hidden visibility, but with additional pro-
cessor specific semantics. Unless otherwise specified by the psABI,
GCC defines internal visibility to mean that a function is never
called from another module. Compare this with hidden functions
which, while they cannot be referenced directly by other modules,
can be referenced indirectly via function pointers. By indicating
that a function cannot be called from outside the module, GCC
may for instance omit the load of a PIC register since it is known
that the calling function loaded the correct value.

protected Protected visibility is like default visibility except that it indicates
that references within the defining module bind to the definition in
that module. That is, the declared entity cannot be overridden by
another module.

All visibilities are supported on many, but not all, ELF targets (supported
when the assembler supports the ‘.visibility’ pseudo-op). Default visibility
is supported everywhere. Hidden visibility is supported on Darwin targets.
The visibility attribute should be applied only to declarations that would other-
wise have external linkage. The attribute should be applied consistently, so that
the same entity should not be declared with different settings of the attribute.
In C++, the visibility attribute applies to types as well as functions and objects,
because in C++ types have linkage. A class must not have greater visibility than
its non-static data member types and bases, and class members default to the
visibility of their class. Also, a declaration without explicit visibility is limited
to the visibility of its type.
In C++, you can mark member functions and static member variables of a class
with the visibility attribute. This is useful if you know a particular method or
static member variable should only be used from one shared object; then you
can mark it hidden while the rest of the class has default visibility. Care must
be taken to avoid breaking the One Definition Rule; for example, it is usually
not useful to mark an inline method as hidden without marking the whole class
as hidden.
A C++ namespace declaration can also have the visibility attribute.

namespace nspace1 __attribute__ ((visibility ("protected")))

{ /* Do something. */; }

404 Using the GNU Compiler Collection (GCC)

This attribute applies only to the particular namespace body, not to other
definitions of the same namespace; it is equivalent to using ‘#pragma GCC
visibility’ before and after the namespace definition (see Section 6.59.11
[Visibility Pragmas], page 695).
In C++, if a template argument has limited visibility, this restriction is implicitly
propagated to the template instantiation. Otherwise, template instantiations
and specializations default to the visibility of their template.
If both the template and enclosing class have explicit visibility, the visibility
from the template is used.

vliw On MeP, the vliw attribute tells the compiler to emit instructions in VLIW
mode instead of core mode. Note that this attribute is not allowed unless
a VLIW coprocessor has been configured and enabled through command-line
options.

warn_unused_result
The warn_unused_result attribute causes a warning to be emitted if a caller of
the function with this attribute does not use its return value. This is useful for
functions where not checking the result is either a security problem or always
a bug, such as realloc.

int fn () __attribute__ ((warn_unused_result));

int foo ()

{

if (fn () < 0) return -1;

fn ();

return 0;

}

results in warning on line 5.

weak The weak attribute causes the declaration to be emitted as a weak symbol
rather than a global. This is primarily useful in defining library functions that
can be overridden in user code, though it can also be used with non-function
declarations. Weak symbols are supported for ELF targets, and also for a.out
targets when using the GNU assembler and linker.

weakref
weakref ("target")

The weakref attribute marks a declaration as a weak reference. Without ar-
guments, it should be accompanied by an alias attribute naming the target
symbol. Optionally, the target may be given as an argument to weakref itself.
In either case, weakref implicitly marks the declaration as weak. Without a
target, given as an argument to weakref or to alias, weakref is equivalent to
weak.

static int x() __attribute__ ((weakref ("y")));

/* is equivalent to... */

static int x() __attribute__ ((weak, weakref, alias ("y")));

/* and to... */

static int x() __attribute__ ((weakref));

static int x() __attribute__ ((alias ("y")));

A weak reference is an alias that does not by itself require a definition to be
given for the target symbol. If the target symbol is only referenced through

Chapter 6: Extensions to the C Language Family 405

weak references, then it becomes a weak undefined symbol. If it is directly
referenced, however, then such strong references prevail, and a definition is
required for the symbol, not necessarily in the same translation unit.
The effect is equivalent to moving all references to the alias to a separate trans-
lation unit, renaming the alias to the aliased symbol, declaring it as weak,
compiling the two separate translation units and performing a reloadable link
on them.
At present, a declaration to which weakref is attached can only be static.

You can specify multiple attributes in a declaration by separating them by commas within
the double parentheses or by immediately following an attribute declaration with another
attribute declaration.

Some people object to the __attribute__ feature, suggesting that ISO C’s #pragma
should be used instead. At the time __attribute__ was designed, there were two reasons
for not doing this.

1. It is impossible to generate #pragma commands from a macro.
2. There is no telling what the same #pragma might mean in another compiler.

These two reasons applied to almost any application that might have been proposed for
#pragma. It was basically a mistake to use #pragma for anything.

The ISO C99 standard includes _Pragma, which now allows pragmas to be generated
from macros. In addition, a #pragma GCC namespace is now in use for GCC-specific prag-
mas. However, it has been found convenient to use __attribute__ to achieve a natural
attachment of attributes to their corresponding declarations, whereas #pragma GCC is of use
for constructs that do not naturally form part of the grammar. See Section 6.59 [Pragmas
Accepted by GCC], page 690.

6.31 Attribute Syntax

This section describes the syntax with which __attribute__ may be used, and the con-
structs to which attribute specifiers bind, for the C language. Some details may vary for
C++ and Objective-C. Because of infelicities in the grammar for attributes, some forms
described here may not be successfully parsed in all cases.

There are some problems with the semantics of attributes in C++. For example, there
are no manglings for attributes, although they may affect code generation, so problems
may arise when attributed types are used in conjunction with templates or overloading.
Similarly, typeid does not distinguish between types with different attributes. Support for
attributes in C++ may be restricted in future to attributes on declarations only, but not on
nested declarators.

See Section 6.30 [Function Attributes], page 372, for details of the semantics of attributes
applying to functions. See Section 6.36 [Variable Attributes], page 409, for details of the
semantics of attributes applying to variables. See Section 6.37 [Type Attributes], page 418,
for details of the semantics of attributes applying to structure, union and enumerated types.

An attribute specifier is of the form __attribute__ ((attribute-list)). An attribute
list is a possibly empty comma-separated sequence of attributes, where each attribute is
one of the following:

406 Using the GNU Compiler Collection (GCC)

• Empty. Empty attributes are ignored.
• A word (which may be an identifier such as unused, or a reserved word such as const).
• A word, followed by, in parentheses, parameters for the attribute. These parameters

take one of the following forms:
• An identifier. For example, mode attributes use this form.
• An identifier followed by a comma and a non-empty comma-separated list of ex-

pressions. For example, format attributes use this form.
• A possibly empty comma-separated list of expressions. For example, format_arg

attributes use this form with the list being a single integer constant expression,
and alias attributes use this form with the list being a single string constant.

An attribute specifier list is a sequence of one or more attribute specifiers, not separated
by any other tokens.

In GNU C, an attribute specifier list may appear after the colon following a label, other
than a case or default label. The only attribute it makes sense to use after a label is
unused. This feature is intended for program-generated code that may contain unused
labels, but which is compiled with ‘-Wall’. It is not normally appropriate to use in it
human-written code, though it could be useful in cases where the code that jumps to the
label is contained within an #ifdef conditional. GNU C++ only permits attributes on labels
if the attribute specifier is immediately followed by a semicolon (i.e., the label applies to
an empty statement). If the semicolon is missing, C++ label attributes are ambiguous, as it
is permissible for a declaration, which could begin with an attribute list, to be labelled in
C++. Declarations cannot be labelled in C90 or C99, so the ambiguity does not arise there.

An attribute specifier list may appear as part of a struct, union or enum specifier. It
may go either immediately after the struct, union or enum keyword, or after the closing
brace. The former syntax is preferred. Where attribute specifiers follow the closing brace,
they are considered to relate to the structure, union or enumerated type defined, not to any
enclosing declaration the type specifier appears in, and the type defined is not complete
until after the attribute specifiers.

Otherwise, an attribute specifier appears as part of a declaration, counting declarations
of unnamed parameters and type names, and relates to that declaration (which may be
nested in another declaration, for example in the case of a parameter declaration), or to
a particular declarator within a declaration. Where an attribute specifier is applied to a
parameter declared as a function or an array, it should apply to the function or array rather
than the pointer to which the parameter is implicitly converted, but this is not yet correctly
implemented.

Any list of specifiers and qualifiers at the start of a declaration may contain attribute
specifiers, whether or not such a list may in that context contain storage class specifiers.
(Some attributes, however, are essentially in the nature of storage class specifiers, and only
make sense where storage class specifiers may be used; for example, section.) There is one
necessary limitation to this syntax: the first old-style parameter declaration in a function
definition cannot begin with an attribute specifier, because such an attribute applies to the
function instead by syntax described below (which, however, is not yet implemented in this
case). In some other cases, attribute specifiers are permitted by this grammar but not yet
supported by the compiler. All attribute specifiers in this place relate to the declaration as

Chapter 6: Extensions to the C Language Family 407

a whole. In the obsolescent usage where a type of int is implied by the absence of type
specifiers, such a list of specifiers and qualifiers may be an attribute specifier list with no
other specifiers or qualifiers.

At present, the first parameter in a function prototype must have some type specifier that
is not an attribute specifier; this resolves an ambiguity in the interpretation of void f(int
(__attribute__((foo)) x)), but is subject to change. At present, if the parentheses of a
function declarator contain only attributes then those attributes are ignored, rather than
yielding an error or warning or implying a single parameter of type int, but this is subject
to change.

An attribute specifier list may appear immediately before a declarator (other than the
first) in a comma-separated list of declarators in a declaration of more than one identifier
using a single list of specifiers and qualifiers. Such attribute specifiers apply only to the
identifier before whose declarator they appear. For example, in

__attribute__((noreturn)) void d0 (void),

__attribute__((format(printf, 1, 2))) d1 (const char *, ...),

d2 (void)

the noreturn attribute applies to all the functions declared; the format attribute only
applies to d1.

An attribute specifier list may appear immediately before the comma, = or semicolon
terminating the declaration of an identifier other than a function definition. Such attribute
specifiers apply to the declared object or function. Where an assembler name for an object
or function is specified (see Section 6.43 [Asm Labels], page 465), the attribute must follow
the asm specification.

An attribute specifier list may, in future, be permitted to appear after the declarator in
a function definition (before any old-style parameter declarations or the function body).

Attribute specifiers may be mixed with type qualifiers appearing inside the [] of a pa-
rameter array declarator, in the C99 construct by which such qualifiers are applied to the
pointer to which the array is implicitly converted. Such attribute specifiers apply to the
pointer, not to the array, but at present this is not implemented and they are ignored.

An attribute specifier list may appear at the start of a nested declarator. At present,
there are some limitations in this usage: the attributes correctly apply to the declarator,
but for most individual attributes the semantics this implies are not implemented. When
attribute specifiers follow the * of a pointer declarator, they may be mixed with any type
qualifiers present. The following describes the formal semantics of this syntax. It makes
the most sense if you are familiar with the formal specification of declarators in the ISO C
standard.

Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration T D1, where T contains
declaration specifiers that specify a type Type (such as int) and D1 is a declarator that
contains an identifier ident. The type specified for ident for derived declarators whose type
does not include an attribute specifier is as in the ISO C standard.

If D1 has the form (attribute-specifier-list D), and the declaration T D specifies
the type “derived-declarator-type-list Type” for ident, then T D1 specifies the type “derived-
declarator-type-list attribute-specifier-list Type” for ident.

If D1 has the form * type-qualifier-and-attribute-specifier-list D, and the dec-
laration T D specifies the type “derived-declarator-type-list Type” for ident, then T D1 spec-

408 Using the GNU Compiler Collection (GCC)

ifies the type “derived-declarator-type-list type-qualifier-and-attribute-specifier-list pointer
to Type” for ident.

For example,
void (__attribute__((noreturn)) ****f) (void);

specifies the type “pointer to pointer to pointer to pointer to non-returning function return-
ing void”. As another example,

char *__attribute__((aligned(8))) *f;

specifies the type “pointer to 8-byte-aligned pointer to char”. Note again that this does not
work with most attributes; for example, the usage of ‘aligned’ and ‘noreturn’ attributes
given above is not yet supported.

For compatibility with existing code written for compiler versions that did not implement
attributes on nested declarators, some laxity is allowed in the placing of attributes. If an
attribute that only applies to types is applied to a declaration, it is treated as applying to
the type of that declaration. If an attribute that only applies to declarations is applied to
the type of a declaration, it is treated as applying to that declaration; and, for compatibility
with code placing the attributes immediately before the identifier declared, such an attribute
applied to a function return type is treated as applying to the function type, and such an
attribute applied to an array element type is treated as applying to the array type. If an
attribute that only applies to function types is applied to a pointer-to-function type, it is
treated as applying to the pointer target type; if such an attribute is applied to a function
return type that is not a pointer-to-function type, it is treated as applying to the function
type.

6.32 Prototypes and Old-Style Function Definitions

GNU C extends ISO C to allow a function prototype to override a later old-style non-
prototype definition. Consider the following example:

/* Use prototypes unless the compiler is old-fashioned. */

#ifdef __STDC__

#define P(x) x

#else

#define P(x) ()

#endif

/* Prototype function declaration. */

int isroot P((uid_t));

/* Old-style function definition. */

int

isroot (x) /* ??? lossage here ??? */

uid_t x;

{

return x == 0;

}

Suppose the type uid_t happens to be short. ISO C does not allow this example,
because subword arguments in old-style non-prototype definitions are promoted. Therefore
in this example the function definition’s argument is really an int, which does not match
the prototype argument type of short.

This restriction of ISO C makes it hard to write code that is portable to traditional C
compilers, because the programmer does not know whether the uid_t type is short, int,

Chapter 6: Extensions to the C Language Family 409

or long. Therefore, in cases like these GNU C allows a prototype to override a later old-
style definition. More precisely, in GNU C, a function prototype argument type overrides
the argument type specified by a later old-style definition if the former type is the same as
the latter type before promotion. Thus in GNU C the above example is equivalent to the
following:

int isroot (uid_t);

int

isroot (uid_t x)

{

return x == 0;

}

GNU C++ does not support old-style function definitions, so this extension is irrelevant.

6.33 C++ Style Comments

In GNU C, you may use C++ style comments, which start with ‘//’ and continue until
the end of the line. Many other C implementations allow such comments, and they are
included in the 1999 C standard. However, C++ style comments are not recognized if you
specify an ‘-std’ option specifying a version of ISO C before C99, or ‘-ansi’ (equivalent to
‘-std=c90’).

6.34 Dollar Signs in Identifier Names

In GNU C, you may normally use dollar signs in identifier names. This is because many
traditional C implementations allow such identifiers. However, dollar signs in identifiers are
not supported on a few target machines, typically because the target assembler does not
allow them.

6.35 The Character ESC in Constants

You can use the sequence ‘\e’ in a string or character constant to stand for the ASCII
character ESC.

6.36 Specifying Attributes of Variables

The keyword __attribute__ allows you to specify special attributes of variables or structure
fields. This keyword is followed by an attribute specification inside double parentheses.
Some attributes are currently defined generically for variables. Other attributes are defined
for variables on particular target systems. Other attributes are available for functions
(see Section 6.30 [Function Attributes], page 372) and for types (see Section 6.37 [Type
Attributes], page 418). Other front ends might define more attributes (see Chapter 7
[Extensions to the C++ Language], page 701).

You may also specify attributes with ‘__’ preceding and following each keyword. This
allows you to use them in header files without being concerned about a possible macro of
the same name. For example, you may use __aligned__ instead of aligned.

See Section 6.31 [Attribute Syntax], page 405, for details of the exact syntax for using
attributes.

410 Using the GNU Compiler Collection (GCC)

aligned (alignment)
This attribute specifies a minimum alignment for the variable or structure field,
measured in bytes. For example, the declaration:

int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a 16-byte boundary. On
a 68040, this could be used in conjunction with an asm expression to access the
move16 instruction which requires 16-byte aligned operands.

You can also specify the alignment of structure fields. For example, to create a
double-word aligned int pair, you could write:

struct foo { int x[2] __attribute__ ((aligned (8))); };

This is an alternative to creating a union with a double member, which forces
the union to be double-word aligned.

As in the preceding examples, you can explicitly specify the alignment (in bytes)
that you wish the compiler to use for a given variable or structure field. Al-
ternatively, you can leave out the alignment factor and just ask the compiler
to align a variable or field to the default alignment for the target architecture
you are compiling for. The default alignment is sufficient for all scalar types,
but may not be enough for all vector types on a target that supports vector
operations. The default alignment is fixed for a particular target ABI.

GCC also provides a target specific macro __BIGGEST_ALIGNMENT__, which is
the largest alignment ever used for any data type on the target machine you
are compiling for. For example, you could write:

short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));

The compiler automatically sets the alignment for the declared variable or field
to __BIGGEST_ALIGNMENT__. Doing this can often make copy operations more
efficient, because the compiler can use whatever instructions copy the biggest
chunks of memory when performing copies to or from the variables or fields that
you have aligned this way. Note that the value of __BIGGEST_ALIGNMENT__ may
change depending on command-line options.

When used on a struct, or struct member, the aligned attribute can only in-
crease the alignment; in order to decrease it, the packed attribute must be
specified as well. When used as part of a typedef, the aligned attribute can
both increase and decrease alignment, and specifying the packed attribute gen-
erates a warning.

Note that the effectiveness of aligned attributes may be limited by inherent
limitations in your linker. On many systems, the linker is only able to arrange
for variables to be aligned up to a certain maximum alignment. (For some
linkers, the maximum supported alignment may be very very small.) If your
linker is only able to align variables up to a maximum of 8-byte alignment,
then specifying aligned(16) in an __attribute__ still only provides you with
8-byte alignment. See your linker documentation for further information.

The aligned attribute can also be used for functions (see Section 6.30 [Function
Attributes], page 372.)

Chapter 6: Extensions to the C Language Family 411

cleanup (cleanup_function)
The cleanup attribute runs a function when the variable goes out of scope.
This attribute can only be applied to auto function scope variables; it may not
be applied to parameters or variables with static storage duration. The function
must take one parameter, a pointer to a type compatible with the variable. The
return value of the function (if any) is ignored.
If ‘-fexceptions’ is enabled, then cleanup function is run during the stack
unwinding that happens during the processing of the exception. Note that the
cleanup attribute does not allow the exception to be caught, only to perform
an action. It is undefined what happens if cleanup function does not return
normally.

common
nocommon The common attribute requests GCC to place a variable in “common” storage.

The nocommon attribute requests the opposite—to allocate space for it directly.
These attributes override the default chosen by the ‘-fno-common’ and
‘-fcommon’ flags respectively.

deprecated
deprecated (msg)

The deprecated attribute results in a warning if the variable is used anywhere
in the source file. This is useful when identifying variables that are expected
to be removed in a future version of a program. The warning also includes the
location of the declaration of the deprecated variable, to enable users to easily
find further information about why the variable is deprecated, or what they
should do instead. Note that the warning only occurs for uses:

extern int old_var __attribute__ ((deprecated));

extern int old_var;

int new_fn () { return old_var; }

results in a warning on line 3 but not line 2. The optional msg argument, which
must be a string, is printed in the warning if present.
The deprecated attribute can also be used for functions and types (see
Section 6.30 [Function Attributes], page 372, see Section 6.37 [Type
Attributes], page 418.)

mode (mode)
This attribute specifies the data type for the declaration—whichever type corre-
sponds to the mode mode. This in effect lets you request an integer or floating-
point type according to its width.
You may also specify a mode of byte or __byte__ to indicate the mode corre-
sponding to a one-byte integer, word or __word__ for the mode of a one-word
integer, and pointer or __pointer__ for the mode used to represent pointers.

packed The packed attribute specifies that a variable or structure field should have the
smallest possible alignment—one byte for a variable, and one bit for a field,
unless you specify a larger value with the aligned attribute.
Here is a structure in which the field x is packed, so that it immediately follows
a:

412 Using the GNU Compiler Collection (GCC)

struct foo

{

char a;

int x[2] __attribute__ ((packed));

};

Note: The 4.1, 4.2 and 4.3 series of GCC ignore the packed attribute on
bit-fields of type char. This has been fixed in GCC 4.4 but the change
can lead to differences in the structure layout. See the documentation of
‘-Wpacked-bitfield-compat’ for more information.

section ("section-name")
Normally, the compiler places the objects it generates in sections like data and
bss. Sometimes, however, you need additional sections, or you need certain
particular variables to appear in special sections, for example to map to special
hardware. The section attribute specifies that a variable (or function) lives
in a particular section. For example, this small program uses several specific
section names:

struct duart a __attribute__ ((section ("DUART_A"))) = { 0 };

struct duart b __attribute__ ((section ("DUART_B"))) = { 0 };

char stack[10000] __attribute__ ((section ("STACK"))) = { 0 };

int init_data __attribute__ ((section ("INITDATA")));

main()

{

/* Initialize stack pointer */

init_sp (stack + sizeof (stack));

/* Initialize initialized data */

memcpy (&init_data, &data, &edata - &data);

/* Turn on the serial ports */

init_duart (&a);

init_duart (&b);

}

Use the section attribute with global variables and not local variables, as shown
in the example.
You may use the section attribute with initialized or uninitialized global vari-
ables but the linker requires each object be defined once, with the exception
that uninitialized variables tentatively go in the common (or bss) section and
can be multiply “defined”. Using the section attribute changes what section
the variable goes into and may cause the linker to issue an error if an uninitial-
ized variable has multiple definitions. You can force a variable to be initialized
with the ‘-fno-common’ flag or the nocommon attribute.
Some file formats do not support arbitrary sections so the section attribute
is not available on all platforms. If you need to map the entire contents of a
module to a particular section, consider using the facilities of the linker instead.

shared On Microsoft Windows, in addition to putting variable definitions in a named
section, the section can also be shared among all running copies of an executable
or DLL. For example, this small program defines shared data by putting it in
a named section shared and marking the section shareable:

Chapter 6: Extensions to the C Language Family 413

int foo __attribute__((section ("shared"), shared)) = 0;

int

main()

{

/* Read and write foo. All running
copies see the same value. */

return 0;

}

You may only use the shared attribute along with section attribute with a
fully-initialized global definition because of the way linkers work. See section
attribute for more information.
The shared attribute is only available on Microsoft Windows.

tls_model ("tls_model")
The tls_model attribute sets thread-local storage model (see Section 6.61
[Thread-Local], page 697) of a particular __thread variable, overriding
‘-ftls-model=’ command-line switch on a per-variable basis. The tls model
argument should be one of global-dynamic, local-dynamic, initial-exec
or local-exec.
Not all targets support this attribute.

unused This attribute, attached to a variable, means that the variable is meant to be
possibly unused. GCC does not produce a warning for this variable.

used This attribute, attached to a variable with the static storage, means that the
variable must be emitted even if it appears that the variable is not referenced.
When applied to a static data member of a C++ class template, the attribute
also means that the member is instantiated if the class itself is instantiated.

vector_size (bytes)
This attribute specifies the vector size for the variable, measured in bytes. For
example, the declaration:

int foo __attribute__ ((vector_size (16)));

causes the compiler to set the mode for foo, to be 16 bytes, divided into int
sized units. Assuming a 32-bit int (a vector of 4 units of 4 bytes), the corre-
sponding mode of foo is V4SI.
This attribute is only applicable to integral and float scalars, although arrays,
pointers, and function return values are allowed in conjunction with this con-
struct.
Aggregates with this attribute are invalid, even if they are of the same size as
a corresponding scalar. For example, the declaration:

struct S { int a; };

struct S __attribute__ ((vector_size (16))) foo;

is invalid even if the size of the structure is the same as the size of the int.

selectany
The selectany attribute causes an initialized global variable to have link-once
semantics. When multiple definitions of the variable are encountered by the
linker, the first is selected and the remainder are discarded. Following usage

414 Using the GNU Compiler Collection (GCC)

by the Microsoft compiler, the linker is told not to warn about size or content
differences of the multiple definitions.

Although the primary usage of this attribute is for POD types, the attribute can
also be applied to global C++ objects that are initialized by a constructor. In
this case, the static initialization and destruction code for the object is emitted
in each translation defining the object, but the calls to the constructor and
destructor are protected by a link-once guard variable.

The selectany attribute is only available on Microsoft Windows targets.
You can use __declspec (selectany) as a synonym for __attribute__
((selectany)) for compatibility with other compilers.

weak The weak attribute is described in Section 6.30 [Function Attributes], page 372.

dllimport
The dllimport attribute is described in Section 6.30 [Function Attributes],
page 372.

dllexport
The dllexport attribute is described in Section 6.30 [Function Attributes],
page 372.

6.36.1 AVR Variable Attributes

progmem The progmem attribute is used on the AVR to place read-only data in the non-
volatile program memory (flash). The progmem attribute accomplishes this by
putting respective variables into a section whose name starts with .progmem.

This attribute works similar to the section attribute but adds additional check-
ing. Notice that just like the section attribute, progmem affects the location
of the data but not how this data is accessed.

In order to read data located with the progmem attribute (inline) assembler
must be used.

/* Use custom macros from AVR-LibC */

#include <avr/pgmspace.h>

/* Locate var in flash memory */

const int var[2] PROGMEM = { 1, 2 };

int read_var (int i)

{

/* Access var[] by accessor macro from avr/pgmspace.h */

return (int) pgm_read_word (& var[i]);

}

AVR is a Harvard architecture processor and data and read-only data normally
resides in the data memory (RAM).

See also the [AVR Named Address Spaces], page 362 section for an alternate
way to locate and access data in flash memory.

6.36.2 Blackfin Variable Attributes

Three attributes are currently defined for the Blackfin.

http://nongnu.org/avr-libc/user-manual/

Chapter 6: Extensions to the C Language Family 415

l1_data
l1_data_A
l1_data_B

Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
Variables with l1_data attribute are put into the specific section named
.l1.data. Those with l1_data_A attribute are put into the specific section
named .l1.data.A. Those with l1_data_B attribute are put into the specific
section named .l1.data.B.

l2 Use this attribute on the Blackfin to place the variable into L2 SRAM. Variables
with l2 attribute are put into the specific section named .l2.data.

6.36.3 M32R/D Variable Attributes

One attribute is currently defined for the M32R/D.

model (model-name)
Use this attribute on the M32R/D to set the addressability of an object. The
identifier model-name is one of small, medium, or large, representing each of
the code models.
Small model objects live in the lower 16MB of memory (so that their addresses
can be loaded with the ld24 instruction).
Medium and large model objects may live anywhere in the 32-bit address space
(the compiler generates seth/add3 instructions to load their addresses).

6.36.4 MeP Variable Attributes

The MeP target has a number of addressing modes and busses. The near space spans
the standard memory space’s first 16 megabytes (24 bits). The far space spans the entire
32-bit memory space. The based space is a 128-byte region in the memory space that is
addressed relative to the $tp register. The tiny space is a 65536-byte region relative to the
$gp register. In addition to these memory regions, the MeP target has a separate 16-bit
control bus which is specified with cb attributes.

based Any variable with the based attribute is assigned to the .based section, and is
accessed with relative to the $tp register.

tiny Likewise, the tiny attribute assigned variables to the .tiny section, relative to
the $gp register.

near Variables with the near attribute are assumed to have addresses that fit in a
24-bit addressing mode. This is the default for large variables (-mtiny=4 is the
default) but this attribute can override -mtiny= for small variables, or override
-ml.

far Variables with the far attribute are addressed using a full 32-bit address. Since
this covers the entire memory space, this allows modules to make no assump-
tions about where variables might be stored.

io
io (addr) Variables with the io attribute are used to address memory-mapped peripher-

als. If an address is specified, the variable is assigned that address, else it is

416 Using the GNU Compiler Collection (GCC)

not assigned an address (it is assumed some other module assigns an address).
Example:

int timer_count __attribute__((io(0x123)));

cb
cb (addr) Variables with the cb attribute are used to access the control bus, using special

instructions. addr indicates the control bus address. Example:
int cpu_clock __attribute__((cb(0x123)));

6.36.5 i386 Variable Attributes

Two attributes are currently defined for i386 configurations: ms_struct and gcc_struct

ms_struct
gcc_struct

If packed is used on a structure, or if bit-fields are used, it may be that the
Microsoft ABI lays out the structure differently than the way GCC normally
does. Particularly when moving packed data between functions compiled with
GCC and the native Microsoft compiler (either via function call or as data in
a file), it may be necessary to access either format.
Currently ‘-m[no-]ms-bitfields’ is provided for the Microsoft Windows X86
compilers to match the native Microsoft compiler.
The Microsoft structure layout algorithm is fairly simple with the exception of
the bit-field packing. The padding and alignment of members of structures and
whether a bit-field can straddle a storage-unit boundary are determine by these
rules:
1. Structure members are stored sequentially in the order in which they are

declared: the first member has the lowest memory address and the last
member the highest.

2. Every data object has an alignment requirement. The alignment require-
ment for all data except structures, unions, and arrays is either the size of
the object or the current packing size (specified with either the aligned
attribute or the pack pragma), whichever is less. For structures, unions,
and arrays, the alignment requirement is the largest alignment requirement
of its members. Every object is allocated an offset so that:

offset % alignment_requirement == 0

3. Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
unit if the integral types are the same size and if the next bit-field fits into
the current allocation unit without crossing the boundary imposed by the
common alignment requirements of the bit-fields.

MSVC interprets zero-length bit-fields in the following ways:
1. If a zero-length bit-field is inserted between two bit-fields that are normally

coalesced, the bit-fields are not coalesced.
For example:

struct

{

unsigned long bf_1 : 12;

Chapter 6: Extensions to the C Language Family 417

unsigned long : 0;

unsigned long bf_2 : 12;

} t1;

The size of t1 is 8 bytes with the zero-length bit-field. If the zero-length
bit-field were removed, t1’s size would be 4 bytes.

2. If a zero-length bit-field is inserted after a bit-field, foo, and the alignment
of the zero-length bit-field is greater than the member that follows it, bar,
bar is aligned as the type of the zero-length bit-field.
For example:

struct

{

char foo : 4;

short : 0;

char bar;

} t2;

struct

{

char foo : 4;

short : 0;

double bar;

} t3;

For t2, bar is placed at offset 2, rather than offset 1. Accordingly, the size
of t2 is 4. For t3, the zero-length bit-field does not affect the alignment of
bar or, as a result, the size of the structure.
Taking this into account, it is important to note the following:
1. If a zero-length bit-field follows a normal bit-field, the type of the zero-

length bit-field may affect the alignment of the structure as whole. For
example, t2 has a size of 4 bytes, since the zero-length bit-field follows
a normal bit-field, and is of type short.

2. Even if a zero-length bit-field is not followed by a normal bit-field, it
may still affect the alignment of the structure:

struct

{

char foo : 6;

long : 0;

} t4;

Here, t4 takes up 4 bytes.
3. Zero-length bit-fields following non-bit-field members are ignored:

struct

{

char foo;

long : 0;

char bar;

} t5;

Here, t5 takes up 2 bytes.

6.36.6 PowerPC Variable Attributes

Three attributes currently are defined for PowerPC configurations: altivec, ms_struct
and gcc_struct.

418 Using the GNU Compiler Collection (GCC)

For full documentation of the struct attributes please see the documentation in [i386
Variable Attributes], page 416.

For documentation of altivec attribute please see the documentation in [PowerPC Type
Attributes], page 423.

6.36.7 SPU Variable Attributes

The SPU supports the spu_vector attribute for variables. For documentation of this
attribute please see the documentation in [SPU Type Attributes], page 423.

6.36.8 Xstormy16 Variable Attributes

One attribute is currently defined for xstormy16 configurations: below100.

below100

If a variable has the below100 attribute (BELOW100 is allowed also), GCC places
the variable in the first 0x100 bytes of memory and use special opcodes to access
it. Such variables are placed in either the .bss_below100 section or the .data_
below100 section.

6.37 Specifying Attributes of Types

The keyword __attribute__ allows you to specify special attributes of struct and union
types when you define such types. This keyword is followed by an attribute specification in-
side double parentheses. Seven attributes are currently defined for types: aligned, packed,
transparent_union, unused, deprecated, visibility, and may_alias. Other attributes
are defined for functions (see Section 6.30 [Function Attributes], page 372) and for variables
(see Section 6.36 [Variable Attributes], page 409).

You may also specify any one of these attributes with ‘__’ preceding and following its
keyword. This allows you to use these attributes in header files without being concerned
about a possible macro of the same name. For example, you may use __aligned__ instead
of aligned.

You may specify type attributes in an enum, struct or union type declaration or definition,
or for other types in a typedef declaration.

For an enum, struct or union type, you may specify attributes either between the enum,
struct or union tag and the name of the type, or just past the closing curly brace of the
definition. The former syntax is preferred.

See Section 6.31 [Attribute Syntax], page 405, for details of the exact syntax for using
attributes.

aligned (alignment)
This attribute specifies a minimum alignment (in bytes) for variables of the
specified type. For example, the declarations:

struct S { short f[3]; } __attribute__ ((aligned (8)));

typedef int more_aligned_int __attribute__ ((aligned (8)));

force the compiler to ensure (as far as it can) that each variable whose type is
struct S or more_aligned_int is allocated and aligned at least on a 8-byte
boundary. On a SPARC, having all variables of type struct S aligned to 8-byte
boundaries allows the compiler to use the ldd and std (doubleword load and

Chapter 6: Extensions to the C Language Family 419

store) instructions when copying one variable of type struct S to another, thus
improving run-time efficiency.

Note that the alignment of any given struct or union type is required by the
ISO C standard to be at least a perfect multiple of the lowest common multiple
of the alignments of all of the members of the struct or union in question. This
means that you can effectively adjust the alignment of a struct or union type
by attaching an aligned attribute to any one of the members of such a type,
but the notation illustrated in the example above is a more obvious, intuitive,
and readable way to request the compiler to adjust the alignment of an entire
struct or union type.

As in the preceding example, you can explicitly specify the alignment (in bytes)
that you wish the compiler to use for a given struct or union type. Alterna-
tively, you can leave out the alignment factor and just ask the compiler to
align a type to the maximum useful alignment for the target machine you are
compiling for. For example, you could write:

struct S { short f[3]; } __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute specifica-
tion, the compiler automatically sets the alignment for the type to the largest
alignment that is ever used for any data type on the target machine you are
compiling for. Doing this can often make copy operations more efficient, be-
cause the compiler can use whatever instructions copy the biggest chunks of
memory when performing copies to or from the variables that have types that
you have aligned this way.

In the example above, if the size of each short is 2 bytes, then the size of the
entire struct S type is 6 bytes. The smallest power of two that is greater than
or equal to that is 8, so the compiler sets the alignment for the entire struct
S type to 8 bytes.

Note that although you can ask the compiler to select a time-efficient alignment
for a given type and then declare only individual stand-alone objects of that
type, the compiler’s ability to select a time-efficient alignment is primarily useful
only when you plan to create arrays of variables having the relevant (efficiently
aligned) type. If you declare or use arrays of variables of an efficiently-aligned
type, then it is likely that your program also does pointer arithmetic (or sub-
scripting, which amounts to the same thing) on pointers to the relevant type,
and the code that the compiler generates for these pointer arithmetic operations
is often more efficient for efficiently-aligned types than for other types.

The aligned attribute can only increase the alignment; but you can decrease
it by specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be limited by inherent
limitations in your linker. On many systems, the linker is only able to arrange
for variables to be aligned up to a certain maximum alignment. (For some
linkers, the maximum supported alignment may be very very small.) If your
linker is only able to align variables up to a maximum of 8-byte alignment,
then specifying aligned(16) in an __attribute__ still only provides you with
8-byte alignment. See your linker documentation for further information.

420 Using the GNU Compiler Collection (GCC)

packed This attribute, attached to struct or union type definition, specifies that each
member (other than zero-width bit-fields) of the structure or union is placed
to minimize the memory required. When attached to an enum definition, it
indicates that the smallest integral type should be used.
Specifying this attribute for struct and union types is equivalent to specifying
the packed attribute on each of the structure or union members. Specifying
the ‘-fshort-enums’ flag on the line is equivalent to specifying the packed
attribute on all enum definitions.
In the following example struct my_packed_struct’s members are packed
closely together, but the internal layout of its s member is not packed—to
do that, struct my_unpacked_struct needs to be packed too.

struct my_unpacked_struct

{

char c;

int i;

};

struct __attribute__ ((__packed__)) my_packed_struct

{

char c;

int i;

struct my_unpacked_struct s;

};

You may only specify this attribute on the definition of an enum, struct or
union, not on a typedef that does not also define the enumerated type, struc-
ture or union.

transparent_union
This attribute, attached to a union type definition, indicates that any function
parameter having that union type causes calls to that function to be treated in
a special way.
First, the argument corresponding to a transparent union type can be of any
type in the union; no cast is required. Also, if the union contains a pointer type,
the corresponding argument can be a null pointer constant or a void pointer
expression; and if the union contains a void pointer type, the corresponding
argument can be any pointer expression. If the union member type is a pointer,
qualifiers like const on the referenced type must be respected, just as with
normal pointer conversions.
Second, the argument is passed to the function using the calling conventions of
the first member of the transparent union, not the calling conventions of the
union itself. All members of the union must have the same machine represen-
tation; this is necessary for this argument passing to work properly.
Transparent unions are designed for library functions that have multiple inter-
faces for compatibility reasons. For example, suppose the wait function must
accept either a value of type int * to comply with POSIX, or a value of type
union wait * to comply with the 4.1BSD interface. If wait’s parameter were
void *, wait would accept both kinds of arguments, but it would also accept
any other pointer type and this would make argument type checking less useful.
Instead, <sys/wait.h> might define the interface as follows:

Chapter 6: Extensions to the C Language Family 421

typedef union __attribute__ ((__transparent_union__))

{

int *__ip;

union wait *__up;

} wait_status_ptr_t;

pid_t wait (wait_status_ptr_t);

This interface allows either int * or union wait * arguments to be passed,
using the int * calling convention. The program can call wait with arguments
of either type:

int w1 () { int w; return wait (&w); }

int w2 () { union wait w; return wait (&w); }

With this interface, wait’s implementation might look like this:
pid_t wait (wait_status_ptr_t p)

{

return waitpid (-1, p.__ip, 0);

}

unused When attached to a type (including a union or a struct), this attribute means
that variables of that type are meant to appear possibly unused. GCC does not
produce a warning for any variables of that type, even if the variable appears to
do nothing. This is often the case with lock or thread classes, which are usually
defined and then not referenced, but contain constructors and destructors that
have nontrivial bookkeeping functions.

deprecated
deprecated (msg)

The deprecated attribute results in a warning if the type is used anywhere in
the source file. This is useful when identifying types that are expected to be
removed in a future version of a program. If possible, the warning also includes
the location of the declaration of the deprecated type, to enable users to easily
find further information about why the type is deprecated, or what they should
do instead. Note that the warnings only occur for uses and then only if the type
is being applied to an identifier that itself is not being declared as deprecated.

typedef int T1 __attribute__ ((deprecated));

T1 x;

typedef T1 T2;

T2 y;

typedef T1 T3 __attribute__ ((deprecated));

T3 z __attribute__ ((deprecated));

results in a warning on line 2 and 3 but not lines 4, 5, or 6. No warning is
issued for line 4 because T2 is not explicitly deprecated. Line 5 has no warning
because T3 is explicitly deprecated. Similarly for line 6. The optional msg
argument, which must be a string, is printed in the warning if present.
The deprecated attribute can also be used for functions and variables (see
Section 6.30 [Function Attributes], page 372, see Section 6.36 [Variable At-
tributes], page 409.)

may_alias
Accesses through pointers to types with this attribute are not subject to type-
based alias analysis, but are instead assumed to be able to alias any other type

422 Using the GNU Compiler Collection (GCC)

of objects. In the context of section 6.5 paragraph 7 of the C99 standard, an
lvalue expression dereferencing such a pointer is treated like having a character
type. See ‘-fstrict-aliasing’ for more information on aliasing issues. This
extension exists to support some vector APIs, in which pointers to one vector
type are permitted to alias pointers to a different vector type.
Note that an object of a type with this attribute does not have any special
semantics.
Example of use:

typedef short __attribute__((__may_alias__)) short_a;

int

main (void)

{

int a = 0x12345678;

short_a *b = (short_a *) &a;

b[1] = 0;

if (a == 0x12345678)

abort();

exit(0);

}

If you replaced short_a with short in the variable declaration, the above pro-
gram would abort when compiled with ‘-fstrict-aliasing’, which is on by
default at ‘-O2’ or above in recent GCC versions.

visibility
In C++, attribute visibility (see Section 6.30 [Function Attributes], page 372)
can also be applied to class, struct, union and enum types. Unlike other type
attributes, the attribute must appear between the initial keyword and the name
of the type; it cannot appear after the body of the type.
Note that the type visibility is applied to vague linkage entities associated with
the class (vtable, typeinfo node, etc.). In particular, if a class is thrown as
an exception in one shared object and caught in another, the class must have
default visibility. Otherwise the two shared objects are unable to use the same
typeinfo node and exception handling will break.

To specify multiple attributes, separate them by commas within the double parentheses:
for example, ‘__attribute__ ((aligned (16), packed))’.

6.37.1 ARM Type Attributes

On those ARM targets that support dllimport (such as Symbian OS), you can use the
notshared attribute to indicate that the virtual table and other similar data for a class
should not be exported from a DLL. For example:

class __declspec(notshared) C {

public:

__declspec(dllimport) C();

virtual void f();

}

Chapter 6: Extensions to the C Language Family 423

__declspec(dllexport)

C::C() {}

In this code, C::C is exported from the current DLL, but the virtual table for C is not
exported. (You can use __attribute__ instead of __declspec if you prefer, but most
Symbian OS code uses __declspec.)

6.37.2 MeP Type Attributes

Many of the MeP variable attributes may be applied to types as well. Specifically, the
based, tiny, near, and far attributes may be applied to either. The io and cb attributes
may not be applied to types.

6.37.3 i386 Type Attributes

Two attributes are currently defined for i386 configurations: ms_struct and gcc_struct.

ms_struct
gcc_struct

If packed is used on a structure, or if bit-fields are used it may be that the
Microsoft ABI packs them differently than GCC normally packs them. Par-
ticularly when moving packed data between functions compiled with GCC and
the native Microsoft compiler (either via function call or as data in a file), it
may be necessary to access either format.

Currently ‘-m[no-]ms-bitfields’ is provided for the Microsoft Windows X86
compilers to match the native Microsoft compiler.

6.37.4 PowerPC Type Attributes

Three attributes currently are defined for PowerPC configurations: altivec, ms_struct
and gcc_struct.

For full documentation of the ms_struct and gcc_struct attributes please see the doc-
umentation in [i386 Type Attributes], page 423.

The altivec attribute allows one to declare AltiVec vector data types supported by the
AltiVec Programming Interface Manual. The attribute requires an argument to specify one
of three vector types: vector__, pixel__ (always followed by unsigned short), and bool__
(always followed by unsigned).

__attribute__((altivec(vector__)))

__attribute__((altivec(pixel__))) unsigned short

__attribute__((altivec(bool__))) unsigned

These attributes mainly are intended to support the __vector, __pixel, and __bool
AltiVec keywords.

6.37.5 SPU Type Attributes

The SPU supports the spu_vector attribute for types. This attribute allows one to de-
clare vector data types supported by the Sony/Toshiba/IBM SPU Language Extensions
Specification. It is intended to support the __vector keyword.

424 Using the GNU Compiler Collection (GCC)

6.38 Inquiring on Alignment of Types or Variables

The keyword __alignof__ allows you to inquire about how an object is aligned, or the
minimum alignment usually required by a type. Its syntax is just like sizeof.

For example, if the target machine requires a double value to be aligned on an 8-byte
boundary, then __alignof__ (double) is 8. This is true on many RISC machines. On
more traditional machine designs, __alignof__ (double) is 4 or even 2.

Some machines never actually require alignment; they allow reference to any data type
even at an odd address. For these machines, __alignof__ reports the smallest alignment
that GCC gives the data type, usually as mandated by the target ABI.

If the operand of __alignof__ is an lvalue rather than a type, its value is the required
alignment for its type, taking into account any minimum alignment specified with GCC’s
__attribute__ extension (see Section 6.36 [Variable Attributes], page 409). For example,
after this declaration:

struct foo { int x; char y; } foo1;

the value of __alignof__ (foo1.y) is 1, even though its actual alignment is probably 2 or
4, the same as __alignof__ (int).

It is an error to ask for the alignment of an incomplete type.

6.39 An Inline Function is As Fast As a Macro

By declaring a function inline, you can direct GCC to make calls to that function faster. One
way GCC can achieve this is to integrate that function’s code into the code for its callers.
This makes execution faster by eliminating the function-call overhead; in addition, if any of
the actual argument values are constant, their known values may permit simplifications at
compile time so that not all of the inline function’s code needs to be included. The effect
on code size is less predictable; object code may be larger or smaller with function inlining,
depending on the particular case. You can also direct GCC to try to integrate all “simple
enough” functions into their callers with the option ‘-finline-functions’.

GCC implements three different semantics of declaring a function inline. One is available
with ‘-std=gnu89’ or ‘-fgnu89-inline’ or when gnu_inline attribute is present on all
inline declarations, another when ‘-std=c99’, ‘-std=c11’, ‘-std=gnu99’ or ‘-std=gnu11’
(without ‘-fgnu89-inline’), and the third is used when compiling C++.

To declare a function inline, use the inline keyword in its declaration, like this:
static inline int

inc (int *a)

{

return (*a)++;

}

If you are writing a header file to be included in ISO C90 programs, write __inline__
instead of inline. See Section 6.45 [Alternate Keywords], page 468.

The three types of inlining behave similarly in two important cases: when the inline
keyword is used on a static function, like the example above, and when a function is first
declared without using the inline keyword and then is defined with inline, like this:

extern int inc (int *a);

inline int

inc (int *a)

Chapter 6: Extensions to the C Language Family 425

{

return (*a)++;

}

In both of these common cases, the program behaves the same as if you had not used the
inline keyword, except for its speed.

When a function is both inline and static, if all calls to the function are integrated
into the caller, and the function’s address is never used, then the function’s own assembler
code is never referenced. In this case, GCC does not actually output assembler code for
the function, unless you specify the option ‘-fkeep-inline-functions’. Some calls cannot
be integrated for various reasons (in particular, calls that precede the function’s definition
cannot be integrated, and neither can recursive calls within the definition). If there is a
nonintegrated call, then the function is compiled to assembler code as usual. The function
must also be compiled as usual if the program refers to its address, because that can’t be
inlined.

Note that certain usages in a function definition can make it unsuitable for inline substitu-
tion. Among these usages are: variadic functions, use of alloca, use of variable-length data
types (see Section 6.19 [Variable Length], page 366), use of computed goto (see Section 6.3
[Labels as Values], page 351), use of nonlocal goto, and nested functions (see Section 6.4
[Nested Functions], page 352). Using ‘-Winline’ warns when a function marked inline
could not be substituted, and gives the reason for the failure.

As required by ISO C++, GCC considers member functions defined within the body of a
class to be marked inline even if they are not explicitly declared with the inline keyword.
You can override this with ‘-fno-default-inline’; see Section 3.5 [Options Controlling
C++ Dialect], page 37.

GCC does not inline any functions when not optimizing unless you specify the
‘always_inline’ attribute for the function, like this:

/* Prototype. */

inline void foo (const char) __attribute__((always_inline));

The remainder of this section is specific to GNU C90 inlining.

When an inline function is not static, then the compiler must assume that there may be
calls from other source files; since a global symbol can be defined only once in any program,
the function must not be defined in the other source files, so the calls therein cannot be
integrated. Therefore, a non-static inline function is always compiled on its own in the
usual fashion.

If you specify both inline and extern in the function definition, then the definition is
used only for inlining. In no case is the function compiled on its own, not even if you refer
to its address explicitly. Such an address becomes an external reference, as if you had only
declared the function, and had not defined it.

This combination of inline and extern has almost the effect of a macro. The way to use
it is to put a function definition in a header file with these keywords, and put another copy
of the definition (lacking inline and extern) in a library file. The definition in the header
file causes most calls to the function to be inlined. If any uses of the function remain, they
refer to the single copy in the library.

426 Using the GNU Compiler Collection (GCC)

6.40 When is a Volatile Object Accessed?

C has the concept of volatile objects. These are normally accessed by pointers and used
for accessing hardware or inter-thread communication. The standard encourages compilers
to refrain from optimizations concerning accesses to volatile objects, but leaves it imple-
mentation defined as to what constitutes a volatile access. The minimum requirement is
that at a sequence point all previous accesses to volatile objects have stabilized and no
subsequent accesses have occurred. Thus an implementation is free to reorder and combine
volatile accesses that occur between sequence points, but cannot do so for accesses across a
sequence point. The use of volatile does not allow you to violate the restriction on updating
objects multiple times between two sequence points.

Accesses to non-volatile objects are not ordered with respect to volatile accesses. You
cannot use a volatile object as a memory barrier to order a sequence of writes to non-volatile
memory. For instance:

int *ptr = something;

volatile int vobj;

*ptr = something;

vobj = 1;

Unless *ptr and vobj can be aliased, it is not guaranteed that the write to *ptr occurs by
the time the update of vobj happens. If you need this guarantee, you must use a stronger
memory barrier such as:

int *ptr = something;

volatile int vobj;

*ptr = something;

asm volatile ("" : : : "memory");

vobj = 1;

A scalar volatile object is read when it is accessed in a void context:
volatile int *src = somevalue;

*src;

Such expressions are rvalues, and GCC implements this as a read of the volatile object
being pointed to.

Assignments are also expressions and have an rvalue. However when assigning to a scalar
volatile, the volatile object is not reread, regardless of whether the assignment expression’s
rvalue is used or not. If the assignment’s rvalue is used, the value is that assigned to the
volatile object. For instance, there is no read of vobj in all the following cases:

int obj;

volatile int vobj;

vobj = something;

obj = vobj = something;

obj ? vobj = onething : vobj = anotherthing;

obj = (something, vobj = anotherthing);

If you need to read the volatile object after an assignment has occurred, you must use a
separate expression with an intervening sequence point.

As bit-fields are not individually addressable, volatile bit-fields may be implicitly read
when written to, or when adjacent bit-fields are accessed. Bit-field operations may be
optimized such that adjacent bit-fields are only partially accessed, if they straddle a storage
unit boundary. For these reasons it is unwise to use volatile bit-fields to access hardware.

Chapter 6: Extensions to the C Language Family 427

6.41 Assembler Instructions with C Expression Operands

In an assembler instruction using asm, you can specify the operands of the instruction using
C expressions. This means you need not guess which registers or memory locations contain
the data you want to use.

You must specify an assembler instruction template much like what appears in a machine
description, plus an operand constraint string for each operand.

For example, here is how to use the 68881’s fsinx instruction:
asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

Here angle is the C expression for the input operand while result is that of the output
operand. Each has ‘"f"’ as its operand constraint, saying that a floating-point register
is required. The ‘=’ in ‘=f’ indicates that the operand is an output; all output operands’
constraints must use ‘=’. The constraints use the same language used in the machine
description (see Section 6.42 [Constraints], page 434).

Each operand is described by an operand-constraint string followed by the C expression
in parentheses. A colon separates the assembler template from the first output operand and
another separates the last output operand from the first input, if any. Commas separate
the operands within each group. The total number of operands is currently limited to 30;
this limitation may be lifted in some future version of GCC.

If there are no output operands but there are input operands, you must place two con-
secutive colons surrounding the place where the output operands would go.

As of GCC version 3.1, it is also possible to specify input and output operands using
symbolic names which can be referenced within the assembler code. These names are
specified inside square brackets preceding the constraint string, and can be referenced inside
the assembler code using %[name] instead of a percentage sign followed by the operand
number. Using named operands the above example could look like:

asm ("fsinx %[angle],%[output]"

: [output] "=f" (result)

: [angle] "f" (angle));

Note that the symbolic operand names have no relation whatsoever to other C identifiers.
You may use any name you like, even those of existing C symbols, but you must ensure
that no two operands within the same assembler construct use the same symbolic name.

Output operand expressions must be lvalues; the compiler can check this. The input
operands need not be lvalues. The compiler cannot check whether the operands have data
types that are reasonable for the instruction being executed. It does not parse the assembler
instruction template and does not know what it means or even whether it is valid assembler
input. The extended asm feature is most often used for machine instructions the compiler
itself does not know exist. If the output expression cannot be directly addressed (for ex-
ample, it is a bit-field), your constraint must allow a register. In that case, GCC uses the
register as the output of the asm, and then stores that register into the output.

The ordinary output operands must be write-only; GCC assumes that the values in these
operands before the instruction are dead and need not be generated. Extended asm supports
input-output or read-write operands. Use the constraint character ‘+’ to indicate such an
operand and list it with the output operands.

You may, as an alternative, logically split its function into two separate operands, one
input operand and one write-only output operand. The connection between them is ex-

428 Using the GNU Compiler Collection (GCC)

pressed by constraints that say they need to be in the same location when the instruction
executes. You can use the same C expression for both operands, or different expressions.
For example, here we write the (fictitious) ‘combine’ instruction with bar as its read-only
source operand and foo as its read-write destination:

asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));

The constraint ‘"0"’ for operand 1 says that it must occupy the same location as operand 0.
A number in constraint is allowed only in an input operand and it must refer to an output
operand.

Only a number in the constraint can guarantee that one operand is in the same place as
another. The mere fact that foo is the value of both operands is not enough to guarantee
that they are in the same place in the generated assembler code. The following does not
work reliably:

asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));

Various optimizations or reloading could cause operands 0 and 1 to be in different regis-
ters; GCC knows no reason not to do so. For example, the compiler might find a copy of
the value of foo in one register and use it for operand 1, but generate the output operand
0 in a different register (copying it afterward to foo’s own address). Of course, since the
register for operand 1 is not even mentioned in the assembler code, the result will not work,
but GCC can’t tell that.

As of GCC version 3.1, one may write [name] instead of the operand number for a
matching constraint. For example:

asm ("cmoveq %1,%2,%[result]"

: [result] "=r"(result)

: "r" (test), "r"(new), "[result]"(old));

Sometimes you need to make an asm operand be a specific register, but there’s no matching
constraint letter for that register by itself. To force the operand into that register, use a local
variable for the operand and specify the register in the variable declaration. See Section 6.44
[Explicit Reg Vars], page 466. Then for the asm operand, use any register constraint letter
that matches the register:

register int *p1 asm ("r0") = ...;

register int *p2 asm ("r1") = ...;

register int *result asm ("r0");

asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));

In the above example, beware that a register that is call-clobbered by the target ABI will
be overwritten by any function call in the assignment, including library calls for arithmetic
operators. Also a register may be clobbered when generating some operations, like variable
shift, memory copy or memory move on x86. Assuming it is a call-clobbered register, this
may happen to r0 above by the assignment to p2. If you have to use such a register, use
temporary variables for expressions between the register assignment and use:

int t1 = ...;

register int *p1 asm ("r0") = ...;

register int *p2 asm ("r1") = t1;

register int *result asm ("r0");

asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));

Some instructions clobber specific hard registers. To describe this, write a third colon
after the input operands, followed by the names of the clobbered hard registers (given as
strings). Here is a realistic example for the VAX:

Chapter 6: Extensions to the C Language Family 429

asm volatile ("movc3 %0,%1,%2"

: /* no outputs */

: "g" (from), "g" (to), "g" (count)

: "r0", "r1", "r2", "r3", "r4", "r5");

You may not write a clobber description in a way that overlaps with an input or output
operand. For example, you may not have an operand describing a register class with one
member if you mention that register in the clobber list. Variables declared to live in specific
registers (see Section 6.44 [Explicit Reg Vars], page 466), and used as asm input or output
operands must have no part mentioned in the clobber description. There is no way for
you to specify that an input operand is modified without also specifying it as an output
operand. Note that if all the output operands you specify are for this purpose (and hence
unused), you then also need to specify volatile for the asm construct, as described below,
to prevent GCC from deleting the asm statement as unused.

If you refer to a particular hardware register from the assembler code, you probably have
to list the register after the third colon to tell the compiler the register’s value is modified.
In some assemblers, the register names begin with ‘%’; to produce one ‘%’ in the assembler
code, you must write ‘%%’ in the input.

If your assembler instruction can alter the condition code register, add ‘cc’ to the list
of clobbered registers. GCC on some machines represents the condition codes as a specific
hardware register; ‘cc’ serves to name this register. On other machines, the condition code
is handled differently, and specifying ‘cc’ has no effect. But it is valid no matter what the
machine.

If your assembler instructions access memory in an unpredictable fashion, add ‘memory’
to the list of clobbered registers. This causes GCC to not keep memory values cached in
registers across the assembler instruction and not optimize stores or loads to that memory.
You also should add the volatile keyword if the memory affected is not listed in the inputs
or outputs of the asm, as the ‘memory’ clobber does not count as a side-effect of the asm. If
you know how large the accessed memory is, you can add it as input or output but if this
is not known, you should add ‘memory’. As an example, if you access ten bytes of a string,
you can use a memory input like:

{"m"(({ struct { char x[10]; } *p = (void *)ptr ; *p; }))}.

Note that in the following example the memory input is necessary, otherwise GCC might
optimize the store to x away:

int foo ()

{

int x = 42;

int *y = &x;

int result;

asm ("magic stuff accessing an ’int’ pointed to by ’%1’"

: "=&d" (result) : "a" (y), "m" (*y));

return result;

}

You can put multiple assembler instructions together in a single asm template, separated
by the characters normally used in assembly code for the system. A combination that works
in most places is a newline to break the line, plus a tab character to move to the instruc-
tion field (written as ‘\n\t’). Sometimes semicolons can be used, if the assembler allows
semicolons as a line-breaking character. Note that some assembler dialects use semicolons
to start a comment. The input operands are guaranteed not to use any of the clobbered

430 Using the GNU Compiler Collection (GCC)

registers, and neither do the output operands’ addresses, so you can read and write the
clobbered registers as many times as you like. Here is an example of multiple instructions
in a template; it assumes the subroutine _foo accepts arguments in registers 9 and 10:

asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"

: /* no outputs */

: "g" (from), "g" (to)

: "r9", "r10");

Unless an output operand has the ‘&’ constraint modifier, GCC may allocate it in the same
register as an unrelated input operand, on the assumption the inputs are consumed before
the outputs are produced. This assumption may be false if the assembler code actually
consists of more than one instruction. In such a case, use ‘&’ for each output operand that
may not overlap an input. See Section 6.42.3 [Modifiers], page 437.

If you want to test the condition code produced by an assembler instruction, you must
include a branch and a label in the asm construct, as follows:

asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:"

: "g" (result)

: "g" (input));

This assumes your assembler supports local labels, as the GNU assembler and most Unix
assemblers do.

Speaking of labels, jumps from one asm to another are not supported. The compiler’s
optimizers do not know about these jumps, and therefore they cannot take account of them
when deciding how to optimize. See [Extended asm with goto], page 431.

Usually the most convenient way to use these asm instructions is to encapsulate them in
macros that look like functions. For example,

#define sin(x) \

({ double __value, __arg = (x); \

asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \

__value; })

Here the variable __arg is used to make sure that the instruction operates on a proper
double value, and to accept only those arguments x that can convert automatically to a
double.

Another way to make sure the instruction operates on the correct data type is to use
a cast in the asm. This is different from using a variable __arg in that it converts more
different types. For example, if the desired type is int, casting the argument to int accepts
a pointer with no complaint, while assigning the argument to an int variable named __arg
warns about using a pointer unless the caller explicitly casts it.

If an asm has output operands, GCC assumes for optimization purposes the instruction
has no side effects except to change the output operands. This does not mean instructions
with a side effect cannot be used, but you must be careful, because the compiler may
eliminate them if the output operands aren’t used, or move them out of loops, or replace
two with one if they constitute a common subexpression. Also, if your instruction does
have a side effect on a variable that otherwise appears not to change, the old value of the
variable may be reused later if it happens to be found in a register.

You can prevent an asm instruction from being deleted by writing the keyword volatile
after the asm. For example:

#define get_and_set_priority(new) \

Chapter 6: Extensions to the C Language Family 431

({ int __old; \

asm volatile ("get_and_set_priority %0, %1" \

: "=g" (__old) : "g" (new)); \

__old; })

The volatile keyword indicates that the instruction has important side-effects. GCC
does not delete a volatile asm if it is reachable. (The instruction can still be deleted if
GCC can prove that control flow never reaches the location of the instruction.) Note that
even a volatile asm instruction can be moved relative to other code, including across jump
instructions. For example, on many targets there is a system register that can be set to
control the rounding mode of floating-point operations. You might try setting it with a
volatile asm, like this PowerPC example:

asm volatile("mtfsf 255,%0" : : "f" (fpenv));

sum = x + y;

This does not work reliably, as the compiler may move the addition back before the volatile
asm. To make it work you need to add an artificial dependency to the asm referencing a
variable in the code you don’t want moved, for example:

asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv));

sum = x + y;

Similarly, you can’t expect a sequence of volatile asm instructions to remain perfectly
consecutive. If you want consecutive output, use a single asm. Also, GCC performs some
optimizations across a volatile asm instruction; GCC does not “forget everything” when it
encounters a volatile asm instruction the way some other compilers do.

An asm instruction without any output operands is treated identically to a volatile asm
instruction.

It is a natural idea to look for a way to give access to the condition code left by the
assembler instruction. However, when we attempted to implement this, we found no way
to make it work reliably. The problem is that output operands might need reloading, which
result in additional following “store” instructions. On most machines, these instructions
alter the condition code before there is time to test it. This problem doesn’t arise for
ordinary “test” and “compare” instructions because they don’t have any output operands.

For reasons similar to those described above, it is not possible to give an assembler
instruction access to the condition code left by previous instructions.

As of GCC version 4.5, asm goto may be used to have the assembly jump to one or more
C labels. In this form, a fifth section after the clobber list contains a list of all C labels
to which the assembly may jump. Each label operand is implicitly self-named. The asm is
also assumed to fall through to the next statement.

This form of asm is restricted to not have outputs. This is due to a internal restriction
in the compiler that control transfer instructions cannot have outputs. This restriction on
asm goto may be lifted in some future version of the compiler. In the meantime, asm goto
may include a memory clobber, and so leave outputs in memory.

int frob(int x)

{

int y;

asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"

: : "r"(x), "r"(&y) : "r5", "memory" : error);

return y;

error:

432 Using the GNU Compiler Collection (GCC)

return -1;

}

In this (inefficient) example, the frob instruction sets the carry bit to indicate an error.
The jc instruction detects this and branches to the error label. Finally, the output of the
frob instruction (%r5) is stored into the memory for variable y, which is later read by the
return statement.

void doit(void)

{

int i = 0;

asm goto ("mfsr %%r1, 123; jmp %%r1;"

".pushsection doit_table;"

".long %l0, %l1, %l2, %l3;"

".popsection"

: : : "r1" : label1, label2, label3, label4);

__builtin_unreachable ();

label1:

f1();

return;

label2:

f2();

return;

label3:

i = 1;

label4:

f3(i);

}

In this (also inefficient) example, the mfsr instruction reads an address from some out-of-
band machine register, and the following jmp instruction branches to that address. The
address read by the mfsr instruction is assumed to have been previously set via some
application-specific mechanism to be one of the four values stored in the doit_table section.
Finally, the asm is followed by a call to __builtin_unreachable to indicate that the asm
does not in fact fall through.

#define TRACE1(NUM) \

do { \

asm goto ("0: nop;" \

".pushsection trace_table;" \

".long 0b, %l0;" \

".popsection" \

: : : : trace#NUM); \

if (0) { trace#NUM: trace(); } \

} while (0)

#define TRACE TRACE1(__COUNTER__)

In this example (which in fact inspired the asm goto feature) we want on rare occasions to
call the trace function; on other occasions we’d like to keep the overhead to the absolute
minimum. The normal code path consists of a single nop instruction. However, we record
the address of this nop together with the address of a label that calls the trace function.
This allows the nop instruction to be patched at run time to be an unconditional branch to
the stored label. It is assumed that an optimizing compiler moves the labeled block out of
line, to optimize the fall through path from the asm.

If you are writing a header file that should be includable in ISO C programs, write
__asm__ instead of asm. See Section 6.45 [Alternate Keywords], page 468.

Chapter 6: Extensions to the C Language Family 433

6.41.1 Size of an asm

Some targets require that GCC track the size of each instruction used in order to generate
correct code. Because the final length of an asm is only known by the assembler, GCC
must make an estimate as to how big it will be. The estimate is formed by counting the
number of statements in the pattern of the asm and multiplying that by the length of
the longest instruction on that processor. Statements in the asm are identified by newline
characters and whatever statement separator characters are supported by the assembler; on
most processors this is the ‘;’ character.

Normally, GCC’s estimate is perfectly adequate to ensure that correct code is generated,
but it is possible to confuse the compiler if you use pseudo instructions or assembler macros
that expand into multiple real instructions or if you use assembler directives that expand
to more space in the object file than is needed for a single instruction. If this happens then
the assembler produces a diagnostic saying that a label is unreachable.

6.41.2 i386 floating-point asm operands

On i386 targets, there are several rules on the usage of stack-like registers in the operands
of an asm. These rules apply only to the operands that are stack-like registers:
1. Given a set of input registers that die in an asm, it is necessary to know which are

implicitly popped by the asm, and which must be explicitly popped by GCC.
An input register that is implicitly popped by the asm must be explicitly clobbered,
unless it is constrained to match an output operand.

2. For any input register that is implicitly popped by an asm, it is necessary to know how
to adjust the stack to compensate for the pop. If any non-popped input is closer to
the top of the reg-stack than the implicitly popped register, it would not be possible to
know what the stack looked like—it’s not clear how the rest of the stack “slides up”.
All implicitly popped input registers must be closer to the top of the reg-stack than
any input that is not implicitly popped.
It is possible that if an input dies in an asm, the compiler might use the input register
for an output reload. Consider this example:

asm ("foo" : "=t" (a) : "f" (b));

This code says that input b is not popped by the asm, and that the asm pushes a result
onto the reg-stack, i.e., the stack is one deeper after the asm than it was before. But,
it is possible that reload may think that it can use the same register for both the input
and the output.
To prevent this from happening, if any input operand uses the f constraint, all output
register constraints must use the & early-clobber modifier.
The example above would be correctly written as:

asm ("foo" : "=&t" (a) : "f" (b));

3. Some operands need to be in particular places on the stack. All output operands fall
in this category—GCC has no other way to know which registers the outputs appear
in unless you indicate this in the constraints.
Output operands must specifically indicate which register an output appears in after
an asm. =f is not allowed: the operand constraints must select a class with a single
register.

434 Using the GNU Compiler Collection (GCC)

4. Output operands may not be “inserted” between existing stack registers. Since no 387
opcode uses a read/write operand, all output operands are dead before the asm, and are
pushed by the asm. It makes no sense to push anywhere but the top of the reg-stack.
Output operands must start at the top of the reg-stack: output operands may not
“skip” a register.

5. Some asm statements may need extra stack space for internal calculations. This can
be guaranteed by clobbering stack registers unrelated to the inputs and outputs.

Here are a couple of reasonable asms to want to write. This asm takes one input, which
is internally popped, and produces two outputs.

asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));

This asm takes two inputs, which are popped by the fyl2xp1 opcode, and replaces them
with one output. The st(1) clobber is necessary for the compiler to know that fyl2xp1
pops both inputs.

asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");

6.42 Constraints for asm Operands

Here are specific details on what constraint letters you can use with asm operands. Con-
straints can say whether an operand may be in a register, and which kinds of register;
whether the operand can be a memory reference, and which kinds of address; whether the
operand may be an immediate constant, and which possible values it may have. Constraints
can also require two operands to match. Side-effects aren’t allowed in operands of inline
asm, unless ‘<’ or ‘>’ constraints are used, because there is no guarantee that the side-effects
will happen exactly once in an instruction that can update the addressing register.

6.42.1 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which describes one kind
of operand that is permitted. Here are the letters that are allowed:

whitespace
Whitespace characters are ignored and can be inserted at any position except
the first. This enables each alternative for different operands to be visually
aligned in the machine description even if they have different number of con-
straints and modifiers.

‘m’ A memory operand is allowed, with any kind of address that the machine sup-
ports in general. Note that the letter used for the general memory constraint
can be re-defined by a back end using the TARGET_MEM_CONSTRAINT macro.

‘o’ A memory operand is allowed, but only if the address is offsettable. This
means that adding a small integer (actually, the width in bytes of the operand,
as determined by its machine mode) may be added to the address and the result
is also a valid memory address.
For example, an address which is constant is offsettable; so is an address that
is the sum of a register and a constant (as long as a slightly larger constant
is also within the range of address-offsets supported by the machine); but an
autoincrement or autodecrement address is not offsettable. More complicated

Chapter 6: Extensions to the C Language Family 435

indirect/indexed addresses may or may not be offsettable depending on the
other addressing modes that the machine supports.
Note that in an output operand which can be matched by another operand,
the constraint letter ‘o’ is valid only when accompanied by both ‘<’ (if the
target machine has predecrement addressing) and ‘>’ (if the target machine has
preincrement addressing).

‘V’ A memory operand that is not offsettable. In other words, anything that would
fit the ‘m’ constraint but not the ‘o’ constraint.

‘<’ A memory operand with autodecrement addressing (either predecrement or
postdecrement) is allowed. In inline asm this constraint is only allowed if the
operand is used exactly once in an instruction that can handle the side-effects.
Not using an operand with ‘<’ in constraint string in the inline asm pattern
at all or using it in multiple instructions isn’t valid, because the side-effects
wouldn’t be performed or would be performed more than once. Furthermore,
on some targets the operand with ‘<’ in constraint string must be accompanied
by special instruction suffixes like %U0 instruction suffix on PowerPC or %P0 on
IA-64.

‘>’ A memory operand with autoincrement addressing (either preincrement or
postincrement) is allowed. In inline asm the same restrictions as for ‘<’ ap-
ply.

‘r’ A register operand is allowed provided that it is in a general register.

‘i’ An immediate integer operand (one with constant value) is allowed. This in-
cludes symbolic constants whose values will be known only at assembly time or
later.

‘n’ An immediate integer operand with a known numeric value is allowed. Many
systems cannot support assembly-time constants for operands less than a word
wide. Constraints for these operands should use ‘n’ rather than ‘i’.

‘I’, ‘J’, ‘K’, . . . ‘P’
Other letters in the range ‘I’ through ‘P’ may be defined in a machine-dependent
fashion to permit immediate integer operands with explicit integer values in
specified ranges. For example, on the 68000, ‘I’ is defined to stand for the
range of values 1 to 8. This is the range permitted as a shift count in the shift
instructions.

‘E’ An immediate floating operand (expression code const_double) is allowed, but
only if the target floating point format is the same as that of the host machine
(on which the compiler is running).

‘F’ An immediate floating operand (expression code const_double or
const_vector) is allowed.

‘G’, ‘H’ ‘G’ and ‘H’ may be defined in a machine-dependent fashion to permit immediate
floating operands in particular ranges of values.

‘s’ An immediate integer operand whose value is not an explicit integer is allowed.

436 Using the GNU Compiler Collection (GCC)

This might appear strange; if an insn allows a constant operand with a value
not known at compile time, it certainly must allow any known value. So why
use ‘s’ instead of ‘i’? Sometimes it allows better code to be generated.

For example, on the 68000 in a fullword instruction it is possible to use an
immediate operand; but if the immediate value is between −128 and 127, better
code results from loading the value into a register and using the register. This
is because the load into the register can be done with a ‘moveq’ instruction. We
arrange for this to happen by defining the letter ‘K’ to mean “any integer outside
the range −128 to 127”, and then specifying ‘Ks’ in the operand constraints.

‘g’ Any register, memory or immediate integer operand is allowed, except for reg-
isters that are not general registers.

‘X’ Any operand whatsoever is allowed.

‘0’, ‘1’, ‘2’, . . . ‘9’
An operand that matches the specified operand number is allowed. If a digit
is used together with letters within the same alternative, the digit should come
last.

This number is allowed to be more than a single digit. If multiple digits are en-
countered consecutively, they are interpreted as a single decimal integer. There
is scant chance for ambiguity, since to-date it has never been desirable that
‘10’ be interpreted as matching either operand 1 or operand 0. Should this be
desired, one can use multiple alternatives instead.

This is called a matching constraint and what it really means is that the assem-
bler has only a single operand that fills two roles which asm distinguishes. For
example, an add instruction uses two input operands and an output operand,
but on most CISC machines an add instruction really has only two operands,
one of them an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More precisely, the two
operands that match must include one input-only operand and one output-only
operand. Moreover, the digit must be a smaller number than the number of
the operand that uses it in the constraint.

‘p’ An operand that is a valid memory address is allowed. This is for “load address”
and “push address” instructions.

‘p’ in the constraint must be accompanied by address_operand as the predicate
in the match_operand. This predicate interprets the mode specified in the
match_operand as the mode of the memory reference for which the address
would be valid.

other-letters
Other letters can be defined in machine-dependent fashion to stand for par-
ticular classes of registers or other arbitrary operand types. ‘d’, ‘a’ and ‘f’
are defined on the 68000/68020 to stand for data, address and floating point
registers.

Chapter 6: Extensions to the C Language Family 437

6.42.2 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of possible operands. For ex-
ample, on the 68000, a logical-or instruction can combine register or an immediate value
into memory, or it can combine any kind of operand into a register; but it cannot combine
one memory location into another.

These constraints are represented as multiple alternatives. An alternative can be de-
scribed by a series of letters for each operand. The overall constraint for an operand is
made from the letters for this operand from the first alternative, a comma, the letters for
this operand from the second alternative, a comma, and so on until the last alternative.

If all the operands fit any one alternative, the instruction is valid. Otherwise, for each
alternative, the compiler counts how many instructions must be added to copy the operands
so that that alternative applies. The alternative requiring the least copying is chosen. If
two alternatives need the same amount of copying, the one that comes first is chosen. These
choices can be altered with the ‘?’ and ‘!’ characters:

? Disparage slightly the alternative that the ‘?’ appears in, as a choice when no
alternative applies exactly. The compiler regards this alternative as one unit
more costly for each ‘?’ that appears in it.

! Disparage severely the alternative that the ‘!’ appears in. This alternative can
still be used if it fits without reloading, but if reloading is needed, some other
alternative will be used.

6.42.3 Constraint Modifier Characters

Here are constraint modifier characters.

‘=’ Means that this operand is write-only for this instruction: the previous value
is discarded and replaced by output data.

‘+’ Means that this operand is both read and written by the instruction.
When the compiler fixes up the operands to satisfy the constraints, it needs
to know which operands are inputs to the instruction and which are outputs
from it. ‘=’ identifies an output; ‘+’ identifies an operand that is both input and
output; all other operands are assumed to be input only.
If you specify ‘=’ or ‘+’ in a constraint, you put it in the first character of the
constraint string.

‘&’ Means (in a particular alternative) that this operand is an earlyclobber operand,
which is modified before the instruction is finished using the input operands.
Therefore, this operand may not lie in a register that is used as an input operand
or as part of any memory address.
‘&’ applies only to the alternative in which it is written. In constraints with
multiple alternatives, sometimes one alternative requires ‘&’ while others do
not. See, for example, the ‘movdf’ insn of the 68000.
An input operand can be tied to an earlyclobber operand if its only use as an
input occurs before the early result is written. Adding alternatives of this form
often allows GCC to produce better code when only some of the inputs can be
affected by the earlyclobber. See, for example, the ‘mulsi3’ insn of the ARM.

438 Using the GNU Compiler Collection (GCC)

‘&’ does not obviate the need to write ‘=’.

‘%’ Declares the instruction to be commutative for this operand and the following
operand. This means that the compiler may interchange the two operands if
that is the cheapest way to make all operands fit the constraints. GCC can
only handle one commutative pair in an asm; if you use more, the compiler
may fail. Note that you need not use the modifier if the two alternatives are
strictly identical; this would only waste time in the reload pass. The modifier is
not operational after register allocation, so the result of define_peephole2 and
define_splits performed after reload cannot rely on ‘%’ to make the intended
insn match.

‘#’ Says that all following characters, up to the next comma, are to be ignored as
a constraint. They are significant only for choosing register preferences.

‘*’ Says that the following character should be ignored when choosing register
preferences. ‘*’ has no effect on the meaning of the constraint as a constraint,
and no effect on reloading. For LRA ‘*’ additionally disparages slightly the
alternative if the following character matches the operand.

6.42.4 Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint letters in asm arguments,
since they will convey meaning more readily to people reading your code. Failing that, use
the constraint letters that usually have very similar meanings across architectures. The
most commonly used constraints are ‘m’ and ‘r’ (for memory and general-purpose registers
respectively; see Section 6.42.1 [Simple Constraints], page 434), and ‘I’, usually the letter
indicating the most common immediate-constant format.

Each architecture defines additional constraints. These constraints are used by the com-
piler itself for instruction generation, as well as for asm statements; therefore, some of the
constraints are not particularly useful for asm. Here is a summary of some of the machine-
dependent constraints available on some particular machines; it includes both constraints
that are useful for asm and constraints that aren’t. The compiler source file mentioned in
the table heading for each architecture is the definitive reference for the meanings of that
architecture’s constraints.

AArch64 family—‘config/aarch64/constraints.md’
k The stack pointer register (SP)

w Floating point or SIMD vector register

I Integer constant that is valid as an immediate operand in an ADD
instruction

J Integer constant that is valid as an immediate operand in a SUB
instruction (once negated)

K Integer constant that can be used with a 32-bit logical instruction

L Integer constant that can be used with a 64-bit logical instruction

M Integer constant that is valid as an immediate operand in a 32-
bit MOV pseudo instruction. The MOV may be assembled to one of
several different machine instructions depending on the value

Chapter 6: Extensions to the C Language Family 439

N Integer constant that is valid as an immediate operand in a 64-bit
MOV pseudo instruction

S An absolute symbolic address or a label reference

Y Floating point constant zero

Z Integer constant zero

Ush The high part (bits 12 and upwards) of the pc-relative address of a
symbol within 4GB of the instruction

Q A memory address which uses a single base register with no offset

Ump A memory address suitable for a load/store pair instruction in SI,
DI, SF and DF modes

ARC —‘config/arc/constraints.md’
q Registers usable in ARCompact 16-bit instructions: r0-r3, r12-

r15. This constraint can only match when the ‘-mq’ option is in
effect.

e Registers usable as base-regs of memory addresses in ARCompact
16-bit memory instructions: r0-r3, r12-r15, sp. This constraint
can only match when the ‘-mq’ option is in effect.

D ARC FPX (dpfp) 64-bit registers. D0, D1.

I A signed 12-bit integer constant.

Cal constant for arithmetic/logical operations. This might be any con-
stant that can be put into a long immediate by the assmbler or
linker without involving a PIC relocation.

K A 3-bit unsigned integer constant.

L A 6-bit unsigned integer constant.

CnL One’s complement of a 6-bit unsigned integer constant.

CmL Two’s complement of a 6-bit unsigned integer constant.

M A 5-bit unsigned integer constant.

O A 7-bit unsigned integer constant.

P A 8-bit unsigned integer constant.

H Any const double value.

ARM family—‘config/arm/constraints.md’
w VFP floating-point register

G The floating-point constant 0.0

I Integer that is valid as an immediate operand in a data processing
instruction. That is, an integer in the range 0 to 255 rotated by a
multiple of 2

440 Using the GNU Compiler Collection (GCC)

J Integer in the range −4095 to 4095

K Integer that satisfies constraint ‘I’ when inverted (ones comple-
ment)

L Integer that satisfies constraint ‘I’ when negated (twos comple-
ment)

M Integer in the range 0 to 32

Q A memory reference where the exact address is in a single register
(‘‘m’’ is preferable for asm statements)

R An item in the constant pool

S A symbol in the text segment of the current file

Uv A memory reference suitable for VFP load/store insns
(reg+constant offset)

Uy A memory reference suitable for iWMMXt load/store instructions.

Uq A memory reference suitable for the ARMv4 ldrsb instruction.

AVR family—‘config/avr/constraints.md’
l Registers from r0 to r15

a Registers from r16 to r23

d Registers from r16 to r31

w Registers from r24 to r31. These registers can be used in ‘adiw’
command

e Pointer register (r26–r31)

b Base pointer register (r28–r31)

q Stack pointer register (SPH:SPL)

t Temporary register r0

x Register pair X (r27:r26)

y Register pair Y (r29:r28)

z Register pair Z (r31:r30)

I Constant greater than −1, less than 64

J Constant greater than −64, less than 1

K Constant integer 2

L Constant integer 0

M Constant that fits in 8 bits

N Constant integer −1

O Constant integer 8, 16, or 24

Chapter 6: Extensions to the C Language Family 441

P Constant integer 1

G A floating point constant 0.0

Q A memory address based on Y or Z pointer with displacement.

Epiphany—‘config/epiphany/constraints.md’
U16 An unsigned 16-bit constant.

K An unsigned 5-bit constant.

L A signed 11-bit constant.

Cm1 A signed 11-bit constant added to −1. Can only match when the
‘-m1reg-reg’ option is active.

Cl1 Left-shift of −1, i.e., a bit mask with a block of leading ones, the
rest being a block of trailing zeroes. Can only match when the
‘-m1reg-reg’ option is active.

Cr1 Right-shift of −1, i.e., a bit mask with a trailing block of ones, the
rest being zeroes. Or to put it another way, one less than a power
of two. Can only match when the ‘-m1reg-reg’ option is active.

Cal Constant for arithmetic/logical operations. This is like i, except
that for position independent code, no symbols / expressions need-
ing relocations are allowed.

Csy Symbolic constant for call/jump instruction.

Rcs The register class usable in short insns. This is a register class
constraint, and can thus drive register allocation. This constraint
won’t match unless ‘-mprefer-short-insn-regs’ is in effect.

Rsc The the register class of registers that can be used to hold a sibcall
call address. I.e., a caller-saved register.

Rct Core control register class.

Rgs The register group usable in short insns. This constraint does not
use a register class, so that it only passively matches suitable reg-
isters, and doesn’t drive register allocation.

Rra Matches the return address if it can be replaced with the link reg-
ister.

Rcc Matches the integer condition code register.

Sra Matches the return address if it is in a stack slot.

Cfm Matches control register values to switch fp mode, which are en-
capsulated in UNSPEC_FP_MODE.

CR16 Architecture—‘config/cr16/cr16.h’
b Registers from r0 to r14 (registers without stack pointer)

t Register from r0 to r11 (all 16-bit registers)

442 Using the GNU Compiler Collection (GCC)

p Register from r12 to r15 (all 32-bit registers)

I Signed constant that fits in 4 bits

J Signed constant that fits in 5 bits

K Signed constant that fits in 6 bits

L Unsigned constant that fits in 4 bits

M Signed constant that fits in 32 bits

N Check for 64 bits wide constants for add/sub instructions

G Floating point constant that is legal for store immediate

Hewlett-Packard PA-RISC—‘config/pa/pa.h’
a General register 1

f Floating point register

q Shift amount register

x Floating point register (deprecated)

y Upper floating point register (32-bit), floating point register (64-
bit)

Z Any register

I Signed 11-bit integer constant

J Signed 14-bit integer constant

K Integer constant that can be deposited with a zdepi instruction

L Signed 5-bit integer constant

M Integer constant 0

N Integer constant that can be loaded with a ldil instruction

O Integer constant whose value plus one is a power of 2

P Integer constant that can be used for and operations in depi and
extru instructions

S Integer constant 31

U Integer constant 63

G Floating-point constant 0.0

A A lo_sum data-linkage-table memory operand

Q A memory operand that can be used as the destination operand of
an integer store instruction

R A scaled or unscaled indexed memory operand

T A memory operand for floating-point loads and stores

W A register indirect memory operand

Chapter 6: Extensions to the C Language Family 443

picoChip family—‘picochip.h’
k Stack register.

f Pointer register. A register which can be used to access memory
without supplying an offset. Any other register can be used to
access memory, but will need a constant offset. In the case of the
offset being zero, it is more efficient to use a pointer register, since
this reduces code size.

t A twin register. A register which may be paired with an adjacent
register to create a 32-bit register.

a Any absolute memory address (e.g., symbolic constant, symbolic
constant + offset).

I 4-bit signed integer.

J 4-bit unsigned integer.

K 8-bit signed integer.

M Any constant whose absolute value is no greater than 4-bits.

N 10-bit signed integer

O 16-bit signed integer.

PowerPC and IBM RS6000—‘config/rs6000/constraints.md’
b Address base register

d Floating point register (containing 64-bit value)

f Floating point register (containing 32-bit value)

v Altivec vector register

wa Any VSX register if the -mvsx option was used or NO REGS.

wd VSX vector register to hold vector double data or NO REGS.

wf VSX vector register to hold vector float data or NO REGS.

wg If ‘-mmfpgpr’ was used, a floating point register or NO REGS.

wl Floating point register if the LFIWAX instruction is enabled or
NO REGS.

wm VSX register if direct move instructions are enabled, or NO REGS.

wn No register (NO REGS).

wr General purpose register if 64-bit instructions are enabled or
NO REGS.

ws VSX vector register to hold scalar double values or NO REGS.

wt VSX vector register to hold 128 bit integer or NO REGS.

wu Altivec register to use for float/32-bit int loads/stores or
NO REGS.

444 Using the GNU Compiler Collection (GCC)

wv Altivec register to use for double loads/stores or NO REGS.

ww FP or VSX register to perform float operations under ‘-mvsx’ or
NO REGS.

wx Floating point register if the STFIWX instruction is enabled or
NO REGS.

wy VSX vector register to hold scalar float values or NO REGS.

wz Floating point register if the LFIWZX instruction is enabled or
NO REGS.

wD Int constant that is the element number of the 64-bit scalar in a
vector.

wQ A memory address that will work with the lq and stq instructions.

h ‘MQ’, ‘CTR’, or ‘LINK’ register

q ‘MQ’ register

c ‘CTR’ register

l ‘LINK’ register

x ‘CR’ register (condition register) number 0

y ‘CR’ register (condition register)

z ‘XER[CA]’ carry bit (part of the XER register)

I Signed 16-bit constant

J Unsigned 16-bit constant shifted left 16 bits (use ‘L’ instead for
SImode constants)

K Unsigned 16-bit constant

L Signed 16-bit constant shifted left 16 bits

M Constant larger than 31

N Exact power of 2

O Zero

P Constant whose negation is a signed 16-bit constant

G Floating point constant that can be loaded into a register with one
instruction per word

H Integer/Floating point constant that can be loaded into a register
using three instructions

m Memory operand. Normally, m does not allow addresses that update
the base register. If ‘<’ or ‘>’ constraint is also used, they are
allowed and therefore on PowerPC targets in that case it is only safe
to use ‘m<>’ in an asm statement if that asm statement accesses the
operand exactly once. The asm statement must also use ‘%U<opno>’
as a placeholder for the “update” flag in the corresponding load or
store instruction. For example:

Chapter 6: Extensions to the C Language Family 445

asm ("st%U0 %1,%0" : "=m<>" (mem) : "r" (val));

is correct but:
asm ("st %1,%0" : "=m<>" (mem) : "r" (val));

is not.

es A “stable” memory operand; that is, one which does not include
any automodification of the base register. This used to be useful
when ‘m’ allowed automodification of the base register, but as those
are now only allowed when ‘<’ or ‘>’ is used, ‘es’ is basically the
same as ‘m’ without ‘<’ and ‘>’.

Q Memory operand that is an offset from a register (it is usually better
to use ‘m’ or ‘es’ in asm statements)

Z Memory operand that is an indexed or indirect from a register (it
is usually better to use ‘m’ or ‘es’ in asm statements)

R AIX TOC entry

a Address operand that is an indexed or indirect from a register (‘p’
is preferable for asm statements)

S Constant suitable as a 64-bit mask operand

T Constant suitable as a 32-bit mask operand

U System V Release 4 small data area reference

t AND masks that can be performed by two rldic{l, r} instructions

W Vector constant that does not require memory

j Vector constant that is all zeros.

Intel 386—‘config/i386/constraints.md’
R Legacy register—the eight integer registers available on all i386

processors (a, b, c, d, si, di, bp, sp).

q Any register accessible as rl. In 32-bit mode, a, b, c, and d; in
64-bit mode, any integer register.

Q Any register accessible as rh: a, b, c, and d.

a The a register.

b The b register.

c The c register.

d The d register.

S The si register.

D The di register.

A The a and d registers. This class is used for instructions that re-
turn double word results in the ax:dx register pair. Single word
values will be allocated either in ax or dx. For example on i386 the
following implements rdtsc:

446 Using the GNU Compiler Collection (GCC)

unsigned long long rdtsc (void)

{

unsigned long long tick;

__asm__ __volatile__("rdtsc":"=A"(tick));

return tick;

}

This is not correct on x86 64 as it would allocate tick in either ax
or dx. You have to use the following variant instead:

unsigned long long rdtsc (void)

{

unsigned int tickl, tickh;

__asm__ __volatile__("rdtsc":"=a"(tickl),"=d"(tickh));

return ((unsigned long long)tickh << 32)|tickl;

}

f Any 80387 floating-point (stack) register.

t Top of 80387 floating-point stack (%st(0)).

u Second from top of 80387 floating-point stack (%st(1)).

y Any MMX register.

x Any SSE register.

Yz First SSE register (%xmm0).

I Integer constant in the range 0 . . . 31, for 32-bit shifts.

J Integer constant in the range 0 . . . 63, for 64-bit shifts.

K Signed 8-bit integer constant.

L 0xFF or 0xFFFF, for andsi as a zero-extending move.

M 0, 1, 2, or 3 (shifts for the lea instruction).

N Unsigned 8-bit integer constant (for in and out instructions).

G Standard 80387 floating point constant.

C Standard SSE floating point constant.

e 32-bit signed integer constant, or a symbolic reference known to
fit that range (for immediate operands in sign-extending x86-64
instructions).

Z 32-bit unsigned integer constant, or a symbolic reference known to
fit that range (for immediate operands in zero-extending x86-64
instructions).

Intel IA-64—‘config/ia64/ia64.h’
a General register r0 to r3 for addl instruction

b Branch register

c Predicate register (‘c’ as in “conditional”)

d Application register residing in M-unit

Chapter 6: Extensions to the C Language Family 447

e Application register residing in I-unit

f Floating-point register

m Memory operand. If used together with ‘<’ or ‘>’, the operand can
have postincrement and postdecrement which require printing with
‘%Pn’ on IA-64.

G Floating-point constant 0.0 or 1.0

I 14-bit signed integer constant

J 22-bit signed integer constant

K 8-bit signed integer constant for logical instructions

L 8-bit adjusted signed integer constant for compare pseudo-ops

M 6-bit unsigned integer constant for shift counts

N 9-bit signed integer constant for load and store postincrements

O The constant zero

P 0 or −1 for dep instruction

Q Non-volatile memory for floating-point loads and stores

R Integer constant in the range 1 to 4 for shladd instruction

S Memory operand except postincrement and postdecrement. This
is now roughly the same as ‘m’ when not used together with ‘<’ or
‘>’.

FRV—‘config/frv/frv.h’
a Register in the class ACC_REGS (acc0 to acc7).

b Register in the class EVEN_ACC_REGS (acc0 to acc7).

c Register in the class CC_REGS (fcc0 to fcc3 and icc0 to icc3).

d Register in the class GPR_REGS (gr0 to gr63).

e Register in the class EVEN_REGS (gr0 to gr63). Odd registers are
excluded not in the class but through the use of a machine mode
larger than 4 bytes.

f Register in the class FPR_REGS (fr0 to fr63).

h Register in the class FEVEN_REGS (fr0 to fr63). Odd registers are
excluded not in the class but through the use of a machine mode
larger than 4 bytes.

l Register in the class LR_REG (the lr register).

q Register in the class QUAD_REGS (gr2 to gr63). Register numbers
not divisible by 4 are excluded not in the class but through the use
of a machine mode larger than 8 bytes.

t Register in the class ICC_REGS (icc0 to icc3).

448 Using the GNU Compiler Collection (GCC)

u Register in the class FCC_REGS (fcc0 to fcc3).

v Register in the class ICR_REGS (cc4 to cc7).

w Register in the class FCR_REGS (cc0 to cc3).

x Register in the class QUAD_FPR_REGS (fr0 to fr63). Register num-
bers not divisible by 4 are excluded not in the class but through
the use of a machine mode larger than 8 bytes.

z Register in the class SPR_REGS (lcr and lr).

A Register in the class QUAD_ACC_REGS (acc0 to acc7).

B Register in the class ACCG_REGS (accg0 to accg7).

C Register in the class CR_REGS (cc0 to cc7).

G Floating point constant zero

I 6-bit signed integer constant

J 10-bit signed integer constant

L 16-bit signed integer constant

M 16-bit unsigned integer constant

N 12-bit signed integer constant that is negative—i.e. in the range of
−2048 to −1

O Constant zero

P 12-bit signed integer constant that is greater than zero—i.e. in the
range of 1 to 2047.

Blackfin family—‘config/bfin/constraints.md’
a P register

d D register

z A call clobbered P register.

qn A single register. If n is in the range 0 to 7, the corresponding D
register. If it is A, then the register P0.

D Even-numbered D register

W Odd-numbered D register

e Accumulator register.

A Even-numbered accumulator register.

B Odd-numbered accumulator register.

b I register

v B register

f M register

Chapter 6: Extensions to the C Language Family 449

c Registers used for circular buffering, i.e. I, B, or L registers.

C The CC register.

t LT0 or LT1.

k LC0 or LC1.

u LB0 or LB1.

x Any D, P, B, M, I or L register.

y Additional registers typically used only in prologues and epilogues:
RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.

w Any register except accumulators or CC.

Ksh Signed 16 bit integer (in the range −32768 to 32767)

Kuh Unsigned 16 bit integer (in the range 0 to 65535)

Ks7 Signed 7 bit integer (in the range −64 to 63)

Ku7 Unsigned 7 bit integer (in the range 0 to 127)

Ku5 Unsigned 5 bit integer (in the range 0 to 31)

Ks4 Signed 4 bit integer (in the range −8 to 7)

Ks3 Signed 3 bit integer (in the range −3 to 4)

Ku3 Unsigned 3 bit integer (in the range 0 to 7)

Pn Constant n, where n is a single-digit constant in the range 0 to 4.

PA An integer equal to one of the MACFLAG XXX constants that is
suitable for use with either accumulator.

PB An integer equal to one of the MACFLAG XXX constants that is
suitable for use only with accumulator A1.

M1 Constant 255.

M2 Constant 65535.

J An integer constant with exactly a single bit set.

L An integer constant with all bits set except exactly one.

H

Q Any SYMBOL REF.

M32C—‘config/m32c/m32c.c’
Rsp
Rfb
Rsb ‘$sp’, ‘$fb’, ‘$sb’.

Rcr Any control register, when they’re 16 bits wide (nothing if control
registers are 24 bits wide)

Rcl Any control register, when they’re 24 bits wide.

450 Using the GNU Compiler Collection (GCC)

R0w
R1w
R2w
R3w $r0, $r1, $r2, $r3.

R02 $r0 or $r2, or $r2r0 for 32 bit values.

R13 $r1 or $r3, or $r3r1 for 32 bit values.

Rdi A register that can hold a 64 bit value.

Rhl $r0 or $r1 (registers with addressable high/low bytes)

R23 $r2 or $r3

Raa Address registers

Raw Address registers when they’re 16 bits wide.

Ral Address registers when they’re 24 bits wide.

Rqi Registers that can hold QI values.

Rad Registers that can be used with displacements ($a0, $a1, $sb).

Rsi Registers that can hold 32 bit values.

Rhi Registers that can hold 16 bit values.

Rhc Registers chat can hold 16 bit values, including all control registers.

Rra $r0 through R1, plus $a0 and $a1.

Rfl The flags register.

Rmm The memory-based pseudo-registers $mem0 through $mem15.

Rpi Registers that can hold pointers (16 bit registers for r8c, m16c; 24
bit registers for m32cm, m32c).

Rpa Matches multiple registers in a PARALLEL to form a larger regis-
ter. Used to match function return values.

Is3 −8 . . . 7

IS1 −128 . . . 127

IS2 −32768 . . . 32767

IU2 0 . . . 65535

In4 −8 . . . −1 or 1 . . . 8

In5 −16 . . . −1 or 1 . . . 16

In6 −32 . . . −1 or 1 . . . 32

IM2 −65536 . . . −1

Ilb An 8 bit value with exactly one bit set.

Ilw A 16 bit value with exactly one bit set.

Chapter 6: Extensions to the C Language Family 451

Sd The common src/dest memory addressing modes.

Sa Memory addressed using $a0 or $a1.

Si Memory addressed with immediate addresses.

Ss Memory addressed using the stack pointer ($sp).

Sf Memory addressed using the frame base register ($fb).

Ss Memory addressed using the small base register ($sb).

S1 $r1h

MeP—‘config/mep/constraints.md’
a The $sp register.

b The $tp register.

c Any control register.

d Either the $hi or the $lo register.

em Coprocessor registers that can be directly loaded ($c0-$c15).

ex Coprocessor registers that can be moved to each other.

er Coprocessor registers that can be moved to core registers.

h The $hi register.

j The $rpc register.

l The $lo register.

t Registers which can be used in $tp-relative addressing.

v The $gp register.

x The coprocessor registers.

y The coprocessor control registers.

z The $0 register.

A User-defined register set A.

B User-defined register set B.

C User-defined register set C.

D User-defined register set D.

I Offsets for $gp-rel addressing.

J Constants that can be used directly with boolean insns.

K Constants that can be moved directly to registers.

L Small constants that can be added to registers.

M Long shift counts.

N Small constants that can be compared to registers.

452 Using the GNU Compiler Collection (GCC)

O Constants that can be loaded into the top half of registers.

S Signed 8-bit immediates.

T Symbols encoded for $tp-rel or $gp-rel addressing.

U Non-constant addresses for loading/saving coprocessor registers.

W The top half of a symbol’s value.

Y A register indirect address without offset.

Z Symbolic references to the control bus.

MicroBlaze—‘config/microblaze/constraints.md’
d A general register (r0 to r31).

z A status register (rmsr, $fcc1 to $fcc7).

MIPS—‘config/mips/constraints.md’
d An address register. This is equivalent to r unless generating

MIPS16 code.

f A floating-point register (if available).

h Formerly the hi register. This constraint is no longer supported.

l The lo register. Use this register to store values that are no bigger
than a word.

x The concatenated hi and lo registers. Use this register to store
doubleword values.

c A register suitable for use in an indirect jump. This will always be
$25 for ‘-mabicalls’.

v Register $3. Do not use this constraint in new code; it is retained
only for compatibility with glibc.

y Equivalent to r; retained for backwards compatibility.

z A floating-point condition code register.

I A signed 16-bit constant (for arithmetic instructions).

J Integer zero.

K An unsigned 16-bit constant (for logic instructions).

L A signed 32-bit constant in which the lower 16 bits are zero. Such
constants can be loaded using lui.

M A constant that cannot be loaded using lui, addiu or ori.

N A constant in the range −65535 to −1 (inclusive).

O A signed 15-bit constant.

P A constant in the range 1 to 65535 (inclusive).

G Floating-point zero.

Chapter 6: Extensions to the C Language Family 453

R An address that can be used in a non-macro load or store.

ZC When compiling microMIPS code, this constraint matches a mem-
ory operand whose address is formed from a base register and a
12-bit offset. These operands can be used for microMIPS instruc-
tions such as ll and sc. When not compiling for microMIPS code,
ZC is equivalent to R.

ZD When compiling microMIPS code, this constraint matches an ad-
dress operand that is formed from a base register and a 12-bit
offset. These operands can be used for microMIPS instructions
such as prefetch. When not compiling for microMIPS code, ZD is
equivalent to p.

Motorola 680x0—‘config/m68k/constraints.md’
a Address register

d Data register

f 68881 floating-point register, if available

I Integer in the range 1 to 8

J 16-bit signed number

K Signed number whose magnitude is greater than 0x80

L Integer in the range −8 to −1

M Signed number whose magnitude is greater than 0x100

N Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate

O 16 (for rotate using swap)

P Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate

R Numbers that mov3q can handle

G Floating point constant that is not a 68881 constant

S Operands that satisfy ’m’ when -mpcrel is in effect

T Operands that satisfy ’s’ when -mpcrel is not in effect

Q Address register indirect addressing mode

U Register offset addressing

W const call operand

Cs symbol ref or const

Ci const int

C0 const int 0

Cj Range of signed numbers that don’t fit in 16 bits

Cmvq Integers valid for mvq

454 Using the GNU Compiler Collection (GCC)

Capsw Integers valid for a moveq followed by a swap

Cmvz Integers valid for mvz

Cmvs Integers valid for mvs

Ap push operand

Ac Non-register operands allowed in clr

Moxie—‘config/moxie/constraints.md’
A An absolute address

B An offset address

W A register indirect memory operand

I A constant in the range of 0 to 255.

N A constant in the range of 0 to −255.

MSP430–‘config/msp430/constraints.md’
R12 Register R12.

R13 Register R13.

K Integer constant 1.

L Integer constant -1^20..1^19.

M Integer constant 1-4.

Ya Memory references which do not require an extended MOVX in-
struction.

Yl Memory reference, labels only.

Ys Memory reference, stack only.

NDS32—‘config/nds32/constraints.md’
w LOW register class $r0 to $r7 constraint for V3/V3M ISA.

l LOW register class $r0 to $r7.

d MIDDLE register class $r0 to $r11, $r16 to $r19.

h HIGH register class $r12 to $r14, $r20 to $r31.

t Temporary assist register $ta (i.e. $r15).

k Stack register $sp.

Iu03 Unsigned immediate 3-bit value.

In03 Negative immediate 3-bit value in the range of −7–0.

Iu04 Unsigned immediate 4-bit value.

Is05 Signed immediate 5-bit value.

Iu05 Unsigned immediate 5-bit value.

Chapter 6: Extensions to the C Language Family 455

In05 Negative immediate 5-bit value in the range of −31–0.

Ip05 Unsigned immediate 5-bit value for movpi45 instruction with range
16–47.

Iu06 Unsigned immediate 6-bit value constraint for addri36.sp instruc-
tion.

Iu08 Unsigned immediate 8-bit value.

Iu09 Unsigned immediate 9-bit value.

Is10 Signed immediate 10-bit value.

Is11 Signed immediate 11-bit value.

Is15 Signed immediate 15-bit value.

Iu15 Unsigned immediate 15-bit value.

Ic15 A constant which is not in the range of imm15u but ok for bclr
instruction.

Ie15 A constant which is not in the range of imm15u but ok for bset
instruction.

It15 A constant which is not in the range of imm15u but ok for btgl
instruction.

Ii15 A constant whose compliment value is in the range of imm15u and
ok for bitci instruction.

Is16 Signed immediate 16-bit value.

Is17 Signed immediate 17-bit value.

Is19 Signed immediate 19-bit value.

Is20 Signed immediate 20-bit value.

Ihig The immediate value that can be simply set high 20-bit.

Izeb The immediate value 0xff.

Izeh The immediate value 0xffff.

Ixls The immediate value 0x01.

Ix11 The immediate value 0x7ff.

Ibms The immediate value with power of 2.

Ifex The immediate value with power of 2 minus 1.

U33 Memory constraint for 333 format.

U45 Memory constraint for 45 format.

U37 Memory constraint for 37 format.

Nios II family—‘config/nios2/constraints.md’
I Integer that is valid as an immediate operand in an instruction

taking a signed 16-bit number. Range −32768 to 32767.

456 Using the GNU Compiler Collection (GCC)

J Integer that is valid as an immediate operand in an instruction
taking an unsigned 16-bit number. Range 0 to 65535.

K Integer that is valid as an immediate operand in an instruction
taking only the upper 16-bits of a 32-bit number. Range 32-bit
numbers with the lower 16-bits being 0.

L Integer that is valid as an immediate operand for a shift instruction.
Range 0 to 31.

M Integer that is valid as an immediate operand for only the value 0.
Can be used in conjunction with the format modifier z to use r0
instead of 0 in the assembly output.

N Integer that is valid as an immediate operand for a custom instruc-
tion opcode. Range 0 to 255.

S Matches immediates which are addresses in the small data section
and therefore can be added to gp as a 16-bit immediate to re-create
their 32-bit value.

PDP-11—‘config/pdp11/constraints.md’
a Floating point registers AC0 through AC3. These can be loaded

from/to memory with a single instruction.

d Odd numbered general registers (R1, R3, R5). These are used for
16-bit multiply operations.

f Any of the floating point registers (AC0 through AC5).

G Floating point constant 0.

I An integer constant that fits in 16 bits.

J An integer constant whose low order 16 bits are zero.

K An integer constant that does not meet the constraints for codes
‘I’ or ‘J’.

L The integer constant 1.

M The integer constant −1.

N The integer constant 0.

O Integer constants −4 through −1 and 1 through 4; shifts by these
amounts are handled as multiple single-bit shifts rather than a sin-
gle variable-length shift.

Q A memory reference which requires an additional word (address or
offset) after the opcode.

R A memory reference that is encoded within the opcode.

RL78—‘config/rl78/constraints.md’
Int3 An integer constant in the range 1 . . . 7.

Int8 An integer constant in the range 0 . . . 255.

Chapter 6: Extensions to the C Language Family 457

J An integer constant in the range −255 . . . 0

K The integer constant 1.

L The integer constant -1.

M The integer constant 0.

N The integer constant 2.

O The integer constant -2.

P An integer constant in the range 1 . . . 15.

Qbi The built-in compare types–eq, ne, gtu, ltu, geu, and leu.

Qsc The synthetic compare types–gt, lt, ge, and le.

Wab A memory reference with an absolute address.

Wbc A memory reference using BC as a base register, with an optional
offset.

Wca A memory reference using AX, BC, DE, or HL for the address, for
calls.

Wcv A memory reference using any 16-bit register pair for the address,
for calls.

Wd2 A memory reference using DE as a base register, with an optional
offset.

Wde A memory reference using DE as a base register, without any offset.

Wfr Any memory reference to an address in the far address space.

Wh1 A memory reference using HL as a base register, with an optional
one-byte offset.

Whb A memory reference using HL as a base register, with B or C as the
index register.

Whl A memory reference using HL as a base register, without any offset.

Ws1 A memory reference using SP as a base register, with an optional
one-byte offset.

Y Any memory reference to an address in the near address space.

A The AX register.

B The BC register.

D The DE register.

R A through L registers.

S The SP register.

T The HL register.

Z08W The 16-bit R8 register.

458 Using the GNU Compiler Collection (GCC)

Z10W The 16-bit R10 register.

Zint The registers reserved for interrupts (R24 to R31).

a The A register.

b The B register.

c The C register.

d The D register.

e The E register.

h The H register.

l The L register.

v The virtual registers.

w The PSW register.

x The X register.

RX—‘config/rx/constraints.md’
Q An address which does not involve register indirect addressing or

pre/post increment/decrement addressing.

Symbol A symbol reference.

Int08 A constant in the range −256 to 255, inclusive.

Sint08 A constant in the range −128 to 127, inclusive.

Sint16 A constant in the range −32768 to 32767, inclusive.

Sint24 A constant in the range −8388608 to 8388607, inclusive.

Uint04 A constant in the range 0 to 15, inclusive.

SPARC—‘config/sparc/sparc.h’
f Floating-point register on the SPARC-V8 architecture and lower

floating-point register on the SPARC-V9 architecture.

e Floating-point register. It is equivalent to ‘f’ on the SPARC-V8
architecture and contains both lower and upper floating-point reg-
isters on the SPARC-V9 architecture.

c Floating-point condition code register.

d Lower floating-point register. It is only valid on the SPARC-V9
architecture when the Visual Instruction Set is available.

b Floating-point register. It is only valid on the SPARC-V9 architec-
ture when the Visual Instruction Set is available.

h 64-bit global or out register for the SPARC-V8+ architecture.

C The constant all-ones, for floating-point.

A Signed 5-bit constant

Chapter 6: Extensions to the C Language Family 459

D A vector constant

I Signed 13-bit constant

J Zero

K 32-bit constant with the low 12 bits clear (a constant that can be
loaded with the sethi instruction)

L A constant in the range supported by movcc instructions (11-bit
signed immediate)

M A constant in the range supported by movrcc instructions (10-bit
signed immediate)

N Same as ‘K’, except that it verifies that bits that are not in the
lower 32-bit range are all zero. Must be used instead of ‘K’ for
modes wider than SImode

O The constant 4096

G Floating-point zero

H Signed 13-bit constant, sign-extended to 32 or 64 bits

P The constant -1

Q Floating-point constant whose integral representation can be moved
into an integer register using a single sethi instruction

R Floating-point constant whose integral representation can be moved
into an integer register using a single mov instruction

S Floating-point constant whose integral representation can be moved
into an integer register using a high/lo sum instruction sequence

T Memory address aligned to an 8-byte boundary

U Even register

W Memory address for ‘e’ constraint registers

w Memory address with only a base register

Y Vector zero

SPU—‘config/spu/spu.h’
a An immediate which can be loaded with the il/ila/ilh/ilhu instruc-

tions. const int is treated as a 64 bit value.

c An immediate for and/xor/or instructions. const int is treated as
a 64 bit value.

d An immediate for the iohl instruction. const int is treated as a 64
bit value.

f An immediate which can be loaded with fsmbi.

A An immediate which can be loaded with the il/ila/ilh/ilhu instruc-
tions. const int is treated as a 32 bit value.

460 Using the GNU Compiler Collection (GCC)

B An immediate for most arithmetic instructions. const int is treated
as a 32 bit value.

C An immediate for and/xor/or instructions. const int is treated as
a 32 bit value.

D An immediate for the iohl instruction. const int is treated as a 32
bit value.

I A constant in the range [−64, 63] for shift/rotate instructions.

J An unsigned 7-bit constant for conversion/nop/channel instruc-
tions.

K A signed 10-bit constant for most arithmetic instructions.

M A signed 16 bit immediate for stop.

N An unsigned 16-bit constant for iohl and fsmbi.

O An unsigned 7-bit constant whose 3 least significant bits are 0.

P An unsigned 3-bit constant for 16-byte rotates and shifts

R Call operand, reg, for indirect calls

S Call operand, symbol, for relative calls.

T Call operand, const int, for absolute calls.

U An immediate which can be loaded with the il/ila/ilh/ilhu instruc-
tions. const int is sign extended to 128 bit.

W An immediate for shift and rotate instructions. const int is treated
as a 32 bit value.

Y An immediate for and/xor/or instructions. const int is sign ex-
tended as a 128 bit.

Z An immediate for the iohl instruction. const int is sign extended
to 128 bit.

S/390 and zSeries—‘config/s390/s390.h’
a Address register (general purpose register except r0)

c Condition code register

d Data register (arbitrary general purpose register)

f Floating-point register

I Unsigned 8-bit constant (0–255)

J Unsigned 12-bit constant (0–4095)

K Signed 16-bit constant (−32768–32767)

L Value appropriate as displacement.

(0..4095)
for short displacement

Chapter 6: Extensions to the C Language Family 461

(−524288..524287)
for long displacement

M Constant integer with a value of 0x7fffffff.

N Multiple letter constraint followed by 4 parameter letters.

0..9: number of the part counting from most to least signif-
icant

H,Q: mode of the part

D,S,H: mode of the containing operand

0,F: value of the other parts (F—all bits set)

The constraint matches if the specified part of a constant has a
value different from its other parts.

Q Memory reference without index register and with short displace-
ment.

R Memory reference with index register and short displacement.

S Memory reference without index register but with long displace-
ment.

T Memory reference with index register and long displacement.

U Pointer with short displacement.

W Pointer with long displacement.

Y Shift count operand.

Score family—‘config/score/score.h’
d Registers from r0 to r32.

e Registers from r0 to r16.

t r8—r11 or r22—r27 registers.

h hi register.

l lo register.

x hi + lo register.

q cnt register.

y lcb register.

z scb register.

a cnt + lcb + scb register.

c cr0—cr15 register.

b cp1 registers.

f cp2 registers.

462 Using the GNU Compiler Collection (GCC)

i cp3 registers.

j cp1 + cp2 + cp3 registers.

I High 16-bit constant (32-bit constant with 16 LSBs zero).

J Unsigned 5 bit integer (in the range 0 to 31).

K Unsigned 16 bit integer (in the range 0 to 65535).

L Signed 16 bit integer (in the range −32768 to 32767).

M Unsigned 14 bit integer (in the range 0 to 16383).

N Signed 14 bit integer (in the range −8192 to 8191).

Z Any SYMBOL REF.

Xstormy16—‘config/stormy16/stormy16.h’
a Register r0.

b Register r1.

c Register r2.

d Register r8.

e Registers r0 through r7.

t Registers r0 and r1.

y The carry register.

z Registers r8 and r9.

I A constant between 0 and 3 inclusive.

J A constant that has exactly one bit set.

K A constant that has exactly one bit clear.

L A constant between 0 and 255 inclusive.

M A constant between −255 and 0 inclusive.

N A constant between −3 and 0 inclusive.

O A constant between 1 and 4 inclusive.

P A constant between −4 and −1 inclusive.

Q A memory reference that is a stack push.

R A memory reference that is a stack pop.

S A memory reference that refers to a constant address of known
value.

T The register indicated by Rx (not implemented yet).

U A constant that is not between 2 and 15 inclusive.

Z The constant 0.

Chapter 6: Extensions to the C Language Family 463

TI C6X family—‘config/c6x/constraints.md’
a Register file A (A0–A31).

b Register file B (B0–B31).

A Predicate registers in register file A (A0–A2 on C64X and higher,
A1 and A2 otherwise).

B Predicate registers in register file B (B0–B2).

C A call-used register in register file B (B0–B9, B16–B31).

Da Register file A, excluding predicate registers (A3–A31, plus A0 if
not C64X or higher).

Db Register file B, excluding predicate registers (B3–B31).

Iu4 Integer constant in the range 0 . . . 15.

Iu5 Integer constant in the range 0 . . . 31.

In5 Integer constant in the range −31 . . . 0.

Is5 Integer constant in the range −16 . . . 15.

I5x Integer constant that can be the operand of an ADDA or a SUBA
insn.

IuB Integer constant in the range 0 . . . 65535.

IsB Integer constant in the range −32768 . . . 32767.

IsC Integer constant in the range −220 . . . 220 − 1.

Jc Integer constant that is a valid mask for the clr instruction.

Js Integer constant that is a valid mask for the set instruction.

Q Memory location with A base register.

R Memory location with B base register.

Z Register B14 (aka DP).

TILE-Gx—‘config/tilegx/constraints.md’
R00
R01
R02
R03
R04
R05
R06
R07
R08
R09
R10 Each of these represents a register constraint for an individual reg-

ister, from r0 to r10.

464 Using the GNU Compiler Collection (GCC)

I Signed 8-bit integer constant.

J Signed 16-bit integer constant.

K Unsigned 16-bit integer constant.

L Integer constant that fits in one signed byte when incremented by
one (−129 . . . 126).

m Memory operand. If used together with ‘<’ or ‘>’, the operand can
have postincrement which requires printing with ‘%In’ and ‘%in’ on
TILE-Gx. For example:

asm ("st_add %I0,%1,%i0" : "=m<>" (*mem) : "r" (val));

M A bit mask suitable for the BFINS instruction.

N Integer constant that is a byte tiled out eight times.

O The integer zero constant.

P Integer constant that is a sign-extended byte tiled out as four shorts.

Q Integer constant that fits in one signed byte when incremented
(−129 . . . 126), but excluding -1.

S Integer constant that has all 1 bits consecutive and starting at bit
0.

T A 16-bit fragment of a got, tls, or pc-relative reference.

U Memory operand except postincrement. This is roughly the same
as ‘m’ when not used together with ‘<’ or ‘>’.

W An 8-element vector constant with identical elements.

Y A 4-element vector constant with identical elements.

Z0 The integer constant 0xffffffff.

Z1 The integer constant 0xffffffff00000000.

TILEPro—‘config/tilepro/constraints.md’
R00
R01
R02
R03
R04
R05
R06
R07
R08
R09
R10 Each of these represents a register constraint for an individual reg-

ister, from r0 to r10.

I Signed 8-bit integer constant.

Chapter 6: Extensions to the C Language Family 465

J Signed 16-bit integer constant.

K Nonzero integer constant with low 16 bits zero.

L Integer constant that fits in one signed byte when incremented by
one (−129 . . . 126).

m Memory operand. If used together with ‘<’ or ‘>’, the operand can
have postincrement which requires printing with ‘%In’ and ‘%in’ on
TILEPro. For example:

asm ("swadd %I0,%1,%i0" : "=m<>" (mem) : "r" (val));

M A bit mask suitable for the MM instruction.

N Integer constant that is a byte tiled out four times.

O The integer zero constant.

P Integer constant that is a sign-extended byte tiled out as two shorts.

Q Integer constant that fits in one signed byte when incremented
(−129 . . . 126), but excluding -1.

T A symbolic operand, or a 16-bit fragment of a got, tls, or pc-relative
reference.

U Memory operand except postincrement. This is roughly the same
as ‘m’ when not used together with ‘<’ or ‘>’.

W A 4-element vector constant with identical elements.

Y A 2-element vector constant with identical elements.

Xtensa—‘config/xtensa/constraints.md’
a General-purpose 32-bit register

b One-bit boolean register

A MAC16 40-bit accumulator register

I Signed 12-bit integer constant, for use in MOVI instructions

J Signed 8-bit integer constant, for use in ADDI instructions

K Integer constant valid for BccI instructions

L Unsigned constant valid for BccUI instructions

6.43 Controlling Names Used in Assembler Code

You can specify the name to be used in the assembler code for a C function or variable by
writing the asm (or __asm__) keyword after the declarator as follows:

int foo asm ("myfoo") = 2;

This specifies that the name to be used for the variable foo in the assembler code should
be ‘myfoo’ rather than the usual ‘_foo’.

On systems where an underscore is normally prepended to the name of a C function or
variable, this feature allows you to define names for the linker that do not start with an
underscore.

466 Using the GNU Compiler Collection (GCC)

It does not make sense to use this feature with a non-static local variable since such
variables do not have assembler names. If you are trying to put the variable in a particular
register, see Section 6.44 [Explicit Reg Vars], page 466. GCC presently accepts such code
with a warning, but will probably be changed to issue an error, rather than a warning, in
the future.

You cannot use asm in this way in a function definition; but you can get the same effect
by writing a declaration for the function before its definition and putting asm there, like
this:

extern func () asm ("FUNC");

func (x, y)

int x, y;

/* . . . */

It is up to you to make sure that the assembler names you choose do not conflict with
any other assembler symbols. Also, you must not use a register name; that would produce
completely invalid assembler code. GCC does not as yet have the ability to store static
variables in registers. Perhaps that will be added.

6.44 Variables in Specified Registers

GNU C allows you to put a few global variables into specified hardware registers. You can
also specify the register in which an ordinary register variable should be allocated.
• Global register variables reserve registers throughout the program. This may be useful

in programs such as programming language interpreters that have a couple of global
variables that are accessed very often.

• Local register variables in specific registers do not reserve the registers, except at the
point where they are used as input or output operands in an asm statement and the
asm statement itself is not deleted. The compiler’s data flow analysis is capable of de-
termining where the specified registers contain live values, and where they are available
for other uses. Stores into local register variables may be deleted when they appear to
be dead according to dataflow analysis. References to local register variables may be
deleted or moved or simplified.
These local variables are sometimes convenient for use with the extended asm feature
(see Section 6.41 [Extended Asm], page 427), if you want to write one output of the
assembler instruction directly into a particular register. (This works provided the
register you specify fits the constraints specified for that operand in the asm.)

6.44.1 Defining Global Register Variables

You can define a global register variable in GNU C like this:
register int *foo asm ("a5");

Here a5 is the name of the register that should be used. Choose a register that is normally
saved and restored by function calls on your machine, so that library routines will not
clobber it.

Naturally the register name is cpu-dependent, so you need to conditionalize your program
according to cpu type. The register a5 is a good choice on a 68000 for a variable of pointer
type. On machines with register windows, be sure to choose a “global” register that is not
affected magically by the function call mechanism.

Chapter 6: Extensions to the C Language Family 467

In addition, different operating systems on the same CPU may differ in how they name
the registers; then you need additional conditionals. For example, some 68000 operating
systems call this register %a5.

Eventually there may be a way of asking the compiler to choose a register automatically,
but first we need to figure out how it should choose and how to enable you to guide the
choice. No solution is evident.

Defining a global register variable in a certain register reserves that register entirely for
this use, at least within the current compilation. The register is not allocated for any other
purpose in the functions in the current compilation, and is not saved and restored by these
functions. Stores into this register are never deleted even if they appear to be dead, but
references may be deleted or moved or simplified.

It is not safe to access the global register variables from signal handlers, or from more
than one thread of control, because the system library routines may temporarily use the
register for other things (unless you recompile them specially for the task at hand).

It is not safe for one function that uses a global register variable to call another such
function foo by way of a third function lose that is compiled without knowledge of this
variable (i.e. in a different source file in which the variable isn’t declared). This is because
lose might save the register and put some other value there. For example, you can’t expect
a global register variable to be available in the comparison-function that you pass to qsort,
since qsort might have put something else in that register. (If you are prepared to recompile
qsort with the same global register variable, you can solve this problem.)

If you want to recompile qsort or other source files that do not actually use your global
register variable, so that they do not use that register for any other purpose, then it suffices
to specify the compiler option ‘-ffixed-reg’. You need not actually add a global register
declaration to their source code.

A function that can alter the value of a global register variable cannot safely be called
from a function compiled without this variable, because it could clobber the value the caller
expects to find there on return. Therefore, the function that is the entry point into the part
of the program that uses the global register variable must explicitly save and restore the
value that belongs to its caller.

On most machines, longjmp restores to each global register variable the value it had at
the time of the setjmp. On some machines, however, longjmp does not change the value
of global register variables. To be portable, the function that called setjmp should make
other arrangements to save the values of the global register variables, and to restore them
in a longjmp. This way, the same thing happens regardless of what longjmp does.

All global register variable declarations must precede all function definitions. If such a
declaration could appear after function definitions, the declaration would be too late to
prevent the register from being used for other purposes in the preceding functions.

Global register variables may not have initial values, because an executable file has no
means to supply initial contents for a register.

On the SPARC, there are reports that g3 . . . g7 are suitable registers, but certain library
functions, such as getwd, as well as the subroutines for division and remainder, modify g3
and g4. g1 and g2 are local temporaries.

On the 68000, a2 . . . a5 should be suitable, as should d2 . . . d7. Of course, it does not
do to use more than a few of those.

468 Using the GNU Compiler Collection (GCC)

6.44.2 Specifying Registers for Local Variables

You can define a local register variable with a specified register like this:
register int *foo asm ("a5");

Here a5 is the name of the register that should be used. Note that this is the same syn-
tax used for defining global register variables, but for a local variable it appears within a
function.

Naturally the register name is cpu-dependent, but this is not a problem, since specific
registers are most often useful with explicit assembler instructions (see Section 6.41 [Ex-
tended Asm], page 427). Both of these things generally require that you conditionalize your
program according to cpu type.

In addition, operating systems on one type of cpu may differ in how they name the
registers; then you need additional conditionals. For example, some 68000 operating systems
call this register %a5.

Defining such a register variable does not reserve the register; it remains available for
other uses in places where flow control determines the variable’s value is not live.

This option does not guarantee that GCC generates code that has this variable in the
register you specify at all times. You may not code an explicit reference to this register in
the assembler instruction template part of an asm statement and assume it always refers to
this variable. However, using the variable as an asm operand guarantees that the specified
register is used for the operand.

Stores into local register variables may be deleted when they appear to be dead according
to dataflow analysis. References to local register variables may be deleted or moved or
simplified.

As for global register variables, it’s recommended that you choose a register that is nor-
mally saved and restored by function calls on your machine, so that library routines will not
clobber it. A common pitfall is to initialize multiple call-clobbered registers with arbitrary
expressions, where a function call or library call for an arithmetic operator overwrites a
register value from a previous assignment, for example r0 below:

register int *p1 asm ("r0") = ...;

register int *p2 asm ("r1") = ...;

In those cases, a solution is to use a temporary variable for each arbitrary expression. See
[Example of asm with clobbered asm reg], page 428.

6.45 Alternate Keywords

‘-ansi’ and the various ‘-std’ options disable certain keywords. This causes trouble when
you want to use GNU C extensions, or a general-purpose header file that should be usable
by all programs, including ISO C programs. The keywords asm, typeof and inline are
not available in programs compiled with ‘-ansi’ or ‘-std’ (although inline can be used in
a program compiled with ‘-std=c99’ or ‘-std=c11’). The ISO C99 keyword restrict is
only available when ‘-std=gnu99’ (which will eventually be the default) or ‘-std=c99’ (or
the equivalent ‘-std=iso9899:1999’), or an option for a later standard version, is used.

The way to solve these problems is to put ‘__’ at the beginning and end of each prob-
lematical keyword. For example, use __asm__ instead of asm, and __inline__ instead of
inline.

Chapter 6: Extensions to the C Language Family 469

Other C compilers won’t accept these alternative keywords; if you want to compile with
another compiler, you can define the alternate keywords as macros to replace them with
the customary keywords. It looks like this:

#ifndef __GNUC__

#define __asm__ asm

#endif

‘-pedantic’ and other options cause warnings for many GNU C extensions. You can pre-
vent such warnings within one expression by writing __extension__ before the expression.
__extension__ has no effect aside from this.

6.46 Incomplete enum Types

You can define an enum tag without specifying its possible values. This results in an incom-
plete type, much like what you get if you write struct foo without describing the elements.
A later declaration that does specify the possible values completes the type.

You can’t allocate variables or storage using the type while it is incomplete. However,
you can work with pointers to that type.

This extension may not be very useful, but it makes the handling of enum more consistent
with the way struct and union are handled.

This extension is not supported by GNU C++.

6.47 Function Names as Strings

GCC provides three magic variables that hold the name of the current function, as a string.
The first of these is __func__, which is part of the C99 standard:

The identifier __func__ is implicitly declared by the translator as if, immediately follow-
ing the opening brace of each function definition, the declaration

static const char __func__[] = "function-name";

appeared, where function-name is the name of the lexically-enclosing function. This name
is the unadorned name of the function.
__FUNCTION__ is another name for __func__. Older versions of GCC recognize only this

name. However, it is not standardized. For maximum portability, we recommend you use
__func__, but provide a fallback definition with the preprocessor:

#if __STDC_VERSION__ < 199901L

if __GNUC__ >= 2

define __func__ __FUNCTION__

else

define __func__ "<unknown>"

endif

#endif

In C, __PRETTY_FUNCTION__ is yet another name for __func__. However, in C++, __
PRETTY_FUNCTION__ contains the type signature of the function as well as its bare name.
For example, this program:

extern "C" {

extern int printf (char *, ...);

}

class a {

470 Using the GNU Compiler Collection (GCC)

public:

void sub (int i)

{

printf ("__FUNCTION__ = %s\n", __FUNCTION__);

printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);

}

};

int

main (void)

{

a ax;

ax.sub (0);

return 0;

}

gives this output:
__FUNCTION__ = sub

__PRETTY_FUNCTION__ = void a::sub(int)

These identifiers are not preprocessor macros. In GCC 3.3 and earlier, in C only, __
FUNCTION__ and __PRETTY_FUNCTION__ were treated as string literals; they could be used
to initialize char arrays, and they could be concatenated with other string literals. GCC
3.4 and later treat them as variables, like __func__. In C++, __FUNCTION__ and __PRETTY_
FUNCTION__ have always been variables.

6.48 Getting the Return or Frame Address of a Function

These functions may be used to get information about the callers of a function.

[Built-in Function]void * __builtin_return_address (unsigned int level)
This function returns the return address of the current function, or of one of its callers.
The level argument is number of frames to scan up the call stack. A value of 0 yields
the return address of the current function, a value of 1 yields the return address of
the caller of the current function, and so forth. When inlining the expected behavior
is that the function returns the address of the function that is returned to. To work
around this behavior use the noinline function attribute.
The level argument must be a constant integer.
On some machines it may be impossible to determine the return address of any
function other than the current one; in such cases, or when the top of the stack has
been reached, this function returns 0 or a random value. In addition, __builtin_
frame_address may be used to determine if the top of the stack has been reached.
Additional post-processing of the returned value may be needed, see __builtin_
extract_return_addr.
This function should only be used with a nonzero argument for debugging purposes.

[Built-in Function]void * __builtin_extract_return_addr (void *addr)
The address as returned by __builtin_return_address may have to be fed through
this function to get the actual encoded address. For example, on the 31-bit S/390
platform the highest bit has to be masked out, or on SPARC platforms an offset has
to be added for the true next instruction to be executed.
If no fixup is needed, this function simply passes through addr.

Chapter 6: Extensions to the C Language Family 471

[Built-in Function]void * __builtin_frob_return_address (void *addr)
This function does the reverse of __builtin_extract_return_addr.

[Built-in Function]void * __builtin_frame_address (unsigned int level)
This function is similar to __builtin_return_address, but it returns the address of
the function frame rather than the return address of the function. Calling __builtin_
frame_address with a value of 0 yields the frame address of the current function, a
value of 1 yields the frame address of the caller of the current function, and so forth.
The frame is the area on the stack that holds local variables and saved registers. The
frame address is normally the address of the first word pushed on to the stack by the
function. However, the exact definition depends upon the processor and the calling
convention. If the processor has a dedicated frame pointer register, and the function
has a frame, then __builtin_frame_address returns the value of the frame pointer
register.
On some machines it may be impossible to determine the frame address of any function
other than the current one; in such cases, or when the top of the stack has been
reached, this function returns 0 if the first frame pointer is properly initialized by the
startup code.
This function should only be used with a nonzero argument for debugging purposes.

6.49 Using Vector Instructions through Built-in Functions

On some targets, the instruction set contains SIMD vector instructions which operate on
multiple values contained in one large register at the same time. For example, on the i386
the MMX, 3DNow! and SSE extensions can be used this way.

The first step in using these extensions is to provide the necessary data types. This should
be done using an appropriate typedef:

typedef int v4si __attribute__ ((vector_size (16)));

The int type specifies the base type, while the attribute specifies the vector size for the
variable, measured in bytes. For example, the declaration above causes the compiler to set
the mode for the v4si type to be 16 bytes wide and divided into int sized units. For a
32-bit int this means a vector of 4 units of 4 bytes, and the corresponding mode of foo is
V4SI.

The vector_size attribute is only applicable to integral and float scalars, although
arrays, pointers, and function return values are allowed in conjunction with this construct.
Only sizes that are a power of two are currently allowed.

All the basic integer types can be used as base types, both as signed and as unsigned:
char, short, int, long, long long. In addition, float and double can be used to build
floating-point vector types.

Specifying a combination that is not valid for the current architecture causes GCC to
synthesize the instructions using a narrower mode. For example, if you specify a variable of
type V4SI and your architecture does not allow for this specific SIMD type, GCC produces
code that uses 4 SIs.

The types defined in this manner can be used with a subset of normal C operations.
Currently, GCC allows using the following operators on these types: +, -, *, /, unary
minus, ^, |, &, ~, %.

472 Using the GNU Compiler Collection (GCC)

The operations behave like C++ valarrays. Addition is defined as the addition of the
corresponding elements of the operands. For example, in the code below, each of the 4
elements in a is added to the corresponding 4 elements in b and the resulting vector is
stored in c.

typedef int v4si __attribute__ ((vector_size (16)));

v4si a, b, c;

c = a + b;

Subtraction, multiplication, division, and the logical operations operate in a similar man-
ner. Likewise, the result of using the unary minus or complement operators on a vector type
is a vector whose elements are the negative or complemented values of the corresponding
elements in the operand.

It is possible to use shifting operators <<, >> on integer-type vectors. The operation is
defined as following: {a0, a1, ..., an} >> {b0, b1, ..., bn} == {a0 >> b0, a1 >> b1,
..., an >> bn}. Vector operands must have the same number of elements.

For convenience, it is allowed to use a binary vector operation where one operand is a
scalar. In that case the compiler transforms the scalar operand into a vector where each
element is the scalar from the operation. The transformation happens only if the scalar
could be safely converted to the vector-element type. Consider the following code.

typedef int v4si __attribute__ ((vector_size (16)));

v4si a, b, c;

long l;

a = b + 1; /* a = b + {1,1,1,1}; */

a = 2 * b; /* a = {2,2,2,2} * b; */

a = l + a; /* Error, cannot convert long to int. */

Vectors can be subscripted as if the vector were an array with the same number of elements
and base type. Out of bound accesses invoke undefined behavior at run time. Warnings for
out of bound accesses for vector subscription can be enabled with ‘-Warray-bounds’.

Vector comparison is supported with standard comparison operators: ==, !=, <, <=, >,
>=. Comparison operands can be vector expressions of integer-type or real-type. Compar-
ison between integer-type vectors and real-type vectors are not supported. The result of
the comparison is a vector of the same width and number of elements as the comparison
operands with a signed integral element type.

Vectors are compared element-wise producing 0 when comparison is false and -1 (constant
of the appropriate type where all bits are set) otherwise. Consider the following example.

typedef int v4si __attribute__ ((vector_size (16)));

v4si a = {1,2,3,4};

v4si b = {3,2,1,4};

v4si c;

c = a > b; /* The result would be {0, 0,-1, 0} */

c = a == b; /* The result would be {0,-1, 0,-1} */

In C++, the ternary operator ?: is available. a?b:c, where b and c are vectors of the same
type and a is an integer vector with the same number of elements of the same size as b and

Chapter 6: Extensions to the C Language Family 473

c, computes all three arguments and creates a vector {a[0]?b[0]:c[0], a[1]?b[1]:c[1],
...}. Note that unlike in OpenCL, a is thus interpreted as a != 0 and not a < 0. As in the
case of binary operations, this syntax is also accepted when one of b or c is a scalar that is
then transformed into a vector. If both b and c are scalars and the type of true?b:c has
the same size as the element type of a, then b and c are converted to a vector type whose
elements have this type and with the same number of elements as a.

Vector shuffling is available using functions __builtin_shuffle (vec, mask) and __
builtin_shuffle (vec0, vec1, mask). Both functions construct a permutation of ele-
ments from one or two vectors and return a vector of the same type as the input vector(s).
The mask is an integral vector with the same width (W) and element count (N) as the
output vector.

The elements of the input vectors are numbered in memory ordering of vec0 beginning
at 0 and vec1 beginning at N. The elements of mask are considered modulo N in the
single-operand case and modulo 2 ∗N in the two-operand case.

Consider the following example,
typedef int v4si __attribute__ ((vector_size (16)));

v4si a = {1,2,3,4};

v4si b = {5,6,7,8};

v4si mask1 = {0,1,1,3};

v4si mask2 = {0,4,2,5};

v4si res;

res = __builtin_shuffle (a, mask1); /* res is {1,2,2,4} */

res = __builtin_shuffle (a, b, mask2); /* res is {1,5,3,6} */

Note that __builtin_shuffle is intentionally semantically compatible with the OpenCL
shuffle and shuffle2 functions.

You can declare variables and use them in function calls and returns, as well as in as-
signments and some casts. You can specify a vector type as a return type for a function.
Vector types can also be used as function arguments. It is possible to cast from one vector
type to another, provided they are of the same size (in fact, you can also cast vectors to
and from other datatypes of the same size).

You cannot operate between vectors of different lengths or different signedness without a
cast.

6.50 Offsetof

GCC implements for both C and C++ a syntactic extension to implement the offsetof
macro.

primary:

"__builtin_offsetof" "(" typename "," offsetof_member_designator ")"

offsetof_member_designator:

identifier

| offsetof_member_designator "." identifier

| offsetof_member_designator "[" expr "]"

This extension is sufficient such that
#define offsetof(type, member) __builtin_offsetof (type, member)

474 Using the GNU Compiler Collection (GCC)

is a suitable definition of the offsetof macro. In C++, type may be dependent. In either
case, member may consist of a single identifier, or a sequence of member accesses and array
references.

6.51 Legacy sync Built-in Functions for Atomic Memory
Access

The following built-in functions are intended to be compatible with those described in the
Intel Itanium Processor-specific Application Binary Interface, section 7.4. As such, they
depart from the normal GCC practice of using the ‘__builtin_’ prefix, and further that
they are overloaded such that they work on multiple types.

The definition given in the Intel documentation allows only for the use of the types int,
long, long long as well as their unsigned counterparts. GCC allows any integral scalar or
pointer type that is 1, 2, 4 or 8 bytes in length.

Not all operations are supported by all target processors. If a particular operation cannot
be implemented on the target processor, a warning is generated and a call an external
function is generated. The external function carries the same name as the built-in version,
with an additional suffix ‘_n’ where n is the size of the data type.

In most cases, these built-in functions are considered a full barrier. That is, no memory
operand is moved across the operation, either forward or backward. Further, instructions
are issued as necessary to prevent the processor from speculating loads across the operation
and from queuing stores after the operation.

All of the routines are described in the Intel documentation to take “an optional list of
variables protected by the memory barrier”. It’s not clear what is meant by that; it could
mean that only the following variables are protected, or it could mean that these variables
should in addition be protected. At present GCC ignores this list and protects all variables
that are globally accessible. If in the future we make some use of this list, an empty list
will continue to mean all globally accessible variables.

type __sync_fetch_and_add (type *ptr, type value, ...)
type __sync_fetch_and_sub (type *ptr, type value, ...)
type __sync_fetch_and_or (type *ptr, type value, ...)
type __sync_fetch_and_and (type *ptr, type value, ...)
type __sync_fetch_and_xor (type *ptr, type value, ...)
type __sync_fetch_and_nand (type *ptr, type value, ...)

These built-in functions perform the operation suggested by the name, and
returns the value that had previously been in memory. That is,

{ tmp = *ptr; *ptr op= value; return tmp; }

{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; } // nand

Note: GCC 4.4 and later implement __sync_fetch_and_nand as *ptr = ~(tmp
& value) instead of *ptr = ~tmp & value.

Chapter 6: Extensions to the C Language Family 475

type __sync_add_and_fetch (type *ptr, type value, ...)
type __sync_sub_and_fetch (type *ptr, type value, ...)
type __sync_or_and_fetch (type *ptr, type value, ...)
type __sync_and_and_fetch (type *ptr, type value, ...)
type __sync_xor_and_fetch (type *ptr, type value, ...)
type __sync_nand_and_fetch (type *ptr, type value, ...)

These built-in functions perform the operation suggested by the name, and
return the new value. That is,

{ *ptr op= value; return *ptr; }

{ *ptr = ~(*ptr & value); return *ptr; } // nand

Note: GCC 4.4 and later implement __sync_nand_and_fetch as *ptr =
~(*ptr & value) instead of *ptr = ~*ptr & value.

bool __sync_bool_compare_and_swap (type *ptr, type oldval, type newval, ...)
type __sync_val_compare_and_swap (type *ptr, type oldval, type newval, ...)

These built-in functions perform an atomic compare and swap. That is, if the
current value of *ptr is oldval, then write newval into *ptr.
The “bool” version returns true if the comparison is successful and newval is
written. The “val” version returns the contents of *ptr before the operation.

__sync_synchronize (...)
This built-in function issues a full memory barrier.

type __sync_lock_test_and_set (type *ptr, type value, ...)
This built-in function, as described by Intel, is not a traditional test-and-set
operation, but rather an atomic exchange operation. It writes value into *ptr,
and returns the previous contents of *ptr.
Many targets have only minimal support for such locks, and do not support a
full exchange operation. In this case, a target may support reduced functionality
here by which the only valid value to store is the immediate constant 1. The
exact value actually stored in *ptr is implementation defined.
This built-in function is not a full barrier, but rather an acquire barrier. This
means that references after the operation cannot move to (or be speculated to)
before the operation, but previous memory stores may not be globally visible
yet, and previous memory loads may not yet be satisfied.

void __sync_lock_release (type *ptr, ...)
This built-in function releases the lock acquired by __sync_lock_test_and_
set. Normally this means writing the constant 0 to *ptr.
This built-in function is not a full barrier, but rather a release barrier. This
means that all previous memory stores are globally visible, and all previous
memory loads have been satisfied, but following memory reads are not prevented
from being speculated to before the barrier.

6.52 Built-in functions for memory model aware atomic
operations

The following built-in functions approximately match the requirements for C++11 memory
model. Many are similar to the ‘__sync’ prefixed built-in functions, but all also have a

476 Using the GNU Compiler Collection (GCC)

memory model parameter. These are all identified by being prefixed with ‘__atomic’, and
most are overloaded such that they work with multiple types.

GCC allows any integral scalar or pointer type that is 1, 2, 4, or 8 bytes in length. 16-
byte integral types are also allowed if ‘__int128’ (see Section 6.8 [int128], page 358) is
supported by the architecture.

Target architectures are encouraged to provide their own patterns for each of these built-
in functions. If no target is provided, the original non-memory model set of ‘__sync’ atomic
built-in functions are utilized, along with any required synchronization fences surrounding
it in order to achieve the proper behavior. Execution in this case is subject to the same
restrictions as those built-in functions.

If there is no pattern or mechanism to provide a lock free instruction sequence, a call is
made to an external routine with the same parameters to be resolved at run time.

The four non-arithmetic functions (load, store, exchange, and compare exchange) all have
a generic version as well. This generic version works on any data type. If the data type
size maps to one of the integral sizes that may have lock free support, the generic version
utilizes the lock free built-in function. Otherwise an external call is left to be resolved at
run time. This external call is the same format with the addition of a ‘size_t’ parameter
inserted as the first parameter indicating the size of the object being pointed to. All objects
must be the same size.

There are 6 different memory models that can be specified. These map to the same names
in the C++11 standard. Refer there or to the GCC wiki on atomic synchronization for more
detailed definitions. These memory models integrate both barriers to code motion as well
as synchronization requirements with other threads. These are listed in approximately
ascending order of strength. It is also possible to use target specific flags for memory model
flags, like Hardware Lock Elision.

__ATOMIC_RELAXED
No barriers or synchronization.

__ATOMIC_CONSUME
Data dependency only for both barrier and synchronization with another
thread.

__ATOMIC_ACQUIRE
Barrier to hoisting of code and synchronizes with release (or stronger) semantic
stores from another thread.

__ATOMIC_RELEASE
Barrier to sinking of code and synchronizes with acquire (or stronger) semantic
loads from another thread.

__ATOMIC_ACQ_REL
Full barrier in both directions and synchronizes with acquire loads and release
stores in another thread.

__ATOMIC_SEQ_CST
Full barrier in both directions and synchronizes with acquire loads and release
stores in all threads.

http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync

Chapter 6: Extensions to the C Language Family 477

When implementing patterns for these built-in functions, the memory model parameter
can be ignored as long as the pattern implements the most restrictive __ATOMIC_SEQ_CST
model. Any of the other memory models execute correctly with this memory model but
they may not execute as efficiently as they could with a more appropriate implementation
of the relaxed requirements.

Note that the C++11 standard allows for the memory model parameter to be determined
at run time rather than at compile time. These built-in functions map any run-time value
to __ATOMIC_SEQ_CST rather than invoke a runtime library call or inline a switch statement.
This is standard compliant, safe, and the simplest approach for now.

The memory model parameter is a signed int, but only the lower 8 bits are reserved for
the memory model. The remainder of the signed int is reserved for future use and should
be 0. Use of the predefined atomic values ensures proper usage.

[Built-in Function]type __atomic_load_n (type *ptr, int memmodel)
This built-in function implements an atomic load operation. It returns the contents
of *ptr.
The valid memory model variants are __ATOMIC_RELAXED, __ATOMIC_SEQ_CST, __
ATOMIC_ACQUIRE, and __ATOMIC_CONSUME.

[Built-in Function]void __atomic_load (type *ptr, type *ret, int memmodel)
This is the generic version of an atomic load. It returns the contents of *ptr in *ret.

[Built-in Function]void __atomic_store_n (type *ptr, type val, int memmodel)
This built-in function implements an atomic store operation. It writes val into *ptr.
The valid memory model variants are __ATOMIC_RELAXED, __ATOMIC_SEQ_CST, and
__ATOMIC_RELEASE.

[Built-in Function]void __atomic_store (type *ptr, type *val, int memmodel)
This is the generic version of an atomic store. It stores the value of *val into *ptr.

[Built-in Function]type __atomic_exchange_n (type *ptr, type val, int
memmodel)

This built-in function implements an atomic exchange operation. It writes val into
*ptr, and returns the previous contents of *ptr.
The valid memory model variants are __ATOMIC_RELAXED, __ATOMIC_SEQ_CST, __
ATOMIC_ACQUIRE, __ATOMIC_RELEASE, and __ATOMIC_ACQ_REL.

[Built-in Function]void __atomic_exchange (type *ptr, type *val, type *ret, int
memmodel)

This is the generic version of an atomic exchange. It stores the contents of *val into
*ptr. The original value of *ptr is copied into *ret.

[Built-in Function]bool __atomic_compare_exchange_n (type *ptr, type
*expected, type desired, bool weak, int success memmodel, int
failure memmodel)

This built-in function implements an atomic compare and exchange operation. This
compares the contents of *ptr with the contents of *expected and if equal, writes
desired into *ptr. If they are not equal, the current contents of *ptr is written

478 Using the GNU Compiler Collection (GCC)

into *expected. weak is true for weak compare exchange, and false for the strong
variation. Many targets only offer the strong variation and ignore the parameter.
When in doubt, use the strong variation.
True is returned if desired is written into *ptr and the execution is considered to con-
form to the memory model specified by success memmodel. There are no restrictions
on what memory model can be used here.
False is returned otherwise, and the execution is considered to conform to
failure memmodel. This memory model cannot be __ATOMIC_RELEASE nor
__ATOMIC_ACQ_REL. It also cannot be a stronger model than that specified by
success memmodel.

[Built-in Function]bool __atomic_compare_exchange (type *ptr, type
*expected, type *desired, bool weak, int success memmodel, int
failure memmodel)

This built-in function implements the generic version of __atomic_compare_
exchange. The function is virtually identical to __atomic_compare_exchange_n,
except the desired value is also a pointer.

[Built-in Function]type __atomic_add_fetch (type *ptr, type val, int
memmodel)

[Built-in Function]type __atomic_sub_fetch (type *ptr, type val, int
memmodel)

[Built-in Function]type __atomic_and_fetch (type *ptr, type val, int
memmodel)

[Built-in Function]type __atomic_xor_fetch (type *ptr, type val, int
memmodel)

[Built-in Function]type __atomic_or_fetch (type *ptr, type val, int memmodel)
[Built-in Function]type __atomic_nand_fetch (type *ptr, type val, int

memmodel)
These built-in functions perform the operation suggested by the name, and return
the result of the operation. That is,

{ *ptr op= val; return *ptr; }

All memory models are valid.

[Built-in Function]type __atomic_fetch_add (type *ptr, type val, int
memmodel)

[Built-in Function]type __atomic_fetch_sub (type *ptr, type val, int
memmodel)

[Built-in Function]type __atomic_fetch_and (type *ptr, type val, int
memmodel)

[Built-in Function]type __atomic_fetch_xor (type *ptr, type val, int
memmodel)

[Built-in Function]type __atomic_fetch_or (type *ptr, type val, int memmodel)
[Built-in Function]type __atomic_fetch_nand (type *ptr, type val, int

memmodel)
These built-in functions perform the operation suggested by the name, and return
the value that had previously been in *ptr. That is,

Chapter 6: Extensions to the C Language Family 479

{ tmp = *ptr; *ptr op= val; return tmp; }

All memory models are valid.

[Built-in Function]bool __atomic_test_and_set (void *ptr, int memmodel)
This built-in function performs an atomic test-and-set operation on the byte at *ptr.
The byte is set to some implementation defined nonzero “set” value and the return
value is true if and only if the previous contents were “set”. It should be only used
for operands of type bool or char. For other types only part of the value may be set.

All memory models are valid.

[Built-in Function]void __atomic_clear (bool *ptr, int memmodel)
This built-in function performs an atomic clear operation on *ptr. After the oper-
ation, *ptr contains 0. It should be only used for operands of type bool or char
and in conjunction with __atomic_test_and_set. For other types it may only clear
partially. If the type is not bool prefer using __atomic_store.

The valid memory model variants are __ATOMIC_RELAXED, __ATOMIC_SEQ_CST, and
__ATOMIC_RELEASE.

[Built-in Function]void __atomic_thread_fence (int memmodel)
This built-in function acts as a synchronization fence between threads based on the
specified memory model.

All memory orders are valid.

[Built-in Function]void __atomic_signal_fence (int memmodel)
This built-in function acts as a synchronization fence between a thread and signal
handlers based in the same thread.

All memory orders are valid.

[Built-in Function]bool __atomic_always_lock_free (size t size, void *ptr)
This built-in function returns true if objects of size bytes always generate lock free
atomic instructions for the target architecture. size must resolve to a compile-time
constant and the result also resolves to a compile-time constant.

ptr is an optional pointer to the object that may be used to determine alignment. A
value of 0 indicates typical alignment should be used. The compiler may also ignore
this parameter.

if (_atomic_always_lock_free (sizeof (long long), 0))

[Built-in Function]bool __atomic_is_lock_free (size t size, void *ptr)
This built-in function returns true if objects of size bytes always generate lock free
atomic instructions for the target architecture. If it is not known to be lock free a
call is made to a runtime routine named __atomic_is_lock_free.

ptr is an optional pointer to the object that may be used to determine alignment. A
value of 0 indicates typical alignment should be used. The compiler may also ignore
this parameter.

480 Using the GNU Compiler Collection (GCC)

6.53 x86 specific memory model extensions for transactional
memory

The i386 architecture supports additional memory ordering flags to mark lock critical sec-
tions for hardware lock elision. These must be specified in addition to an existing memory
model to atomic intrinsics.

__ATOMIC_HLE_ACQUIRE
Start lock elision on a lock variable. Memory model must be __ATOMIC_ACQUIRE
or stronger.

__ATOMIC_HLE_RELEASE
End lock elision on a lock variable. Memory model must be __ATOMIC_RELEASE
or stronger.

When a lock acquire fails it is required for good performance to abort the transaction
quickly. This can be done with a _mm_pause

#include <immintrin.h> // For _mm_pause

int lockvar;

/* Acquire lock with lock elision */

while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))

_mm_pause(); /* Abort failed transaction */

...

/* Free lock with lock elision */

__atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);

6.54 Object Size Checking Built-in Functions

GCC implements a limited buffer overflow protection mechanism that can prevent some
buffer overflow attacks.

[Built-in Function]size_t __builtin_object_size (void * ptr, int type)
is a built-in construct that returns a constant number of bytes from ptr to the end of
the object ptr pointer points to (if known at compile time). __builtin_object_size
never evaluates its arguments for side-effects. If there are any side-effects in them,
it returns (size_t) -1 for type 0 or 1 and (size_t) 0 for type 2 or 3. If there are
multiple objects ptr can point to and all of them are known at compile time, the
returned number is the maximum of remaining byte counts in those objects if type
& 2 is 0 and minimum if nonzero. If it is not possible to determine which objects ptr
points to at compile time, __builtin_object_size should return (size_t) -1 for
type 0 or 1 and (size_t) 0 for type 2 or 3.
type is an integer constant from 0 to 3. If the least significant bit is clear, objects are
whole variables, if it is set, a closest surrounding subobject is considered the object a
pointer points to. The second bit determines if maximum or minimum of remaining
bytes is computed.

struct V { char buf1[10]; int b; char buf2[10]; } var;

char *p = &var.buf1[1], *q = &var.b;

/* Here the object p points to is var. */

assert (__builtin_object_size (p, 0) == sizeof (var) - 1);

/* The subobject p points to is var.buf1. */

assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);

Chapter 6: Extensions to the C Language Family 481

/* The object q points to is var. */

assert (__builtin_object_size (q, 0)

== (char *) (&var + 1) - (char *) &var.b);

/* The subobject q points to is var.b. */

assert (__builtin_object_size (q, 1) == sizeof (var.b));

There are built-in functions added for many common string operation functions, e.g., for
memcpy __builtin___memcpy_chk built-in is provided. This built-in has an additional last
argument, which is the number of bytes remaining in object the dest argument points to or
(size_t) -1 if the size is not known.

The built-in functions are optimized into the normal string functions like memcpy if the
last argument is (size_t) -1 or if it is known at compile time that the destination object
will not be overflown. If the compiler can determine at compile time the object will be
always overflown, it issues a warning.

The intended use can be e.g.
#undef memcpy

#define bos0(dest) __builtin_object_size (dest, 0)

#define memcpy(dest, src, n) \

__builtin___memcpy_chk (dest, src, n, bos0 (dest))

char *volatile p;

char buf[10];

/* It is unknown what object p points to, so this is optimized

into plain memcpy - no checking is possible. */

memcpy (p, "abcde", n);

/* Destination is known and length too. It is known at compile

time there will be no overflow. */

memcpy (&buf[5], "abcde", 5);

/* Destination is known, but the length is not known at compile time.

This will result in __memcpy_chk call that can check for overflow

at run time. */

memcpy (&buf[5], "abcde", n);

/* Destination is known and it is known at compile time there will

be overflow. There will be a warning and __memcpy_chk call that

will abort the program at run time. */

memcpy (&buf[6], "abcde", 5);

Such built-in functions are provided for memcpy, mempcpy, memmove, memset, strcpy,
stpcpy, strncpy, strcat and strncat.

There are also checking built-in functions for formatted output functions.
int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);

int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,

const char *fmt, ...);

int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,

va_list ap);

int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,

const char *fmt, va_list ap);

The added flag argument is passed unchanged to __sprintf_chk etc. functions and can
contain implementation specific flags on what additional security measures the checking
function might take, such as handling %n differently.

The os argument is the object size s points to, like in the other built-in functions. There
is a small difference in the behavior though, if os is (size_t) -1, the built-in functions are

482 Using the GNU Compiler Collection (GCC)

optimized into the non-checking functions only if flag is 0, otherwise the checking function
is called with os argument set to (size_t) -1.

In addition to this, there are checking built-in functions __builtin___printf_chk, _
_builtin___vprintf_chk, __builtin___fprintf_chk and __builtin___vfprintf_chk.
These have just one additional argument, flag, right before format string fmt. If the compiler
is able to optimize them to fputc etc. functions, it does, otherwise the checking function is
called and the flag argument passed to it.

6.55 Cilk Plus C/C++ language extension Built-in Functions.

GCC provides support for the following built-in reduction funtions if Cilk Plus is enabled.
Cilk Plus can be enabled using the ‘-fcilkplus’ flag.
• sec implicit index
• sec reduce
• sec reduce add
• sec reduce all nonzero
• sec reduce all zero
• sec reduce any nonzero
• sec reduce any zero
• sec reduce max
• sec reduce min
• sec reduce max ind
• sec reduce min ind
• sec reduce mul
• sec reduce mutating

Further details and examples about these built-in functions are described in the Cilk Plus
language manual which can be found at http://www.cilkplus.org.

6.56 Other Built-in Functions Provided by GCC

GCC provides a large number of built-in functions other than the ones mentioned above.
Some of these are for internal use in the processing of exceptions or variable-length argument
lists and are not documented here because they may change from time to time; we do not
recommend general use of these functions.

The remaining functions are provided for optimization purposes.
GCC includes built-in versions of many of the functions in the standard C library. The

versions prefixed with __builtin_ are always treated as having the same meaning as the C
library function even if you specify the ‘-fno-builtin’ option. (see Section 3.4 [C Dialect
Options], page 31) Many of these functions are only optimized in certain cases; if they are
not optimized in a particular case, a call to the library function is emitted.

Outside strict ISO C mode (‘-ansi’, ‘-std=c90’, ‘-std=c99’ or ‘-std=c11’), the
functions _exit, alloca, bcmp, bzero, dcgettext, dgettext, dremf, dreml, drem,
exp10f, exp10l, exp10, ffsll, ffsl, ffs, fprintf_unlocked, fputs_unlocked, gammaf,

http://www.cilkplus.org

Chapter 6: Extensions to the C Language Family 483

gammal, gamma, gammaf_r, gammal_r, gamma_r, gettext, index, isascii, j0f, j0l,
j0, j1f, j1l, j1, jnf, jnl, jn, lgammaf_r, lgammal_r, lgamma_r, mempcpy, pow10f,
pow10l, pow10, printf_unlocked, rindex, scalbf, scalbl, scalb, signbit, signbitf,
signbitl, signbitd32, signbitd64, signbitd128, significandf, significandl,
significand, sincosf, sincosl, sincos, stpcpy, stpncpy, strcasecmp, strdup,
strfmon, strncasecmp, strndup, toascii, y0f, y0l, y0, y1f, y1l, y1, ynf, ynl and yn
may be handled as built-in functions. All these functions have corresponding versions
prefixed with __builtin_, which may be used even in strict C90 mode.

The ISO C99 functions _Exit, acoshf, acoshl, acosh, asinhf, asinhl, asinh,
atanhf, atanhl, atanh, cabsf, cabsl, cabs, cacosf, cacoshf, cacoshl, cacosh, cacosl,
cacos, cargf, cargl, carg, casinf, casinhf, casinhl, casinh, casinl, casin, catanf,
catanhf, catanhl, catanh, catanl, catan, cbrtf, cbrtl, cbrt, ccosf, ccoshf, ccoshl,
ccosh, ccosl, ccos, cexpf, cexpl, cexp, cimagf, cimagl, cimag, clogf, clogl, clog,
conjf, conjl, conj, copysignf, copysignl, copysign, cpowf, cpowl, cpow, cprojf,
cprojl, cproj, crealf, creall, creal, csinf, csinhf, csinhl, csinh, csinl, csin,
csqrtf, csqrtl, csqrt, ctanf, ctanhf, ctanhl, ctanh, ctanl, ctan, erfcf, erfcl,
erfc, erff, erfl, erf, exp2f, exp2l, exp2, expm1f, expm1l, expm1, fdimf, fdiml, fdim,
fmaf, fmal, fmaxf, fmaxl, fmax, fma, fminf, fminl, fmin, hypotf, hypotl, hypot,
ilogbf, ilogbl, ilogb, imaxabs, isblank, iswblank, lgammaf, lgammal, lgamma, llabs,
llrintf, llrintl, llrint, llroundf, llroundl, llround, log1pf, log1pl, log1p,
log2f, log2l, log2, logbf, logbl, logb, lrintf, lrintl, lrint, lroundf, lroundl,
lround, nearbyintf, nearbyintl, nearbyint, nextafterf, nextafterl, nextafter,
nexttowardf, nexttowardl, nexttoward, remainderf, remainderl, remainder, remquof,
remquol, remquo, rintf, rintl, rint, roundf, roundl, round, scalblnf, scalblnl,
scalbln, scalbnf, scalbnl, scalbn, snprintf, tgammaf, tgammal, tgamma, truncf,
truncl, trunc, vfscanf, vscanf, vsnprintf and vsscanf are handled as built-in
functions except in strict ISO C90 mode (‘-ansi’ or ‘-std=c90’).

There are also built-in versions of the ISO C99 functions acosf, acosl, asinf, asinl,
atan2f, atan2l, atanf, atanl, ceilf, ceill, cosf, coshf, coshl, cosl, expf, expl,
fabsf, fabsl, floorf, floorl, fmodf, fmodl, frexpf, frexpl, ldexpf, ldexpl, log10f,
log10l, logf, logl, modfl, modf, powf, powl, sinf, sinhf, sinhl, sinl, sqrtf, sqrtl,
tanf, tanhf, tanhl and tanl that are recognized in any mode since ISO C90 reserves these
names for the purpose to which ISO C99 puts them. All these functions have corresponding
versions prefixed with __builtin_.

The ISO C94 functions iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower,
iswprint, iswpunct, iswspace, iswupper, iswxdigit, towlower and towupper are han-
dled as built-in functions except in strict ISO C90 mode (‘-ansi’ or ‘-std=c90’).

The ISO C90 functions abort, abs, acos, asin, atan2, atan, calloc, ceil, cosh,
cos, exit, exp, fabs, floor, fmod, fprintf, fputs, frexp, fscanf, isalnum, isalpha,
iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit,
tolower, toupper, labs, ldexp, log10, log, malloc, memchr, memcmp, memcpy, memset,
modf, pow, printf, putchar, puts, scanf, sinh, sin, snprintf, sprintf, sqrt, sscanf,
strcat, strchr, strcmp, strcpy, strcspn, strlen, strncat, strncmp, strncpy, strpbrk,
strrchr, strspn, strstr, tanh, tan, vfprintf, vprintf and vsprintf are all recognized
as built-in functions unless ‘-fno-builtin’ is specified (or ‘-fno-builtin-function’ is

484 Using the GNU Compiler Collection (GCC)

specified for an individual function). All of these functions have corresponding versions
prefixed with __builtin_.

GCC provides built-in versions of the ISO C99 floating-point comparison macros that
avoid raising exceptions for unordered operands. They have the same names as the stan-
dard macros (isgreater, isgreaterequal, isless, islessequal, islessgreater, and
isunordered) , with __builtin_ prefixed. We intend for a library implementor to be able
to simply #define each standard macro to its built-in equivalent. In the same fashion,
GCC provides fpclassify, isfinite, isinf_sign and isnormal built-ins used with __
builtin_ prefixed. The isinf and isnan built-in functions appear both with and without
the __builtin_ prefix.

[Built-in Function]int __builtin_types_compatible_p (type1, type2)
You can use the built-in function __builtin_types_compatible_p to determine
whether two types are the same.
This built-in function returns 1 if the unqualified versions of the types type1 and
type2 (which are types, not expressions) are compatible, 0 otherwise. The result of
this built-in function can be used in integer constant expressions.
This built-in function ignores top level qualifiers (e.g., const, volatile). For exam-
ple, int is equivalent to const int.
The type int[] and int[5] are compatible. On the other hand, int and char * are
not compatible, even if the size of their types, on the particular architecture are the
same. Also, the amount of pointer indirection is taken into account when determining
similarity. Consequently, short * is not similar to short **. Furthermore, two types
that are typedefed are considered compatible if their underlying types are compatible.
An enum type is not considered to be compatible with another enum type even if both
are compatible with the same integer type; this is what the C standard specifies. For
example, enum {foo, bar} is not similar to enum {hot, dog}.
You typically use this function in code whose execution varies depending on the
arguments’ types. For example:

#define foo(x) \

({ \

typeof (x) tmp = (x); \

if (__builtin_types_compatible_p (typeof (x), long double)) \

tmp = foo_long_double (tmp); \

else if (__builtin_types_compatible_p (typeof (x), double)) \

tmp = foo_double (tmp); \

else if (__builtin_types_compatible_p (typeof (x), float)) \

tmp = foo_float (tmp); \

else \

abort (); \

tmp; \

})

Note: This construct is only available for C.

[Built-in Function]type __builtin_choose_expr (const_exp, exp1, exp2)
You can use the built-in function __builtin_choose_expr to evaluate code depend-
ing on the value of a constant expression. This built-in function returns exp1 if
const exp, which is an integer constant expression, is nonzero. Otherwise it returns
exp2.

Chapter 6: Extensions to the C Language Family 485

This built-in function is analogous to the ‘? :’ operator in C, except that the expres-
sion returned has its type unaltered by promotion rules. Also, the built-in function
does not evaluate the expression that is not chosen. For example, if const exp evalu-
ates to true, exp2 is not evaluated even if it has side-effects.
This built-in function can return an lvalue if the chosen argument is an lvalue.
If exp1 is returned, the return type is the same as exp1’s type. Similarly, if exp2 is
returned, its return type is the same as exp2.
Example:

#define foo(x) \

__builtin_choose_expr (\

__builtin_types_compatible_p (typeof (x), double), \

foo_double (x), \

__builtin_choose_expr (\

__builtin_types_compatible_p (typeof (x), float), \

foo_float (x), \

/* The void expression results in a compile-time error \

when assigning the result to something. */ \

(void)0))

Note: This construct is only available for C. Furthermore, the unused expression
(exp1 or exp2 depending on the value of const exp) may still generate syntax errors.
This may change in future revisions.

[Built-in Function]type __builtin_complex (real, imag)
The built-in function __builtin_complex is provided for use in implementing the
ISO C11 macros CMPLXF, CMPLX and CMPLXL. real and imag must have the same type,
a real binary floating-point type, and the result has the corresponding complex type
with real and imaginary parts real and imag. Unlike ‘real + I * imag’, this works
even when infinities, NaNs and negative zeros are involved.

[Built-in Function]int __builtin_constant_p (exp)
You can use the built-in function __builtin_constant_p to determine if a value is
known to be constant at compile time and hence that GCC can perform constant-
folding on expressions involving that value. The argument of the function is the value
to test. The function returns the integer 1 if the argument is known to be a compile-
time constant and 0 if it is not known to be a compile-time constant. A return of 0
does not indicate that the value is not a constant, but merely that GCC cannot prove
it is a constant with the specified value of the ‘-O’ option.
You typically use this function in an embedded application where memory is a critical
resource. If you have some complex calculation, you may want it to be folded if it
involves constants, but need to call a function if it does not. For example:

#define Scale_Value(X) \

(__builtin_constant_p (X) \

? ((X) * SCALE + OFFSET) : Scale (X))

You may use this built-in function in either a macro or an inline function. However, if
you use it in an inlined function and pass an argument of the function as the argument
to the built-in, GCC never returns 1 when you call the inline function with a string
constant or compound literal (see Section 6.25 [Compound Literals], page 369) and
does not return 1 when you pass a constant numeric value to the inline function unless
you specify the ‘-O’ option.

486 Using the GNU Compiler Collection (GCC)

You may also use __builtin_constant_p in initializers for static data. For instance,
you can write

static const int table[] = {

__builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,

/* . . . */

};

This is an acceptable initializer even if EXPRESSION is not a constant expression,
including the case where __builtin_constant_p returns 1 because EXPRESSION
can be folded to a constant but EXPRESSION contains operands that are not other-
wise permitted in a static initializer (for example, 0 && foo ()). GCC must be more
conservative about evaluating the built-in in this case, because it has no opportunity
to perform optimization.
Previous versions of GCC did not accept this built-in in data initializers. The earliest
version where it is completely safe is 3.0.1.

[Built-in Function]long __builtin_expect (long exp, long c)
You may use __builtin_expect to provide the compiler with branch prediction
information. In general, you should prefer to use actual profile feedback for this
(‘-fprofile-arcs’), as programmers are notoriously bad at predicting how their
programs actually perform. However, there are applications in which this data is
hard to collect.
The return value is the value of exp, which should be an integral expression. The
semantics of the built-in are that it is expected that exp == c. For example:

if (__builtin_expect (x, 0))

foo ();

indicates that we do not expect to call foo, since we expect x to be zero. Since you
are limited to integral expressions for exp, you should use constructions such as

if (__builtin_expect (ptr != NULL, 1))

foo (*ptr);

when testing pointer or floating-point values.

[Built-in Function]void __builtin_trap (void)
This function causes the program to exit abnormally. GCC implements this function
by using a target-dependent mechanism (such as intentionally executing an illegal
instruction) or by calling abort. The mechanism used may vary from release to
release so you should not rely on any particular implementation.

[Built-in Function]void __builtin_unreachable (void)
If control flow reaches the point of the __builtin_unreachable, the program is un-
defined. It is useful in situations where the compiler cannot deduce the unreachability
of the code.
One such case is immediately following an asm statement that either never terminates,
or one that transfers control elsewhere and never returns. In this example, without
the __builtin_unreachable, GCC issues a warning that control reaches the end of
a non-void function. It also generates code to return after the asm.

int f (int c, int v)

{

if (c)

Chapter 6: Extensions to the C Language Family 487

{

return v;

}

else

{

asm("jmp error_handler");

__builtin_unreachable ();

}

}

Because the asm statement unconditionally transfers control out of the function, con-
trol never reaches the end of the function body. The __builtin_unreachable is in
fact unreachable and communicates this fact to the compiler.

Another use for __builtin_unreachable is following a call a function that never
returns but that is not declared __attribute__((noreturn)), as in this example:

void function_that_never_returns (void);

int g (int c)

{

if (c)

{

return 1;

}

else

{

function_that_never_returns ();

__builtin_unreachable ();

}

}

[Built-in Function]void *__builtin_assume_aligned (const void *exp, size t
align, ...)

This function returns its first argument, and allows the compiler to assume that the
returned pointer is at least align bytes aligned. This built-in can have either two or
three arguments, if it has three, the third argument should have integer type, and if
it is nonzero means misalignment offset. For example:

void *x = __builtin_assume_aligned (arg, 16);

means that the compiler can assume x, set to arg, is at least 16-byte aligned, while:
void *x = __builtin_assume_aligned (arg, 32, 8);

means that the compiler can assume for x, set to arg, that (char *) x - 8 is 32-byte
aligned.

[Built-in Function]int __builtin_LINE ()
This function is the equivalent to the preprocessor __LINE__ macro and returns the
line number of the invocation of the built-in. In a C++ default argument for a function
F, it gets the line number of the call to F.

[Built-in Function]const char * __builtin_FUNCTION ()
This function is the equivalent to the preprocessor __FUNCTION__ macro and returns
the function name the invocation of the built-in is in.

488 Using the GNU Compiler Collection (GCC)

[Built-in Function]const char * __builtin_FILE ()
This function is the equivalent to the preprocessor __FILE__ macro and returns the
file name the invocation of the built-in is in. In a C++ default argument for a function
F, it gets the file name of the call to F.

[Built-in Function]void __builtin___clear_cache (char *begin, char *end)
This function is used to flush the processor’s instruction cache for the region of mem-
ory between begin inclusive and end exclusive. Some targets require that the instruc-
tion cache be flushed, after modifying memory containing code, in order to obtain
deterministic behavior.
If the target does not require instruction cache flushes, __builtin___clear_cache
has no effect. Otherwise either instructions are emitted in-line to clear the instruction
cache or a call to the __clear_cache function in libgcc is made.

[Built-in Function]void __builtin_prefetch (const void *addr, ...)
This function is used to minimize cache-miss latency by moving data into a cache
before it is accessed. You can insert calls to __builtin_prefetch into code for
which you know addresses of data in memory that is likely to be accessed soon. If
the target supports them, data prefetch instructions are generated. If the prefetch is
done early enough before the access then the data will be in the cache by the time it
is accessed.
The value of addr is the address of the memory to prefetch. There are two optional
arguments, rw and locality. The value of rw is a compile-time constant one or zero;
one means that the prefetch is preparing for a write to the memory address and zero,
the default, means that the prefetch is preparing for a read. The value locality must
be a compile-time constant integer between zero and three. A value of zero means
that the data has no temporal locality, so it need not be left in the cache after the
access. A value of three means that the data has a high degree of temporal locality and
should be left in all levels of cache possible. Values of one and two mean, respectively,
a low or moderate degree of temporal locality. The default is three.

for (i = 0; i < n; i++)

{

a[i] = a[i] + b[i];

__builtin_prefetch (&a[i+j], 1, 1);

__builtin_prefetch (&b[i+j], 0, 1);

/* . . . */

}

Data prefetch does not generate faults if addr is invalid, but the address expression
itself must be valid. For example, a prefetch of p->next does not fault if p->next is
not a valid address, but evaluation faults if p is not a valid address.
If the target does not support data prefetch, the address expression is evaluated if it
includes side effects but no other code is generated and GCC does not issue a warning.

[Built-in Function]double __builtin_huge_val (void)
Returns a positive infinity, if supported by the floating-point format, else DBL_MAX.
This function is suitable for implementing the ISO C macro HUGE_VAL.

[Built-in Function]float __builtin_huge_valf (void)
Similar to __builtin_huge_val, except the return type is float.

Chapter 6: Extensions to the C Language Family 489

[Built-in Function]long double __builtin_huge_vall (void)
Similar to __builtin_huge_val, except the return type is long double.

[Built-in Function]int __builtin_fpclassify (int, int, int, int, int, ...)
This built-in implements the C99 fpclassify functionality. The first five int arguments
should be the target library’s notion of the possible FP classes and are used for return
values. They must be constant values and they must appear in this order: FP_NAN,
FP_INFINITE, FP_NORMAL, FP_SUBNORMAL and FP_ZERO. The ellipsis is for exactly one
floating-point value to classify. GCC treats the last argument as type-generic, which
means it does not do default promotion from float to double.

[Built-in Function]double __builtin_inf (void)
Similar to __builtin_huge_val, except a warning is generated if the target floating-
point format does not support infinities.

[Built-in Function]_Decimal32 __builtin_infd32 (void)
Similar to __builtin_inf, except the return type is _Decimal32.

[Built-in Function]_Decimal64 __builtin_infd64 (void)
Similar to __builtin_inf, except the return type is _Decimal64.

[Built-in Function]_Decimal128 __builtin_infd128 (void)
Similar to __builtin_inf, except the return type is _Decimal128.

[Built-in Function]float __builtin_inff (void)
Similar to __builtin_inf, except the return type is float. This function is suitable
for implementing the ISO C99 macro INFINITY.

[Built-in Function]long double __builtin_infl (void)
Similar to __builtin_inf, except the return type is long double.

[Built-in Function]int __builtin_isinf_sign (...)
Similar to isinf, except the return value is -1 for an argument of -Inf and 1 for
an argument of +Inf. Note while the parameter list is an ellipsis, this function only
accepts exactly one floating-point argument. GCC treats this parameter as type-
generic, which means it does not do default promotion from float to double.

[Built-in Function]double __builtin_nan (const char *str)
This is an implementation of the ISO C99 function nan.
Since ISO C99 defines this function in terms of strtod, which we do not implement,
a description of the parsing is in order. The string is parsed as by strtol; that is, the
base is recognized by leading ‘0’ or ‘0x’ prefixes. The number parsed is placed in the
significand such that the least significant bit of the number is at the least significant
bit of the significand. The number is truncated to fit the significand field provided.
The significand is forced to be a quiet NaN.
This function, if given a string literal all of which would have been consumed by
strtol, is evaluated early enough that it is considered a compile-time constant.

[Built-in Function]_Decimal32 __builtin_nand32 (const char *str)
Similar to __builtin_nan, except the return type is _Decimal32.

490 Using the GNU Compiler Collection (GCC)

[Built-in Function]_Decimal64 __builtin_nand64 (const char *str)
Similar to __builtin_nan, except the return type is _Decimal64.

[Built-in Function]_Decimal128 __builtin_nand128 (const char *str)
Similar to __builtin_nan, except the return type is _Decimal128.

[Built-in Function]float __builtin_nanf (const char *str)
Similar to __builtin_nan, except the return type is float.

[Built-in Function]long double __builtin_nanl (const char *str)
Similar to __builtin_nan, except the return type is long double.

[Built-in Function]double __builtin_nans (const char *str)
Similar to __builtin_nan, except the significand is forced to be a signaling NaN.
The nans function is proposed by WG14 N965.

[Built-in Function]float __builtin_nansf (const char *str)
Similar to __builtin_nans, except the return type is float.

[Built-in Function]long double __builtin_nansl (const char *str)
Similar to __builtin_nans, except the return type is long double.

[Built-in Function]int __builtin_ffs (int x)
Returns one plus the index of the least significant 1-bit of x, or if x is zero, returns
zero.

[Built-in Function]int __builtin_clz (unsigned int x)
Returns the number of leading 0-bits in x, starting at the most significant bit position.
If x is 0, the result is undefined.

[Built-in Function]int __builtin_ctz (unsigned int x)
Returns the number of trailing 0-bits in x, starting at the least significant bit position.
If x is 0, the result is undefined.

[Built-in Function]int __builtin_clrsb (int x)
Returns the number of leading redundant sign bits in x, i.e. the number of bits
following the most significant bit that are identical to it. There are no special cases
for 0 or other values.

[Built-in Function]int __builtin_popcount (unsigned int x)
Returns the number of 1-bits in x.

[Built-in Function]int __builtin_parity (unsigned int x)
Returns the parity of x, i.e. the number of 1-bits in x modulo 2.

[Built-in Function]int __builtin_ffsl (long)
Similar to __builtin_ffs, except the argument type is long.

[Built-in Function]int __builtin_clzl (unsigned long)
Similar to __builtin_clz, except the argument type is unsigned long.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm

Chapter 6: Extensions to the C Language Family 491

[Built-in Function]int __builtin_ctzl (unsigned long)
Similar to __builtin_ctz, except the argument type is unsigned long.

[Built-in Function]int __builtin_clrsbl (long)
Similar to __builtin_clrsb, except the argument type is long.

[Built-in Function]int __builtin_popcountl (unsigned long)
Similar to __builtin_popcount, except the argument type is unsigned long.

[Built-in Function]int __builtin_parityl (unsigned long)
Similar to __builtin_parity, except the argument type is unsigned long.

[Built-in Function]int __builtin_ffsll (long long)
Similar to __builtin_ffs, except the argument type is long long.

[Built-in Function]int __builtin_clzll (unsigned long long)
Similar to __builtin_clz, except the argument type is unsigned long long.

[Built-in Function]int __builtin_ctzll (unsigned long long)
Similar to __builtin_ctz, except the argument type is unsigned long long.

[Built-in Function]int __builtin_clrsbll (long long)
Similar to __builtin_clrsb, except the argument type is long long.

[Built-in Function]int __builtin_popcountll (unsigned long long)
Similar to __builtin_popcount, except the argument type is unsigned long long.

[Built-in Function]int __builtin_parityll (unsigned long long)
Similar to __builtin_parity, except the argument type is unsigned long long.

[Built-in Function]double __builtin_powi (double, int)
Returns the first argument raised to the power of the second. Unlike the pow function
no guarantees about precision and rounding are made.

[Built-in Function]float __builtin_powif (float, int)
Similar to __builtin_powi, except the argument and return types are float.

[Built-in Function]long double __builtin_powil (long double, int)
Similar to __builtin_powi, except the argument and return types are long double.

[Built-in Function]uint16_t __builtin_bswap16 (uint16 t x)
Returns x with the order of the bytes reversed; for example, 0xaabb becomes 0xbbaa.
Byte here always means exactly 8 bits.

[Built-in Function]uint32_t __builtin_bswap32 (uint32 t x)
Similar to __builtin_bswap16, except the argument and return types are 32 bit.

[Built-in Function]uint64_t __builtin_bswap64 (uint64 t x)
Similar to __builtin_bswap32, except the argument and return types are 64 bit.

492 Using the GNU Compiler Collection (GCC)

6.57 Built-in Functions Specific to Particular Target
Machines

On some target machines, GCC supports many built-in functions specific to those machines.
Generally these generate calls to specific machine instructions, but allow the compiler to
schedule those calls.

6.57.1 Alpha Built-in Functions

These built-in functions are available for the Alpha family of processors, depending on the
command-line switches used.

The following built-in functions are always available. They all generate the machine
instruction that is part of the name.

long __builtin_alpha_implver (void)

long __builtin_alpha_rpcc (void)

long __builtin_alpha_amask (long)

long __builtin_alpha_cmpbge (long, long)

long __builtin_alpha_extbl (long, long)

long __builtin_alpha_extwl (long, long)

long __builtin_alpha_extll (long, long)

long __builtin_alpha_extql (long, long)

long __builtin_alpha_extwh (long, long)

long __builtin_alpha_extlh (long, long)

long __builtin_alpha_extqh (long, long)

long __builtin_alpha_insbl (long, long)

long __builtin_alpha_inswl (long, long)

long __builtin_alpha_insll (long, long)

long __builtin_alpha_insql (long, long)

long __builtin_alpha_inswh (long, long)

long __builtin_alpha_inslh (long, long)

long __builtin_alpha_insqh (long, long)

long __builtin_alpha_mskbl (long, long)

long __builtin_alpha_mskwl (long, long)

long __builtin_alpha_mskll (long, long)

long __builtin_alpha_mskql (long, long)

long __builtin_alpha_mskwh (long, long)

long __builtin_alpha_msklh (long, long)

long __builtin_alpha_mskqh (long, long)

long __builtin_alpha_umulh (long, long)

long __builtin_alpha_zap (long, long)

long __builtin_alpha_zapnot (long, long)

The following built-in functions are always with ‘-mmax’ or ‘-mcpu=cpu’ where cpu is
pca56 or later. They all generate the machine instruction that is part of the name.

long __builtin_alpha_pklb (long)

long __builtin_alpha_pkwb (long)

long __builtin_alpha_unpkbl (long)

long __builtin_alpha_unpkbw (long)

long __builtin_alpha_minub8 (long, long)

long __builtin_alpha_minsb8 (long, long)

long __builtin_alpha_minuw4 (long, long)

long __builtin_alpha_minsw4 (long, long)

long __builtin_alpha_maxub8 (long, long)

long __builtin_alpha_maxsb8 (long, long)

long __builtin_alpha_maxuw4 (long, long)

long __builtin_alpha_maxsw4 (long, long)

long __builtin_alpha_perr (long, long)

Chapter 6: Extensions to the C Language Family 493

The following built-in functions are always with ‘-mcix’ or ‘-mcpu=cpu’ where cpu is ev67
or later. They all generate the machine instruction that is part of the name.

long __builtin_alpha_cttz (long)

long __builtin_alpha_ctlz (long)

long __builtin_alpha_ctpop (long)

The following built-in functions are available on systems that use the OSF/1 PAL-
code. Normally they invoke the rduniq and wruniq PAL calls, but when invoked with
‘-mtls-kernel’, they invoke rdval and wrval.

void *__builtin_thread_pointer (void)

void __builtin_set_thread_pointer (void *)

6.57.2 Altera Nios II Built-in Functions

These built-in functions are available for the Altera Nios II family of processors.
The following built-in functions are always available. They all generate the machine

instruction that is part of the name.
int __builtin_ldbio (volatile const void *)
int __builtin_ldbuio (volatile const void *)
int __builtin_ldhio (volatile const void *)
int __builtin_ldhuio (volatile const void *)
int __builtin_ldwio (volatile const void *)
void __builtin_stbio (volatile void *, int)
void __builtin_sthio (volatile void *, int)
void __builtin_stwio (volatile void *, int)
void __builtin_sync (void)
int __builtin_rdctl (int)
void __builtin_wrctl (int, int)

The following built-in functions are always available. They all generate a Nios II Custom
Instruction. The name of the function represents the types that the function takes and
returns. The letter before the n is the return type or void if absent. The n represents the
first parameter to all the custom instructions, the custom instruction number. The two
letters after the n represent the up to two parameters to the function.

The letters represent the following data types:

<no letter>
void for return type and no parameter for parameter types.

i int for return type and parameter type

f float for return type and parameter type

p void * for return type and parameter type

And the function names are:
void __builtin_custom_n (void)
void __builtin_custom_ni (int)
void __builtin_custom_nf (float)
void __builtin_custom_np (void *)
void __builtin_custom_nii (int, int)
void __builtin_custom_nif (int, float)

494 Using the GNU Compiler Collection (GCC)

void __builtin_custom_nip (int, void *)
void __builtin_custom_nfi (float, int)
void __builtin_custom_nff (float, float)
void __builtin_custom_nfp (float, void *)
void __builtin_custom_npi (void *, int)
void __builtin_custom_npf (void *, float)
void __builtin_custom_npp (void *, void *)
int __builtin_custom_in (void)
int __builtin_custom_ini (int)
int __builtin_custom_inf (float)
int __builtin_custom_inp (void *)
int __builtin_custom_inii (int, int)
int __builtin_custom_inif (int, float)
int __builtin_custom_inip (int, void *)
int __builtin_custom_infi (float, int)
int __builtin_custom_inff (float, float)
int __builtin_custom_infp (float, void *)
int __builtin_custom_inpi (void *, int)
int __builtin_custom_inpf (void *, float)
int __builtin_custom_inpp (void *, void *)
float __builtin_custom_fn (void)
float __builtin_custom_fni (int)
float __builtin_custom_fnf (float)
float __builtin_custom_fnp (void *)
float __builtin_custom_fnii (int, int)
float __builtin_custom_fnif (int, float)
float __builtin_custom_fnip (int, void *)
float __builtin_custom_fnfi (float, int)
float __builtin_custom_fnff (float, float)
float __builtin_custom_fnfp (float, void *)
float __builtin_custom_fnpi (void *, int)
float __builtin_custom_fnpf (void *, float)
float __builtin_custom_fnpp (void *, void *)
void * __builtin_custom_pn (void)
void * __builtin_custom_pni (int)
void * __builtin_custom_pnf (float)
void * __builtin_custom_pnp (void *)
void * __builtin_custom_pnii (int, int)
void * __builtin_custom_pnif (int, float)
void * __builtin_custom_pnip (int, void *)
void * __builtin_custom_pnfi (float, int)
void * __builtin_custom_pnff (float, float)
void * __builtin_custom_pnfp (float, void *)
void * __builtin_custom_pnpi (void *, int)
void * __builtin_custom_pnpf (void *, float)
void * __builtin_custom_pnpp (void *, void *)

Chapter 6: Extensions to the C Language Family 495

6.57.3 ARC Built-in Functions

The following built-in functions are provided for ARC targets. The built-ins generate the
corresponding assembly instructions. In the examples given below, the generated code
often requires an operand or result to be in a register. Where necessary further code will
be generated to ensure this is true, but for brevity this is not described in each case.

Note: Using a built-in to generate an instruction not supported by a target may cause
problems. At present the compiler is not guaranteed to detect such misuse, and as a result
an internal compiler error may be generated.

[Built-in Function]int __builtin_arc_aligned (void *val, int alignval)
Return 1 if val is known to have the byte alignment given by alignval, otherwise return
0. Note that this is different from

__alignof__(*(char *)val) >= alignval

because alignof sees only the type of the dereference, whereas builtin arc align
uses alignment information from the pointer as well as from the pointed-to type. The
information available will depend on optimization level.

[Built-in Function]void __builtin_arc_brk (void)
Generates

brk

[Built-in Function]unsigned int __builtin_arc_core_read (unsigned int
regno)

The operand is the number of a register to be read. Generates:
mov dest, rregno

where the value in dest will be the result returned from the built-in.

[Built-in Function]void __builtin_arc_core_write (unsigned int regno,
unsigned int val)

The first operand is the number of a register to be written, the second operand is a
compile time constant to write into that register. Generates:

mov rregno, val

[Built-in Function]int __builtin_arc_divaw (int a, int b)
Only available if either ‘-mcpu=ARC700’ or ‘-meA’ is set. Generates:

divaw dest, a, b

where the value in dest will be the result returned from the built-in.

[Built-in Function]void __builtin_arc_flag (unsigned int a)
Generates

flag a

[Built-in Function]unsigned int __builtin_arc_lr (unsigned int auxr)
The operand, auxv, is the address of an auxiliary register and must be a compile time
constant. Generates:

lr dest, [auxr]

Where the value in dest will be the result returned from the built-in.

496 Using the GNU Compiler Collection (GCC)

[Built-in Function]void __builtin_arc_mul64 (int a, int b)
Only available with ‘-mmul64’. Generates:

mul64 a, b

[Built-in Function]void __builtin_arc_mulu64 (unsigned int a, unsigned int b)
Only available with ‘-mmul64’. Generates:

mulu64 a, b

[Built-in Function]void __builtin_arc_nop (void)
Generates:

nop

[Built-in Function]int __builtin_arc_norm (int src)
Only valid if the ‘norm’ instruction is available through the ‘-mnorm’ option or by
default with ‘-mcpu=ARC700’. Generates:

norm dest, src

Where the value in dest will be the result returned from the built-in.

[Built-in Function]short int __builtin_arc_normw (short int src)
Only valid if the ‘normw’ instruction is available through the ‘-mnorm’ option or by
default with ‘-mcpu=ARC700’. Generates:

normw dest, src

Where the value in dest will be the result returned from the built-in.

[Built-in Function]void __builtin_arc_rtie (void)
Generates:

rtie

[Built-in Function]void __builtin_arc_sleep (int a
Generates:

sleep a

[Built-in Function]void __builtin_arc_sr (unsigned int auxr, unsigned int val)
The first argument, auxv, is the address of an auxiliary register, the second argument,
val, is a compile time constant to be written to the register. Generates:

sr auxr, [val]

[Built-in Function]int __builtin_arc_swap (int src)
Only valid with ‘-mswap’. Generates:

swap dest, src

Where the value in dest will be the result returned from the built-in.

[Built-in Function]void __builtin_arc_swi (void)
Generates:

swi

Chapter 6: Extensions to the C Language Family 497

[Built-in Function]void __builtin_arc_sync (void)
Only available with ‘-mcpu=ARC700’. Generates:

sync

[Built-in Function]void __builtin_arc_trap_s (unsigned int c)
Only available with ‘-mcpu=ARC700’. Generates:

trap_s c

[Built-in Function]void __builtin_arc_unimp_s (void)
Only available with ‘-mcpu=ARC700’. Generates:

unimp_s

The instructions generated by the following builtins are not considered as candidates for
scheduling. They are not moved around by the compiler during scheduling, and thus can
be expected to appear where they are put in the C code:

__builtin_arc_brk()
__builtin_arc_core_read()
__builtin_arc_core_write()
__builtin_arc_flag()
__builtin_arc_lr()
__builtin_arc_sleep()
__builtin_arc_sr()
__builtin_arc_swi()

6.57.4 ARC SIMD Built-in Functions

SIMD builtins provided by the compiler can be used to generate the vector instructions.
This section describes the available builtins and their usage in programs. With the ‘-msimd’
option, the compiler provides 128-bit vector types, which can be specified using the vector_
size attribute. The header file ‘arc-simd.h’ can be included to use the following predefined
types:

typedef int __v4si __attribute__((vector_size(16)));
typedef short __v8hi __attribute__((vector_size(16)));

These types can be used to define 128-bit variables. The built-in functions listed in the
following section can be used on these variables to generate the vector operations.

For all builtins, __builtin_arc_someinsn, the header file ‘arc-simd.h’ also provides
equivalent macros called _someinsn that can be used for programming ease and improved
readability. The following macros for DMA control are also provided:

#define _setup_dma_in_channel_reg _vdiwr
#define _setup_dma_out_channel_reg _vdowr

The following is a complete list of all the SIMD built-ins provided for ARC, grouped by
calling signature.

The following take two __v8hi arguments and return a __v8hi result:
__v8hi __builtin_arc_vaddaw (__v8hi, __v8hi)
__v8hi __builtin_arc_vaddw (__v8hi, __v8hi)
__v8hi __builtin_arc_vand (__v8hi, __v8hi)

498 Using the GNU Compiler Collection (GCC)

__v8hi __builtin_arc_vandaw (__v8hi, __v8hi)
__v8hi __builtin_arc_vavb (__v8hi, __v8hi)
__v8hi __builtin_arc_vavrb (__v8hi, __v8hi)
__v8hi __builtin_arc_vbic (__v8hi, __v8hi)
__v8hi __builtin_arc_vbicaw (__v8hi, __v8hi)
__v8hi __builtin_arc_vdifaw (__v8hi, __v8hi)
__v8hi __builtin_arc_vdifw (__v8hi, __v8hi)
__v8hi __builtin_arc_veqw (__v8hi, __v8hi)
__v8hi __builtin_arc_vh264f (__v8hi, __v8hi)
__v8hi __builtin_arc_vh264ft (__v8hi, __v8hi)
__v8hi __builtin_arc_vh264fw (__v8hi, __v8hi)
__v8hi __builtin_arc_vlew (__v8hi, __v8hi)
__v8hi __builtin_arc_vltw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmaxw (__v8hi, __v8hi)
__v8hi __builtin_arc_vminaw (__v8hi, __v8hi)
__v8hi __builtin_arc_vminw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr1w (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr2w (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr3w (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr4w (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr5w (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr6w (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmr7w (__v8hi, __v8hi)
__v8hi __builtin_arc_vmrb (__v8hi, __v8hi)
__v8hi __builtin_arc_vmulaw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmulfw (__v8hi, __v8hi)
__v8hi __builtin_arc_vmulw (__v8hi, __v8hi)
__v8hi __builtin_arc_vnew (__v8hi, __v8hi)
__v8hi __builtin_arc_vor (__v8hi, __v8hi)
__v8hi __builtin_arc_vsubaw (__v8hi, __v8hi)
__v8hi __builtin_arc_vsubw (__v8hi, __v8hi)
__v8hi __builtin_arc_vsummw (__v8hi, __v8hi)
__v8hi __builtin_arc_vvc1f (__v8hi, __v8hi)
__v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi)
__v8hi __builtin_arc_vxor (__v8hi, __v8hi)
__v8hi __builtin_arc_vxoraw (__v8hi, __v8hi)

The following take one __v8hi and one int argument and return a __v8hi result:

Chapter 6: Extensions to the C Language Family 499

__v8hi __builtin_arc_vbaddw (__v8hi, int)
__v8hi __builtin_arc_vbmaxw (__v8hi, int)
__v8hi __builtin_arc_vbminw (__v8hi, int)
__v8hi __builtin_arc_vbmulaw (__v8hi, int)
__v8hi __builtin_arc_vbmulfw (__v8hi, int)
__v8hi __builtin_arc_vbmulw (__v8hi, int)
__v8hi __builtin_arc_vbrsubw (__v8hi, int)
__v8hi __builtin_arc_vbsubw (__v8hi, int)

The following take one __v8hi argument and one int argument which must be a 3-bit
compile time constant indicating a register number I0-I7. They return a __v8hi result.

__v8hi __builtin_arc_vasrw (__v8hi, const int)
__v8hi __builtin_arc_vsr8 (__v8hi, const int)
__v8hi __builtin_arc_vsr8aw (__v8hi, const int)

The following take one __v8hi argument and one int argument which must be a 6-bit
compile time constant. They return a __v8hi result.

__v8hi __builtin_arc_vasrpwbi (__v8hi, const int)
__v8hi __builtin_arc_vasrrpwbi (__v8hi, const int)
__v8hi __builtin_arc_vasrrwi (__v8hi, const int)
__v8hi __builtin_arc_vasrsrwi (__v8hi, const int)
__v8hi __builtin_arc_vasrwi (__v8hi, const int)
__v8hi __builtin_arc_vsr8awi (__v8hi, const int)
__v8hi __builtin_arc_vsr8i (__v8hi, const int)

The following take one __v8hi argument and one int argument which must be a 8-bit
compile time constant. They return a __v8hi result.

__v8hi __builtin_arc_vd6tapf (__v8hi, const int)
__v8hi __builtin_arc_vmvaw (__v8hi, const int)
__v8hi __builtin_arc_vmvw (__v8hi, const int)
__v8hi __builtin_arc_vmvzw (__v8hi, const int)

The following take two int arguments, the second of which which must be a 8-bit compile
time constant. They return a __v8hi result:

__v8hi __builtin_arc_vmovaw (int, const int)
__v8hi __builtin_arc_vmovw (int, const int)
__v8hi __builtin_arc_vmovzw (int, const int)

The following take a single __v8hi argument and return a __v8hi result:
__v8hi __builtin_arc_vabsaw (__v8hi)
__v8hi __builtin_arc_vabsw (__v8hi)
__v8hi __builtin_arc_vaddsuw (__v8hi)
__v8hi __builtin_arc_vexch1 (__v8hi)
__v8hi __builtin_arc_vexch2 (__v8hi)
__v8hi __builtin_arc_vexch4 (__v8hi)
__v8hi __builtin_arc_vsignw (__v8hi)
__v8hi __builtin_arc_vupbaw (__v8hi)
__v8hi __builtin_arc_vupbw (__v8hi)
__v8hi __builtin_arc_vupsbaw (__v8hi)
__v8hi __builtin_arc_vupsbw (__v8hi)

500 Using the GNU Compiler Collection (GCC)

The followign take two int arguments and return no result:

void __builtin_arc_vdirun (int, int)
void __builtin_arc_vdorun (int, int)

The following take two int arguments and return no result. The first argument must a
3-bit compile time constant indicating one of the DR0-DR7 DMA setup channels:

void __builtin_arc_vdiwr (const int, int)
void __builtin_arc_vdowr (const int, int)

The following take an int argument and return no result:

void __builtin_arc_vendrec (int)
void __builtin_arc_vrec (int)
void __builtin_arc_vrecrun (int)
void __builtin_arc_vrun (int)

The following take a __v8hi argument and two int arguments and return a __v8hi
result. The second argument must be a 3-bit compile time constants, indicating one the
registers I0-I7, and the third argument must be an 8-bit compile time constant.

Note: Although the equivalent hardware instructions do not take an SIMD register as an
operand, these builtins overwrite the relevant bits of the __v8hi register provided as the
first argument with the value loaded from the [Ib, u8] location in the SDM.

__v8hi __builtin_arc_vld32 (__v8hi, const int, const int)
__v8hi __builtin_arc_vld32wh (__v8hi, const int, const int)
__v8hi __builtin_arc_vld32wl (__v8hi, const int, const int)
__v8hi __builtin_arc_vld64 (__v8hi, const int, const int)

The following take two int arguments and return a __v8hi result. The first argument
must be a 3-bit compile time constants, indicating one the registers I0-I7, and the second
argument must be an 8-bit compile time constant.

__v8hi __builtin_arc_vld128 (const int, const int)
__v8hi __builtin_arc_vld64w (const int, const int)

The following take a __v8hi argument and two int arguments and return no result. The
second argument must be a 3-bit compile time constants, indicating one the registers I0-I7,
and the third argument must be an 8-bit compile time constant.

void __builtin_arc_vst128 (__v8hi, const int, const int)
void __builtin_arc_vst64 (__v8hi, const int, const int)

The following take a __v8hi argument and three int arguments and return no result.
The second argument must be a 3-bit compile-time constant, identifying the 16-bit sub-
register to be stored, the third argument must be a 3-bit compile time constants, indicating
one the registers I0-I7, and the fourth argument must be an 8-bit compile time constant.

void __builtin_arc_vst16_n (__v8hi, const int, const int, const int)
void __builtin_arc_vst32_n (__v8hi, const int, const int, const int)

6.57.5 ARM iWMMXt Built-in Functions

These built-in functions are available for the ARM family of processors when the
‘-mcpu=iwmmxt’ switch is used:

Chapter 6: Extensions to the C Language Family 501

typedef int v2si __attribute__ ((vector_size (8)));

typedef short v4hi __attribute__ ((vector_size (8)));

typedef char v8qi __attribute__ ((vector_size (8)));

int __builtin_arm_getwcgr0 (void)

void __builtin_arm_setwcgr0 (int)

int __builtin_arm_getwcgr1 (void)

void __builtin_arm_setwcgr1 (int)

int __builtin_arm_getwcgr2 (void)

void __builtin_arm_setwcgr2 (int)

int __builtin_arm_getwcgr3 (void)

void __builtin_arm_setwcgr3 (int)

int __builtin_arm_textrmsb (v8qi, int)

int __builtin_arm_textrmsh (v4hi, int)

int __builtin_arm_textrmsw (v2si, int)

int __builtin_arm_textrmub (v8qi, int)

int __builtin_arm_textrmuh (v4hi, int)

int __builtin_arm_textrmuw (v2si, int)

v8qi __builtin_arm_tinsrb (v8qi, int, int)

v4hi __builtin_arm_tinsrh (v4hi, int, int)

v2si __builtin_arm_tinsrw (v2si, int, int)

long long __builtin_arm_tmia (long long, int, int)

long long __builtin_arm_tmiabb (long long, int, int)

long long __builtin_arm_tmiabt (long long, int, int)

long long __builtin_arm_tmiaph (long long, int, int)

long long __builtin_arm_tmiatb (long long, int, int)

long long __builtin_arm_tmiatt (long long, int, int)

int __builtin_arm_tmovmskb (v8qi)

int __builtin_arm_tmovmskh (v4hi)

int __builtin_arm_tmovmskw (v2si)

long long __builtin_arm_waccb (v8qi)

long long __builtin_arm_wacch (v4hi)

long long __builtin_arm_waccw (v2si)

v8qi __builtin_arm_waddb (v8qi, v8qi)

v8qi __builtin_arm_waddbss (v8qi, v8qi)

v8qi __builtin_arm_waddbus (v8qi, v8qi)

v4hi __builtin_arm_waddh (v4hi, v4hi)

v4hi __builtin_arm_waddhss (v4hi, v4hi)

v4hi __builtin_arm_waddhus (v4hi, v4hi)

v2si __builtin_arm_waddw (v2si, v2si)

v2si __builtin_arm_waddwss (v2si, v2si)

v2si __builtin_arm_waddwus (v2si, v2si)

v8qi __builtin_arm_walign (v8qi, v8qi, int)

long long __builtin_arm_wand(long long, long long)

long long __builtin_arm_wandn (long long, long long)

v8qi __builtin_arm_wavg2b (v8qi, v8qi)

v8qi __builtin_arm_wavg2br (v8qi, v8qi)

v4hi __builtin_arm_wavg2h (v4hi, v4hi)

v4hi __builtin_arm_wavg2hr (v4hi, v4hi)

v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)

v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)

v2si __builtin_arm_wcmpeqw (v2si, v2si)

v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)

v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)

v2si __builtin_arm_wcmpgtsw (v2si, v2si)

v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)

v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)

v2si __builtin_arm_wcmpgtuw (v2si, v2si)

502 Using the GNU Compiler Collection (GCC)

long long __builtin_arm_wmacs (long long, v4hi, v4hi)

long long __builtin_arm_wmacsz (v4hi, v4hi)

long long __builtin_arm_wmacu (long long, v4hi, v4hi)

long long __builtin_arm_wmacuz (v4hi, v4hi)

v4hi __builtin_arm_wmadds (v4hi, v4hi)

v4hi __builtin_arm_wmaddu (v4hi, v4hi)

v8qi __builtin_arm_wmaxsb (v8qi, v8qi)

v4hi __builtin_arm_wmaxsh (v4hi, v4hi)

v2si __builtin_arm_wmaxsw (v2si, v2si)

v8qi __builtin_arm_wmaxub (v8qi, v8qi)

v4hi __builtin_arm_wmaxuh (v4hi, v4hi)

v2si __builtin_arm_wmaxuw (v2si, v2si)

v8qi __builtin_arm_wminsb (v8qi, v8qi)

v4hi __builtin_arm_wminsh (v4hi, v4hi)

v2si __builtin_arm_wminsw (v2si, v2si)

v8qi __builtin_arm_wminub (v8qi, v8qi)

v4hi __builtin_arm_wminuh (v4hi, v4hi)

v2si __builtin_arm_wminuw (v2si, v2si)

v4hi __builtin_arm_wmulsm (v4hi, v4hi)

v4hi __builtin_arm_wmulul (v4hi, v4hi)

v4hi __builtin_arm_wmulum (v4hi, v4hi)

long long __builtin_arm_wor (long long, long long)

v2si __builtin_arm_wpackdss (long long, long long)

v2si __builtin_arm_wpackdus (long long, long long)

v8qi __builtin_arm_wpackhss (v4hi, v4hi)

v8qi __builtin_arm_wpackhus (v4hi, v4hi)

v4hi __builtin_arm_wpackwss (v2si, v2si)

v4hi __builtin_arm_wpackwus (v2si, v2si)

long long __builtin_arm_wrord (long long, long long)

long long __builtin_arm_wrordi (long long, int)

v4hi __builtin_arm_wrorh (v4hi, long long)

v4hi __builtin_arm_wrorhi (v4hi, int)

v2si __builtin_arm_wrorw (v2si, long long)

v2si __builtin_arm_wrorwi (v2si, int)

v2si __builtin_arm_wsadb (v2si, v8qi, v8qi)

v2si __builtin_arm_wsadbz (v8qi, v8qi)

v2si __builtin_arm_wsadh (v2si, v4hi, v4hi)

v2si __builtin_arm_wsadhz (v4hi, v4hi)

v4hi __builtin_arm_wshufh (v4hi, int)

long long __builtin_arm_wslld (long long, long long)

long long __builtin_arm_wslldi (long long, int)

v4hi __builtin_arm_wsllh (v4hi, long long)

v4hi __builtin_arm_wsllhi (v4hi, int)

v2si __builtin_arm_wsllw (v2si, long long)

v2si __builtin_arm_wsllwi (v2si, int)

long long __builtin_arm_wsrad (long long, long long)

long long __builtin_arm_wsradi (long long, int)

v4hi __builtin_arm_wsrah (v4hi, long long)

v4hi __builtin_arm_wsrahi (v4hi, int)

v2si __builtin_arm_wsraw (v2si, long long)

v2si __builtin_arm_wsrawi (v2si, int)

long long __builtin_arm_wsrld (long long, long long)

long long __builtin_arm_wsrldi (long long, int)

v4hi __builtin_arm_wsrlh (v4hi, long long)

v4hi __builtin_arm_wsrlhi (v4hi, int)

v2si __builtin_arm_wsrlw (v2si, long long)

v2si __builtin_arm_wsrlwi (v2si, int)

v8qi __builtin_arm_wsubb (v8qi, v8qi)

Chapter 6: Extensions to the C Language Family 503

v8qi __builtin_arm_wsubbss (v8qi, v8qi)

v8qi __builtin_arm_wsubbus (v8qi, v8qi)

v4hi __builtin_arm_wsubh (v4hi, v4hi)

v4hi __builtin_arm_wsubhss (v4hi, v4hi)

v4hi __builtin_arm_wsubhus (v4hi, v4hi)

v2si __builtin_arm_wsubw (v2si, v2si)

v2si __builtin_arm_wsubwss (v2si, v2si)

v2si __builtin_arm_wsubwus (v2si, v2si)

v4hi __builtin_arm_wunpckehsb (v8qi)

v2si __builtin_arm_wunpckehsh (v4hi)

long long __builtin_arm_wunpckehsw (v2si)

v4hi __builtin_arm_wunpckehub (v8qi)

v2si __builtin_arm_wunpckehuh (v4hi)

long long __builtin_arm_wunpckehuw (v2si)

v4hi __builtin_arm_wunpckelsb (v8qi)

v2si __builtin_arm_wunpckelsh (v4hi)

long long __builtin_arm_wunpckelsw (v2si)

v4hi __builtin_arm_wunpckelub (v8qi)

v2si __builtin_arm_wunpckeluh (v4hi)

long long __builtin_arm_wunpckeluw (v2si)

v8qi __builtin_arm_wunpckihb (v8qi, v8qi)

v4hi __builtin_arm_wunpckihh (v4hi, v4hi)

v2si __builtin_arm_wunpckihw (v2si, v2si)

v8qi __builtin_arm_wunpckilb (v8qi, v8qi)

v4hi __builtin_arm_wunpckilh (v4hi, v4hi)

v2si __builtin_arm_wunpckilw (v2si, v2si)

long long __builtin_arm_wxor (long long, long long)

long long __builtin_arm_wzero ()

6.57.6 ARM NEON Intrinsics

These built-in intrinsics for the ARM Advanced SIMD extension are available when the
‘-mfpu=neon’ switch is used:

6.57.6.1 Addition

• uint32x2 t vadd u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vadd.i32 d0, d0, d0

• uint16x4 t vadd u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vadd.i16 d0, d0, d0

• uint8x8 t vadd u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vadd.i8 d0, d0, d0

• int32x2 t vadd s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vadd.i32 d0, d0, d0

• int16x4 t vadd s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vadd.i16 d0, d0, d0

• int8x8 t vadd s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vadd.i8 d0, d0, d0

• float32x2 t vadd f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vadd.f32 d0, d0, d0

• uint64x1 t vadd u64 (uint64x1 t, uint64x1 t)
• int64x1 t vadd s64 (int64x1 t, int64x1 t)

504 Using the GNU Compiler Collection (GCC)

• uint32x4 t vaddq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vadd.i32 q0, q0, q0

• uint16x8 t vaddq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vadd.i16 q0, q0, q0

• uint8x16 t vaddq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vadd.i8 q0, q0, q0

• int32x4 t vaddq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vadd.i32 q0, q0, q0

• int16x8 t vaddq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vadd.i16 q0, q0, q0

• int8x16 t vaddq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vadd.i8 q0, q0, q0

• uint64x2 t vaddq u64 (uint64x2 t, uint64x2 t)
Form of expected instruction(s): vadd.i64 q0, q0, q0

• int64x2 t vaddq s64 (int64x2 t, int64x2 t)
Form of expected instruction(s): vadd.i64 q0, q0, q0

• float32x4 t vaddq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vadd.f32 q0, q0, q0

• uint64x2 t vaddl u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vaddl.u32 q0, d0, d0

• uint32x4 t vaddl u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vaddl.u16 q0, d0, d0

• uint16x8 t vaddl u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vaddl.u8 q0, d0, d0

• int64x2 t vaddl s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vaddl.s32 q0, d0, d0

• int32x4 t vaddl s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vaddl.s16 q0, d0, d0

• int16x8 t vaddl s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vaddl.s8 q0, d0, d0

• uint64x2 t vaddw u32 (uint64x2 t, uint32x2 t)
Form of expected instruction(s): vaddw.u32 q0, q0, d0

• uint32x4 t vaddw u16 (uint32x4 t, uint16x4 t)
Form of expected instruction(s): vaddw.u16 q0, q0, d0

• uint16x8 t vaddw u8 (uint16x8 t, uint8x8 t)
Form of expected instruction(s): vaddw.u8 q0, q0, d0

• int64x2 t vaddw s32 (int64x2 t, int32x2 t)
Form of expected instruction(s): vaddw.s32 q0, q0, d0

• int32x4 t vaddw s16 (int32x4 t, int16x4 t)
Form of expected instruction(s): vaddw.s16 q0, q0, d0

• int16x8 t vaddw s8 (int16x8 t, int8x8 t)
Form of expected instruction(s): vaddw.s8 q0, q0, d0

Chapter 6: Extensions to the C Language Family 505

• uint32x2 t vhadd u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vhadd.u32 d0, d0, d0

• uint16x4 t vhadd u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vhadd.u16 d0, d0, d0

• uint8x8 t vhadd u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vhadd.u8 d0, d0, d0

• int32x2 t vhadd s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vhadd.s32 d0, d0, d0

• int16x4 t vhadd s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vhadd.s16 d0, d0, d0

• int8x8 t vhadd s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vhadd.s8 d0, d0, d0

• uint32x4 t vhaddq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vhadd.u32 q0, q0, q0

• uint16x8 t vhaddq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vhadd.u16 q0, q0, q0

• uint8x16 t vhaddq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vhadd.u8 q0, q0, q0

• int32x4 t vhaddq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vhadd.s32 q0, q0, q0

• int16x8 t vhaddq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vhadd.s16 q0, q0, q0

• int8x16 t vhaddq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vhadd.s8 q0, q0, q0

• uint32x2 t vrhadd u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vrhadd.u32 d0, d0, d0

• uint16x4 t vrhadd u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vrhadd.u16 d0, d0, d0

• uint8x8 t vrhadd u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vrhadd.u8 d0, d0, d0

• int32x2 t vrhadd s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vrhadd.s32 d0, d0, d0

• int16x4 t vrhadd s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vrhadd.s16 d0, d0, d0

• int8x8 t vrhadd s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vrhadd.s8 d0, d0, d0

• uint32x4 t vrhaddq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vrhadd.u32 q0, q0, q0

• uint16x8 t vrhaddq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vrhadd.u16 q0, q0, q0

• uint8x16 t vrhaddq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vrhadd.u8 q0, q0, q0

506 Using the GNU Compiler Collection (GCC)

• int32x4 t vrhaddq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vrhadd.s32 q0, q0, q0

• int16x8 t vrhaddq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vrhadd.s16 q0, q0, q0

• int8x16 t vrhaddq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vrhadd.s8 q0, q0, q0

• uint32x2 t vqadd u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vqadd.u32 d0, d0, d0

• uint16x4 t vqadd u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vqadd.u16 d0, d0, d0

• uint8x8 t vqadd u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vqadd.u8 d0, d0, d0

• int32x2 t vqadd s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vqadd.s32 d0, d0, d0

• int16x4 t vqadd s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vqadd.s16 d0, d0, d0

• int8x8 t vqadd s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vqadd.s8 d0, d0, d0

• uint64x1 t vqadd u64 (uint64x1 t, uint64x1 t)
Form of expected instruction(s): vqadd.u64 d0, d0, d0

• int64x1 t vqadd s64 (int64x1 t, int64x1 t)
Form of expected instruction(s): vqadd.s64 d0, d0, d0

• uint32x4 t vqaddq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vqadd.u32 q0, q0, q0

• uint16x8 t vqaddq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vqadd.u16 q0, q0, q0

• uint8x16 t vqaddq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vqadd.u8 q0, q0, q0

• int32x4 t vqaddq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vqadd.s32 q0, q0, q0

• int16x8 t vqaddq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vqadd.s16 q0, q0, q0

• int8x16 t vqaddq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vqadd.s8 q0, q0, q0

• uint64x2 t vqaddq u64 (uint64x2 t, uint64x2 t)
Form of expected instruction(s): vqadd.u64 q0, q0, q0

• int64x2 t vqaddq s64 (int64x2 t, int64x2 t)
Form of expected instruction(s): vqadd.s64 q0, q0, q0

• uint32x2 t vaddhn u64 (uint64x2 t, uint64x2 t)
Form of expected instruction(s): vaddhn.i64 d0, q0, q0

• uint16x4 t vaddhn u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vaddhn.i32 d0, q0, q0

Chapter 6: Extensions to the C Language Family 507

• uint8x8 t vaddhn u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vaddhn.i16 d0, q0, q0

• int32x2 t vaddhn s64 (int64x2 t, int64x2 t)
Form of expected instruction(s): vaddhn.i64 d0, q0, q0

• int16x4 t vaddhn s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vaddhn.i32 d0, q0, q0

• int8x8 t vaddhn s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vaddhn.i16 d0, q0, q0

• uint32x2 t vraddhn u64 (uint64x2 t, uint64x2 t)
Form of expected instruction(s): vraddhn.i64 d0, q0, q0

• uint16x4 t vraddhn u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vraddhn.i32 d0, q0, q0

• uint8x8 t vraddhn u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vraddhn.i16 d0, q0, q0

• int32x2 t vraddhn s64 (int64x2 t, int64x2 t)
Form of expected instruction(s): vraddhn.i64 d0, q0, q0

• int16x4 t vraddhn s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vraddhn.i32 d0, q0, q0

• int8x8 t vraddhn s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vraddhn.i16 d0, q0, q0

6.57.6.2 Multiplication

• uint32x2 t vmul u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vmul.i32 d0, d0, d0

• uint16x4 t vmul u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vmul.i16 d0, d0, d0

• uint8x8 t vmul u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vmul.i8 d0, d0, d0

• int32x2 t vmul s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vmul.i32 d0, d0, d0

• int16x4 t vmul s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vmul.i16 d0, d0, d0

• int8x8 t vmul s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vmul.i8 d0, d0, d0

• float32x2 t vmul f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vmul.f32 d0, d0, d0

• poly8x8 t vmul p8 (poly8x8 t, poly8x8 t)
Form of expected instruction(s): vmul.p8 d0, d0, d0

• uint32x4 t vmulq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vmul.i32 q0, q0, q0

• uint16x8 t vmulq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vmul.i16 q0, q0, q0

508 Using the GNU Compiler Collection (GCC)

• uint8x16 t vmulq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vmul.i8 q0, q0, q0

• int32x4 t vmulq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vmul.i32 q0, q0, q0

• int16x8 t vmulq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vmul.i16 q0, q0, q0

• int8x16 t vmulq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vmul.i8 q0, q0, q0

• float32x4 t vmulq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vmul.f32 q0, q0, q0

• poly8x16 t vmulq p8 (poly8x16 t, poly8x16 t)
Form of expected instruction(s): vmul.p8 q0, q0, q0

• int32x2 t vqdmulh s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vqdmulh.s32 d0, d0, d0

• int16x4 t vqdmulh s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vqdmulh.s16 d0, d0, d0

• int32x4 t vqdmulhq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vqdmulh.s32 q0, q0, q0

• int16x8 t vqdmulhq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vqdmulh.s16 q0, q0, q0

• int32x2 t vqrdmulh s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vqrdmulh.s32 d0, d0, d0

• int16x4 t vqrdmulh s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vqrdmulh.s16 d0, d0, d0

• int32x4 t vqrdmulhq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vqrdmulh.s32 q0, q0, q0

• int16x8 t vqrdmulhq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vqrdmulh.s16 q0, q0, q0

• uint64x2 t vmull u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vmull.u32 q0, d0, d0

• uint32x4 t vmull u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vmull.u16 q0, d0, d0

• uint16x8 t vmull u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vmull.u8 q0, d0, d0

• int64x2 t vmull s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vmull.s32 q0, d0, d0

• int32x4 t vmull s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vmull.s16 q0, d0, d0

• int16x8 t vmull s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vmull.s8 q0, d0, d0

• poly16x8 t vmull p8 (poly8x8 t, poly8x8 t)
Form of expected instruction(s): vmull.p8 q0, d0, d0

Chapter 6: Extensions to the C Language Family 509

• int64x2 t vqdmull s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vqdmull.s32 q0, d0, d0

• int32x4 t vqdmull s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vqdmull.s16 q0, d0, d0

6.57.6.3 Multiply-accumulate

• uint32x2 t vmla u32 (uint32x2 t, uint32x2 t, uint32x2 t)
Form of expected instruction(s): vmla.i32 d0, d0, d0

• uint16x4 t vmla u16 (uint16x4 t, uint16x4 t, uint16x4 t)
Form of expected instruction(s): vmla.i16 d0, d0, d0

• uint8x8 t vmla u8 (uint8x8 t, uint8x8 t, uint8x8 t)
Form of expected instruction(s): vmla.i8 d0, d0, d0

• int32x2 t vmla s32 (int32x2 t, int32x2 t, int32x2 t)
Form of expected instruction(s): vmla.i32 d0, d0, d0

• int16x4 t vmla s16 (int16x4 t, int16x4 t, int16x4 t)
Form of expected instruction(s): vmla.i16 d0, d0, d0

• int8x8 t vmla s8 (int8x8 t, int8x8 t, int8x8 t)
Form of expected instruction(s): vmla.i8 d0, d0, d0

• float32x2 t vmla f32 (float32x2 t, float32x2 t, float32x2 t)
Form of expected instruction(s): vmla.f32 d0, d0, d0

• uint32x4 t vmlaq u32 (uint32x4 t, uint32x4 t, uint32x4 t)
Form of expected instruction(s): vmla.i32 q0, q0, q0

• uint16x8 t vmlaq u16 (uint16x8 t, uint16x8 t, uint16x8 t)
Form of expected instruction(s): vmla.i16 q0, q0, q0

• uint8x16 t vmlaq u8 (uint8x16 t, uint8x16 t, uint8x16 t)
Form of expected instruction(s): vmla.i8 q0, q0, q0

• int32x4 t vmlaq s32 (int32x4 t, int32x4 t, int32x4 t)
Form of expected instruction(s): vmla.i32 q0, q0, q0

• int16x8 t vmlaq s16 (int16x8 t, int16x8 t, int16x8 t)
Form of expected instruction(s): vmla.i16 q0, q0, q0

• int8x16 t vmlaq s8 (int8x16 t, int8x16 t, int8x16 t)
Form of expected instruction(s): vmla.i8 q0, q0, q0

• float32x4 t vmlaq f32 (float32x4 t, float32x4 t, float32x4 t)
Form of expected instruction(s): vmla.f32 q0, q0, q0

• uint64x2 t vmlal u32 (uint64x2 t, uint32x2 t, uint32x2 t)
Form of expected instruction(s): vmlal.u32 q0, d0, d0

• uint32x4 t vmlal u16 (uint32x4 t, uint16x4 t, uint16x4 t)
Form of expected instruction(s): vmlal.u16 q0, d0, d0

• uint16x8 t vmlal u8 (uint16x8 t, uint8x8 t, uint8x8 t)
Form of expected instruction(s): vmlal.u8 q0, d0, d0

• int64x2 t vmlal s32 (int64x2 t, int32x2 t, int32x2 t)
Form of expected instruction(s): vmlal.s32 q0, d0, d0

510 Using the GNU Compiler Collection (GCC)

• int32x4 t vmlal s16 (int32x4 t, int16x4 t, int16x4 t)
Form of expected instruction(s): vmlal.s16 q0, d0, d0

• int16x8 t vmlal s8 (int16x8 t, int8x8 t, int8x8 t)
Form of expected instruction(s): vmlal.s8 q0, d0, d0

• int64x2 t vqdmlal s32 (int64x2 t, int32x2 t, int32x2 t)
Form of expected instruction(s): vqdmlal.s32 q0, d0, d0

• int32x4 t vqdmlal s16 (int32x4 t, int16x4 t, int16x4 t)
Form of expected instruction(s): vqdmlal.s16 q0, d0, d0

6.57.6.4 Multiply-subtract

• uint32x2 t vmls u32 (uint32x2 t, uint32x2 t, uint32x2 t)
Form of expected instruction(s): vmls.i32 d0, d0, d0

• uint16x4 t vmls u16 (uint16x4 t, uint16x4 t, uint16x4 t)
Form of expected instruction(s): vmls.i16 d0, d0, d0

• uint8x8 t vmls u8 (uint8x8 t, uint8x8 t, uint8x8 t)
Form of expected instruction(s): vmls.i8 d0, d0, d0

• int32x2 t vmls s32 (int32x2 t, int32x2 t, int32x2 t)
Form of expected instruction(s): vmls.i32 d0, d0, d0

• int16x4 t vmls s16 (int16x4 t, int16x4 t, int16x4 t)
Form of expected instruction(s): vmls.i16 d0, d0, d0

• int8x8 t vmls s8 (int8x8 t, int8x8 t, int8x8 t)
Form of expected instruction(s): vmls.i8 d0, d0, d0

• float32x2 t vmls f32 (float32x2 t, float32x2 t, float32x2 t)
Form of expected instruction(s): vmls.f32 d0, d0, d0

• uint32x4 t vmlsq u32 (uint32x4 t, uint32x4 t, uint32x4 t)
Form of expected instruction(s): vmls.i32 q0, q0, q0

• uint16x8 t vmlsq u16 (uint16x8 t, uint16x8 t, uint16x8 t)
Form of expected instruction(s): vmls.i16 q0, q0, q0

• uint8x16 t vmlsq u8 (uint8x16 t, uint8x16 t, uint8x16 t)
Form of expected instruction(s): vmls.i8 q0, q0, q0

• int32x4 t vmlsq s32 (int32x4 t, int32x4 t, int32x4 t)
Form of expected instruction(s): vmls.i32 q0, q0, q0

• int16x8 t vmlsq s16 (int16x8 t, int16x8 t, int16x8 t)
Form of expected instruction(s): vmls.i16 q0, q0, q0

• int8x16 t vmlsq s8 (int8x16 t, int8x16 t, int8x16 t)
Form of expected instruction(s): vmls.i8 q0, q0, q0

• float32x4 t vmlsq f32 (float32x4 t, float32x4 t, float32x4 t)
Form of expected instruction(s): vmls.f32 q0, q0, q0

• uint64x2 t vmlsl u32 (uint64x2 t, uint32x2 t, uint32x2 t)
Form of expected instruction(s): vmlsl.u32 q0, d0, d0

• uint32x4 t vmlsl u16 (uint32x4 t, uint16x4 t, uint16x4 t)
Form of expected instruction(s): vmlsl.u16 q0, d0, d0

Chapter 6: Extensions to the C Language Family 511

• uint16x8 t vmlsl u8 (uint16x8 t, uint8x8 t, uint8x8 t)
Form of expected instruction(s): vmlsl.u8 q0, d0, d0

• int64x2 t vmlsl s32 (int64x2 t, int32x2 t, int32x2 t)
Form of expected instruction(s): vmlsl.s32 q0, d0, d0

• int32x4 t vmlsl s16 (int32x4 t, int16x4 t, int16x4 t)
Form of expected instruction(s): vmlsl.s16 q0, d0, d0

• int16x8 t vmlsl s8 (int16x8 t, int8x8 t, int8x8 t)
Form of expected instruction(s): vmlsl.s8 q0, d0, d0

• int64x2 t vqdmlsl s32 (int64x2 t, int32x2 t, int32x2 t)
Form of expected instruction(s): vqdmlsl.s32 q0, d0, d0

• int32x4 t vqdmlsl s16 (int32x4 t, int16x4 t, int16x4 t)
Form of expected instruction(s): vqdmlsl.s16 q0, d0, d0

6.57.6.5 Fused-multiply-accumulate

• float32x2 t vfma f32 (float32x2 t, float32x2 t, float32x2 t)
Form of expected instruction(s): vfma.f32 d0, d0, d0

• float32x4 t vfmaq f32 (float32x4 t, float32x4 t, float32x4 t)
Form of expected instruction(s): vfma.f32 q0, q0, q0

6.57.6.6 Fused-multiply-subtract

• float32x2 t vfms f32 (float32x2 t, float32x2 t, float32x2 t)
Form of expected instruction(s): vfms.f32 d0, d0, d0

• float32x4 t vfmsq f32 (float32x4 t, float32x4 t, float32x4 t)
Form of expected instruction(s): vfms.f32 q0, q0, q0

6.57.6.7 Round to integral (to nearest, ties to even)

• float32x2 t vrndn f32 (float32x2 t)
Form of expected instruction(s): vrintn.f32 d0, d0

• float32x4 t vrndqn f32 (float32x4 t)
Form of expected instruction(s): vrintn.f32 q0, q0

6.57.6.8 Round to integral (to nearest, ties away from zero)

• float32x2 t vrnda f32 (float32x2 t)
Form of expected instruction(s): vrinta.f32 d0, d0

• float32x4 t vrndqa f32 (float32x4 t)
Form of expected instruction(s): vrinta.f32 q0, q0

6.57.6.9 Round to integral (towards +Inf)

• float32x2 t vrndp f32 (float32x2 t)
Form of expected instruction(s): vrintp.f32 d0, d0

• float32x4 t vrndqp f32 (float32x4 t)
Form of expected instruction(s): vrintp.f32 q0, q0

512 Using the GNU Compiler Collection (GCC)

6.57.6.10 Round to integral (towards -Inf)

• float32x2 t vrndm f32 (float32x2 t)
Form of expected instruction(s): vrintm.f32 d0, d0

• float32x4 t vrndqm f32 (float32x4 t)
Form of expected instruction(s): vrintm.f32 q0, q0

6.57.6.11 Round to integral (towards 0)

• float32x2 t vrnd f32 (float32x2 t)
Form of expected instruction(s): vrintz.f32 d0, d0

• float32x4 t vrndq f32 (float32x4 t)
Form of expected instruction(s): vrintz.f32 q0, q0

6.57.6.12 Subtraction

• uint32x2 t vsub u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vsub.i32 d0, d0, d0

• uint16x4 t vsub u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vsub.i16 d0, d0, d0

• uint8x8 t vsub u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vsub.i8 d0, d0, d0

• int32x2 t vsub s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vsub.i32 d0, d0, d0

• int16x4 t vsub s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vsub.i16 d0, d0, d0

• int8x8 t vsub s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vsub.i8 d0, d0, d0

• float32x2 t vsub f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vsub.f32 d0, d0, d0

• uint64x1 t vsub u64 (uint64x1 t, uint64x1 t)
• int64x1 t vsub s64 (int64x1 t, int64x1 t)
• uint32x4 t vsubq u32 (uint32x4 t, uint32x4 t)

Form of expected instruction(s): vsub.i32 q0, q0, q0

• uint16x8 t vsubq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vsub.i16 q0, q0, q0

• uint8x16 t vsubq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vsub.i8 q0, q0, q0

• int32x4 t vsubq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vsub.i32 q0, q0, q0

• int16x8 t vsubq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vsub.i16 q0, q0, q0

• int8x16 t vsubq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vsub.i8 q0, q0, q0

• uint64x2 t vsubq u64 (uint64x2 t, uint64x2 t)
Form of expected instruction(s): vsub.i64 q0, q0, q0

Chapter 6: Extensions to the C Language Family 513

• int64x2 t vsubq s64 (int64x2 t, int64x2 t)
Form of expected instruction(s): vsub.i64 q0, q0, q0

• float32x4 t vsubq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vsub.f32 q0, q0, q0

• uint64x2 t vsubl u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vsubl.u32 q0, d0, d0

• uint32x4 t vsubl u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vsubl.u16 q0, d0, d0

• uint16x8 t vsubl u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vsubl.u8 q0, d0, d0

• int64x2 t vsubl s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vsubl.s32 q0, d0, d0

• int32x4 t vsubl s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vsubl.s16 q0, d0, d0

• int16x8 t vsubl s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vsubl.s8 q0, d0, d0

• uint64x2 t vsubw u32 (uint64x2 t, uint32x2 t)
Form of expected instruction(s): vsubw.u32 q0, q0, d0

• uint32x4 t vsubw u16 (uint32x4 t, uint16x4 t)
Form of expected instruction(s): vsubw.u16 q0, q0, d0

• uint16x8 t vsubw u8 (uint16x8 t, uint8x8 t)
Form of expected instruction(s): vsubw.u8 q0, q0, d0

• int64x2 t vsubw s32 (int64x2 t, int32x2 t)
Form of expected instruction(s): vsubw.s32 q0, q0, d0

• int32x4 t vsubw s16 (int32x4 t, int16x4 t)
Form of expected instruction(s): vsubw.s16 q0, q0, d0

• int16x8 t vsubw s8 (int16x8 t, int8x8 t)
Form of expected instruction(s): vsubw.s8 q0, q0, d0

• uint32x2 t vhsub u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vhsub.u32 d0, d0, d0

• uint16x4 t vhsub u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vhsub.u16 d0, d0, d0

• uint8x8 t vhsub u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vhsub.u8 d0, d0, d0

• int32x2 t vhsub s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vhsub.s32 d0, d0, d0

• int16x4 t vhsub s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vhsub.s16 d0, d0, d0

• int8x8 t vhsub s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vhsub.s8 d0, d0, d0

• uint32x4 t vhsubq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vhsub.u32 q0, q0, q0

514 Using the GNU Compiler Collection (GCC)

• uint16x8 t vhsubq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vhsub.u16 q0, q0, q0

• uint8x16 t vhsubq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vhsub.u8 q0, q0, q0

• int32x4 t vhsubq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vhsub.s32 q0, q0, q0

• int16x8 t vhsubq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vhsub.s16 q0, q0, q0

• int8x16 t vhsubq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vhsub.s8 q0, q0, q0

• uint32x2 t vqsub u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vqsub.u32 d0, d0, d0

• uint16x4 t vqsub u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vqsub.u16 d0, d0, d0

• uint8x8 t vqsub u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vqsub.u8 d0, d0, d0

• int32x2 t vqsub s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vqsub.s32 d0, d0, d0

• int16x4 t vqsub s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vqsub.s16 d0, d0, d0

• int8x8 t vqsub s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vqsub.s8 d0, d0, d0

• uint64x1 t vqsub u64 (uint64x1 t, uint64x1 t)
Form of expected instruction(s): vqsub.u64 d0, d0, d0

• int64x1 t vqsub s64 (int64x1 t, int64x1 t)
Form of expected instruction(s): vqsub.s64 d0, d0, d0

• uint32x4 t vqsubq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vqsub.u32 q0, q0, q0

• uint16x8 t vqsubq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vqsub.u16 q0, q0, q0

• uint8x16 t vqsubq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vqsub.u8 q0, q0, q0

• int32x4 t vqsubq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vqsub.s32 q0, q0, q0

• int16x8 t vqsubq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vqsub.s16 q0, q0, q0

• int8x16 t vqsubq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vqsub.s8 q0, q0, q0

• uint64x2 t vqsubq u64 (uint64x2 t, uint64x2 t)
Form of expected instruction(s): vqsub.u64 q0, q0, q0

• int64x2 t vqsubq s64 (int64x2 t, int64x2 t)
Form of expected instruction(s): vqsub.s64 q0, q0, q0

Chapter 6: Extensions to the C Language Family 515

• uint32x2 t vsubhn u64 (uint64x2 t, uint64x2 t)
Form of expected instruction(s): vsubhn.i64 d0, q0, q0

• uint16x4 t vsubhn u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vsubhn.i32 d0, q0, q0

• uint8x8 t vsubhn u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vsubhn.i16 d0, q0, q0

• int32x2 t vsubhn s64 (int64x2 t, int64x2 t)
Form of expected instruction(s): vsubhn.i64 d0, q0, q0

• int16x4 t vsubhn s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vsubhn.i32 d0, q0, q0

• int8x8 t vsubhn s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vsubhn.i16 d0, q0, q0

• uint32x2 t vrsubhn u64 (uint64x2 t, uint64x2 t)
Form of expected instruction(s): vrsubhn.i64 d0, q0, q0

• uint16x4 t vrsubhn u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vrsubhn.i32 d0, q0, q0

• uint8x8 t vrsubhn u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vrsubhn.i16 d0, q0, q0

• int32x2 t vrsubhn s64 (int64x2 t, int64x2 t)
Form of expected instruction(s): vrsubhn.i64 d0, q0, q0

• int16x4 t vrsubhn s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vrsubhn.i32 d0, q0, q0

• int8x8 t vrsubhn s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vrsubhn.i16 d0, q0, q0

6.57.6.13 Comparison (equal-to)

• uint32x2 t vceq u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vceq.i32 d0, d0, d0

• uint16x4 t vceq u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vceq.i16 d0, d0, d0

• uint8x8 t vceq u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vceq.i8 d0, d0, d0

• uint32x2 t vceq s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vceq.i32 d0, d0, d0

• uint16x4 t vceq s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vceq.i16 d0, d0, d0

• uint8x8 t vceq s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vceq.i8 d0, d0, d0

• uint32x2 t vceq f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vceq.f32 d0, d0, d0

• uint8x8 t vceq p8 (poly8x8 t, poly8x8 t)
Form of expected instruction(s): vceq.i8 d0, d0, d0

516 Using the GNU Compiler Collection (GCC)

• uint32x4 t vceqq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vceq.i32 q0, q0, q0

• uint16x8 t vceqq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vceq.i16 q0, q0, q0

• uint8x16 t vceqq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vceq.i8 q0, q0, q0

• uint32x4 t vceqq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vceq.i32 q0, q0, q0

• uint16x8 t vceqq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vceq.i16 q0, q0, q0

• uint8x16 t vceqq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vceq.i8 q0, q0, q0

• uint32x4 t vceqq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vceq.f32 q0, q0, q0

• uint8x16 t vceqq p8 (poly8x16 t, poly8x16 t)
Form of expected instruction(s): vceq.i8 q0, q0, q0

6.57.6.14 Comparison (greater-than-or-equal-to)

• uint32x2 t vcge s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vcge.s32 d0, d0, d0

• uint16x4 t vcge s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vcge.s16 d0, d0, d0

• uint8x8 t vcge s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vcge.s8 d0, d0, d0

• uint32x2 t vcge f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vcge.f32 d0, d0, d0

• uint32x2 t vcge u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vcge.u32 d0, d0, d0

• uint16x4 t vcge u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vcge.u16 d0, d0, d0

• uint8x8 t vcge u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vcge.u8 d0, d0, d0

• uint32x4 t vcgeq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vcge.s32 q0, q0, q0

• uint16x8 t vcgeq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vcge.s16 q0, q0, q0

• uint8x16 t vcgeq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vcge.s8 q0, q0, q0

• uint32x4 t vcgeq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vcge.f32 q0, q0, q0

• uint32x4 t vcgeq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vcge.u32 q0, q0, q0

Chapter 6: Extensions to the C Language Family 517

• uint16x8 t vcgeq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vcge.u16 q0, q0, q0

• uint8x16 t vcgeq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vcge.u8 q0, q0, q0

6.57.6.15 Comparison (less-than-or-equal-to)

• uint32x2 t vcle s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vcge.s32 d0, d0, d0

• uint16x4 t vcle s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vcge.s16 d0, d0, d0

• uint8x8 t vcle s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vcge.s8 d0, d0, d0

• uint32x2 t vcle f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vcge.f32 d0, d0, d0

• uint32x2 t vcle u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vcge.u32 d0, d0, d0

• uint16x4 t vcle u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vcge.u16 d0, d0, d0

• uint8x8 t vcle u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vcge.u8 d0, d0, d0

• uint32x4 t vcleq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vcge.s32 q0, q0, q0

• uint16x8 t vcleq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vcge.s16 q0, q0, q0

• uint8x16 t vcleq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vcge.s8 q0, q0, q0

• uint32x4 t vcleq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vcge.f32 q0, q0, q0

• uint32x4 t vcleq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vcge.u32 q0, q0, q0

• uint16x8 t vcleq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vcge.u16 q0, q0, q0

• uint8x16 t vcleq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vcge.u8 q0, q0, q0

6.57.6.16 Comparison (greater-than)

• uint32x2 t vcgt s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vcgt.s32 d0, d0, d0

• uint16x4 t vcgt s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vcgt.s16 d0, d0, d0

• uint8x8 t vcgt s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vcgt.s8 d0, d0, d0

518 Using the GNU Compiler Collection (GCC)

• uint32x2 t vcgt f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vcgt.f32 d0, d0, d0

• uint32x2 t vcgt u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vcgt.u32 d0, d0, d0

• uint16x4 t vcgt u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vcgt.u16 d0, d0, d0

• uint8x8 t vcgt u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vcgt.u8 d0, d0, d0

• uint32x4 t vcgtq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vcgt.s32 q0, q0, q0

• uint16x8 t vcgtq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vcgt.s16 q0, q0, q0

• uint8x16 t vcgtq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vcgt.s8 q0, q0, q0

• uint32x4 t vcgtq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vcgt.f32 q0, q0, q0

• uint32x4 t vcgtq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vcgt.u32 q0, q0, q0

• uint16x8 t vcgtq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vcgt.u16 q0, q0, q0

• uint8x16 t vcgtq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vcgt.u8 q0, q0, q0

6.57.6.17 Comparison (less-than)

• uint32x2 t vclt s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vcgt.s32 d0, d0, d0

• uint16x4 t vclt s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vcgt.s16 d0, d0, d0

• uint8x8 t vclt s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vcgt.s8 d0, d0, d0

• uint32x2 t vclt f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vcgt.f32 d0, d0, d0

• uint32x2 t vclt u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vcgt.u32 d0, d0, d0

• uint16x4 t vclt u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vcgt.u16 d0, d0, d0

• uint8x8 t vclt u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vcgt.u8 d0, d0, d0

• uint32x4 t vcltq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vcgt.s32 q0, q0, q0

• uint16x8 t vcltq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vcgt.s16 q0, q0, q0

Chapter 6: Extensions to the C Language Family 519

• uint8x16 t vcltq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vcgt.s8 q0, q0, q0

• uint32x4 t vcltq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vcgt.f32 q0, q0, q0

• uint32x4 t vcltq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vcgt.u32 q0, q0, q0

• uint16x8 t vcltq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vcgt.u16 q0, q0, q0

• uint8x16 t vcltq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vcgt.u8 q0, q0, q0

6.57.6.18 Comparison (absolute greater-than-or-equal-to)

• uint32x2 t vcage f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vacge.f32 d0, d0, d0

• uint32x4 t vcageq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vacge.f32 q0, q0, q0

6.57.6.19 Comparison (absolute less-than-or-equal-to)

• uint32x2 t vcale f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vacge.f32 d0, d0, d0

• uint32x4 t vcaleq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vacge.f32 q0, q0, q0

6.57.6.20 Comparison (absolute greater-than)

• uint32x2 t vcagt f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vacgt.f32 d0, d0, d0

• uint32x4 t vcagtq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vacgt.f32 q0, q0, q0

6.57.6.21 Comparison (absolute less-than)

• uint32x2 t vcalt f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vacgt.f32 d0, d0, d0

• uint32x4 t vcaltq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vacgt.f32 q0, q0, q0

6.57.6.22 Test bits

• uint32x2 t vtst u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vtst.32 d0, d0, d0

• uint16x4 t vtst u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vtst.16 d0, d0, d0

• uint8x8 t vtst u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vtst.8 d0, d0, d0

• uint32x2 t vtst s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vtst.32 d0, d0, d0

520 Using the GNU Compiler Collection (GCC)

• uint16x4 t vtst s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vtst.16 d0, d0, d0

• uint8x8 t vtst s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vtst.8 d0, d0, d0

• uint8x8 t vtst p8 (poly8x8 t, poly8x8 t)
Form of expected instruction(s): vtst.8 d0, d0, d0

• uint32x4 t vtstq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vtst.32 q0, q0, q0

• uint16x8 t vtstq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vtst.16 q0, q0, q0

• uint8x16 t vtstq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vtst.8 q0, q0, q0

• uint32x4 t vtstq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vtst.32 q0, q0, q0

• uint16x8 t vtstq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vtst.16 q0, q0, q0

• uint8x16 t vtstq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vtst.8 q0, q0, q0

• uint8x16 t vtstq p8 (poly8x16 t, poly8x16 t)
Form of expected instruction(s): vtst.8 q0, q0, q0

6.57.6.23 Absolute difference

• uint32x2 t vabd u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vabd.u32 d0, d0, d0

• uint16x4 t vabd u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vabd.u16 d0, d0, d0

• uint8x8 t vabd u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vabd.u8 d0, d0, d0

• int32x2 t vabd s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vabd.s32 d0, d0, d0

• int16x4 t vabd s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vabd.s16 d0, d0, d0

• int8x8 t vabd s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vabd.s8 d0, d0, d0

• float32x2 t vabd f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vabd.f32 d0, d0, d0

• uint32x4 t vabdq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vabd.u32 q0, q0, q0

• uint16x8 t vabdq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vabd.u16 q0, q0, q0

• uint8x16 t vabdq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vabd.u8 q0, q0, q0

Chapter 6: Extensions to the C Language Family 521

• int32x4 t vabdq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vabd.s32 q0, q0, q0

• int16x8 t vabdq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vabd.s16 q0, q0, q0

• int8x16 t vabdq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vabd.s8 q0, q0, q0

• float32x4 t vabdq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vabd.f32 q0, q0, q0

• uint64x2 t vabdl u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vabdl.u32 q0, d0, d0

• uint32x4 t vabdl u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vabdl.u16 q0, d0, d0

• uint16x8 t vabdl u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vabdl.u8 q0, d0, d0

• int64x2 t vabdl s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vabdl.s32 q0, d0, d0

• int32x4 t vabdl s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vabdl.s16 q0, d0, d0

• int16x8 t vabdl s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vabdl.s8 q0, d0, d0

6.57.6.24 Absolute difference and accumulate

• uint32x2 t vaba u32 (uint32x2 t, uint32x2 t, uint32x2 t)
Form of expected instruction(s): vaba.u32 d0, d0, d0

• uint16x4 t vaba u16 (uint16x4 t, uint16x4 t, uint16x4 t)
Form of expected instruction(s): vaba.u16 d0, d0, d0

• uint8x8 t vaba u8 (uint8x8 t, uint8x8 t, uint8x8 t)
Form of expected instruction(s): vaba.u8 d0, d0, d0

• int32x2 t vaba s32 (int32x2 t, int32x2 t, int32x2 t)
Form of expected instruction(s): vaba.s32 d0, d0, d0

• int16x4 t vaba s16 (int16x4 t, int16x4 t, int16x4 t)
Form of expected instruction(s): vaba.s16 d0, d0, d0

• int8x8 t vaba s8 (int8x8 t, int8x8 t, int8x8 t)
Form of expected instruction(s): vaba.s8 d0, d0, d0

• uint32x4 t vabaq u32 (uint32x4 t, uint32x4 t, uint32x4 t)
Form of expected instruction(s): vaba.u32 q0, q0, q0

• uint16x8 t vabaq u16 (uint16x8 t, uint16x8 t, uint16x8 t)
Form of expected instruction(s): vaba.u16 q0, q0, q0

• uint8x16 t vabaq u8 (uint8x16 t, uint8x16 t, uint8x16 t)
Form of expected instruction(s): vaba.u8 q0, q0, q0

• int32x4 t vabaq s32 (int32x4 t, int32x4 t, int32x4 t)
Form of expected instruction(s): vaba.s32 q0, q0, q0

522 Using the GNU Compiler Collection (GCC)

• int16x8 t vabaq s16 (int16x8 t, int16x8 t, int16x8 t)
Form of expected instruction(s): vaba.s16 q0, q0, q0

• int8x16 t vabaq s8 (int8x16 t, int8x16 t, int8x16 t)
Form of expected instruction(s): vaba.s8 q0, q0, q0

• uint64x2 t vabal u32 (uint64x2 t, uint32x2 t, uint32x2 t)
Form of expected instruction(s): vabal.u32 q0, d0, d0

• uint32x4 t vabal u16 (uint32x4 t, uint16x4 t, uint16x4 t)
Form of expected instruction(s): vabal.u16 q0, d0, d0

• uint16x8 t vabal u8 (uint16x8 t, uint8x8 t, uint8x8 t)
Form of expected instruction(s): vabal.u8 q0, d0, d0

• int64x2 t vabal s32 (int64x2 t, int32x2 t, int32x2 t)
Form of expected instruction(s): vabal.s32 q0, d0, d0

• int32x4 t vabal s16 (int32x4 t, int16x4 t, int16x4 t)
Form of expected instruction(s): vabal.s16 q0, d0, d0

• int16x8 t vabal s8 (int16x8 t, int8x8 t, int8x8 t)
Form of expected instruction(s): vabal.s8 q0, d0, d0

6.57.6.25 Maximum

• uint32x2 t vmax u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vmax.u32 d0, d0, d0

• uint16x4 t vmax u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vmax.u16 d0, d0, d0

• uint8x8 t vmax u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vmax.u8 d0, d0, d0

• int32x2 t vmax s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vmax.s32 d0, d0, d0

• int16x4 t vmax s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vmax.s16 d0, d0, d0

• int8x8 t vmax s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vmax.s8 d0, d0, d0

• float32x2 t vmax f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vmax.f32 d0, d0, d0

• uint32x4 t vmaxq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vmax.u32 q0, q0, q0

• uint16x8 t vmaxq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vmax.u16 q0, q0, q0

• uint8x16 t vmaxq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vmax.u8 q0, q0, q0

• int32x4 t vmaxq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vmax.s32 q0, q0, q0

• int16x8 t vmaxq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vmax.s16 q0, q0, q0

Chapter 6: Extensions to the C Language Family 523

• int8x16 t vmaxq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vmax.s8 q0, q0, q0

• float32x4 t vmaxq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vmax.f32 q0, q0, q0

6.57.6.26 Minimum

• uint32x2 t vmin u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vmin.u32 d0, d0, d0

• uint16x4 t vmin u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vmin.u16 d0, d0, d0

• uint8x8 t vmin u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vmin.u8 d0, d0, d0

• int32x2 t vmin s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vmin.s32 d0, d0, d0

• int16x4 t vmin s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vmin.s16 d0, d0, d0

• int8x8 t vmin s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vmin.s8 d0, d0, d0

• float32x2 t vmin f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vmin.f32 d0, d0, d0

• uint32x4 t vminq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vmin.u32 q0, q0, q0

• uint16x8 t vminq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vmin.u16 q0, q0, q0

• uint8x16 t vminq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vmin.u8 q0, q0, q0

• int32x4 t vminq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vmin.s32 q0, q0, q0

• int16x8 t vminq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vmin.s16 q0, q0, q0

• int8x16 t vminq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vmin.s8 q0, q0, q0

• float32x4 t vminq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vmin.f32 q0, q0, q0

6.57.6.27 Pairwise add

• uint32x2 t vpadd u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vpadd.i32 d0, d0, d0

• uint16x4 t vpadd u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vpadd.i16 d0, d0, d0

• uint8x8 t vpadd u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vpadd.i8 d0, d0, d0

524 Using the GNU Compiler Collection (GCC)

• int32x2 t vpadd s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vpadd.i32 d0, d0, d0

• int16x4 t vpadd s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vpadd.i16 d0, d0, d0

• int8x8 t vpadd s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vpadd.i8 d0, d0, d0

• float32x2 t vpadd f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vpadd.f32 d0, d0, d0

• uint64x1 t vpaddl u32 (uint32x2 t)
Form of expected instruction(s): vpaddl.u32 d0, d0

• uint32x2 t vpaddl u16 (uint16x4 t)
Form of expected instruction(s): vpaddl.u16 d0, d0

• uint16x4 t vpaddl u8 (uint8x8 t)
Form of expected instruction(s): vpaddl.u8 d0, d0

• int64x1 t vpaddl s32 (int32x2 t)
Form of expected instruction(s): vpaddl.s32 d0, d0

• int32x2 t vpaddl s16 (int16x4 t)
Form of expected instruction(s): vpaddl.s16 d0, d0

• int16x4 t vpaddl s8 (int8x8 t)
Form of expected instruction(s): vpaddl.s8 d0, d0

• uint64x2 t vpaddlq u32 (uint32x4 t)
Form of expected instruction(s): vpaddl.u32 q0, q0

• uint32x4 t vpaddlq u16 (uint16x8 t)
Form of expected instruction(s): vpaddl.u16 q0, q0

• uint16x8 t vpaddlq u8 (uint8x16 t)
Form of expected instruction(s): vpaddl.u8 q0, q0

• int64x2 t vpaddlq s32 (int32x4 t)
Form of expected instruction(s): vpaddl.s32 q0, q0

• int32x4 t vpaddlq s16 (int16x8 t)
Form of expected instruction(s): vpaddl.s16 q0, q0

• int16x8 t vpaddlq s8 (int8x16 t)
Form of expected instruction(s): vpaddl.s8 q0, q0

6.57.6.28 Pairwise add, single opcode widen and accumulate

• uint64x1 t vpadal u32 (uint64x1 t, uint32x2 t)
Form of expected instruction(s): vpadal.u32 d0, d0

• uint32x2 t vpadal u16 (uint32x2 t, uint16x4 t)
Form of expected instruction(s): vpadal.u16 d0, d0

• uint16x4 t vpadal u8 (uint16x4 t, uint8x8 t)
Form of expected instruction(s): vpadal.u8 d0, d0

• int64x1 t vpadal s32 (int64x1 t, int32x2 t)
Form of expected instruction(s): vpadal.s32 d0, d0

Chapter 6: Extensions to the C Language Family 525

• int32x2 t vpadal s16 (int32x2 t, int16x4 t)
Form of expected instruction(s): vpadal.s16 d0, d0

• int16x4 t vpadal s8 (int16x4 t, int8x8 t)
Form of expected instruction(s): vpadal.s8 d0, d0

• uint64x2 t vpadalq u32 (uint64x2 t, uint32x4 t)
Form of expected instruction(s): vpadal.u32 q0, q0

• uint32x4 t vpadalq u16 (uint32x4 t, uint16x8 t)
Form of expected instruction(s): vpadal.u16 q0, q0

• uint16x8 t vpadalq u8 (uint16x8 t, uint8x16 t)
Form of expected instruction(s): vpadal.u8 q0, q0

• int64x2 t vpadalq s32 (int64x2 t, int32x4 t)
Form of expected instruction(s): vpadal.s32 q0, q0

• int32x4 t vpadalq s16 (int32x4 t, int16x8 t)
Form of expected instruction(s): vpadal.s16 q0, q0

• int16x8 t vpadalq s8 (int16x8 t, int8x16 t)
Form of expected instruction(s): vpadal.s8 q0, q0

6.57.6.29 Folding maximum

• uint32x2 t vpmax u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vpmax.u32 d0, d0, d0

• uint16x4 t vpmax u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vpmax.u16 d0, d0, d0

• uint8x8 t vpmax u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vpmax.u8 d0, d0, d0

• int32x2 t vpmax s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vpmax.s32 d0, d0, d0

• int16x4 t vpmax s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vpmax.s16 d0, d0, d0

• int8x8 t vpmax s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vpmax.s8 d0, d0, d0

• float32x2 t vpmax f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vpmax.f32 d0, d0, d0

6.57.6.30 Folding minimum

• uint32x2 t vpmin u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vpmin.u32 d0, d0, d0

• uint16x4 t vpmin u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vpmin.u16 d0, d0, d0

• uint8x8 t vpmin u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vpmin.u8 d0, d0, d0

• int32x2 t vpmin s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vpmin.s32 d0, d0, d0

526 Using the GNU Compiler Collection (GCC)

• int16x4 t vpmin s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vpmin.s16 d0, d0, d0

• int8x8 t vpmin s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vpmin.s8 d0, d0, d0

• float32x2 t vpmin f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vpmin.f32 d0, d0, d0

6.57.6.31 Reciprocal step

• float32x2 t vrecps f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vrecps.f32 d0, d0, d0

• float32x4 t vrecpsq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vrecps.f32 q0, q0, q0

• float32x2 t vrsqrts f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vrsqrts.f32 d0, d0, d0

• float32x4 t vrsqrtsq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vrsqrts.f32 q0, q0, q0

6.57.6.32 Vector shift left

• uint32x2 t vshl u32 (uint32x2 t, int32x2 t)
Form of expected instruction(s): vshl.u32 d0, d0, d0

• uint16x4 t vshl u16 (uint16x4 t, int16x4 t)
Form of expected instruction(s): vshl.u16 d0, d0, d0

• uint8x8 t vshl u8 (uint8x8 t, int8x8 t)
Form of expected instruction(s): vshl.u8 d0, d0, d0

• int32x2 t vshl s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vshl.s32 d0, d0, d0

• int16x4 t vshl s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vshl.s16 d0, d0, d0

• int8x8 t vshl s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vshl.s8 d0, d0, d0

• uint64x1 t vshl u64 (uint64x1 t, int64x1 t)
Form of expected instruction(s): vshl.u64 d0, d0, d0

• int64x1 t vshl s64 (int64x1 t, int64x1 t)
Form of expected instruction(s): vshl.s64 d0, d0, d0

• uint32x4 t vshlq u32 (uint32x4 t, int32x4 t)
Form of expected instruction(s): vshl.u32 q0, q0, q0

• uint16x8 t vshlq u16 (uint16x8 t, int16x8 t)
Form of expected instruction(s): vshl.u16 q0, q0, q0

• uint8x16 t vshlq u8 (uint8x16 t, int8x16 t)
Form of expected instruction(s): vshl.u8 q0, q0, q0

• int32x4 t vshlq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vshl.s32 q0, q0, q0

Chapter 6: Extensions to the C Language Family 527

• int16x8 t vshlq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vshl.s16 q0, q0, q0

• int8x16 t vshlq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vshl.s8 q0, q0, q0

• uint64x2 t vshlq u64 (uint64x2 t, int64x2 t)
Form of expected instruction(s): vshl.u64 q0, q0, q0

• int64x2 t vshlq s64 (int64x2 t, int64x2 t)
Form of expected instruction(s): vshl.s64 q0, q0, q0

• uint32x2 t vrshl u32 (uint32x2 t, int32x2 t)
Form of expected instruction(s): vrshl.u32 d0, d0, d0

• uint16x4 t vrshl u16 (uint16x4 t, int16x4 t)
Form of expected instruction(s): vrshl.u16 d0, d0, d0

• uint8x8 t vrshl u8 (uint8x8 t, int8x8 t)
Form of expected instruction(s): vrshl.u8 d0, d0, d0

• int32x2 t vrshl s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vrshl.s32 d0, d0, d0

• int16x4 t vrshl s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vrshl.s16 d0, d0, d0

• int8x8 t vrshl s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vrshl.s8 d0, d0, d0

• uint64x1 t vrshl u64 (uint64x1 t, int64x1 t)
Form of expected instruction(s): vrshl.u64 d0, d0, d0

• int64x1 t vrshl s64 (int64x1 t, int64x1 t)
Form of expected instruction(s): vrshl.s64 d0, d0, d0

• uint32x4 t vrshlq u32 (uint32x4 t, int32x4 t)
Form of expected instruction(s): vrshl.u32 q0, q0, q0

• uint16x8 t vrshlq u16 (uint16x8 t, int16x8 t)
Form of expected instruction(s): vrshl.u16 q0, q0, q0

• uint8x16 t vrshlq u8 (uint8x16 t, int8x16 t)
Form of expected instruction(s): vrshl.u8 q0, q0, q0

• int32x4 t vrshlq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vrshl.s32 q0, q0, q0

• int16x8 t vrshlq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vrshl.s16 q0, q0, q0

• int8x16 t vrshlq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vrshl.s8 q0, q0, q0

• uint64x2 t vrshlq u64 (uint64x2 t, int64x2 t)
Form of expected instruction(s): vrshl.u64 q0, q0, q0

• int64x2 t vrshlq s64 (int64x2 t, int64x2 t)
Form of expected instruction(s): vrshl.s64 q0, q0, q0

• uint32x2 t vqshl u32 (uint32x2 t, int32x2 t)
Form of expected instruction(s): vqshl.u32 d0, d0, d0

528 Using the GNU Compiler Collection (GCC)

• uint16x4 t vqshl u16 (uint16x4 t, int16x4 t)
Form of expected instruction(s): vqshl.u16 d0, d0, d0

• uint8x8 t vqshl u8 (uint8x8 t, int8x8 t)
Form of expected instruction(s): vqshl.u8 d0, d0, d0

• int32x2 t vqshl s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vqshl.s32 d0, d0, d0

• int16x4 t vqshl s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vqshl.s16 d0, d0, d0

• int8x8 t vqshl s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vqshl.s8 d0, d0, d0

• uint64x1 t vqshl u64 (uint64x1 t, int64x1 t)
Form of expected instruction(s): vqshl.u64 d0, d0, d0

• int64x1 t vqshl s64 (int64x1 t, int64x1 t)
Form of expected instruction(s): vqshl.s64 d0, d0, d0

• uint32x4 t vqshlq u32 (uint32x4 t, int32x4 t)
Form of expected instruction(s): vqshl.u32 q0, q0, q0

• uint16x8 t vqshlq u16 (uint16x8 t, int16x8 t)
Form of expected instruction(s): vqshl.u16 q0, q0, q0

• uint8x16 t vqshlq u8 (uint8x16 t, int8x16 t)
Form of expected instruction(s): vqshl.u8 q0, q0, q0

• int32x4 t vqshlq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vqshl.s32 q0, q0, q0

• int16x8 t vqshlq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vqshl.s16 q0, q0, q0

• int8x16 t vqshlq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vqshl.s8 q0, q0, q0

• uint64x2 t vqshlq u64 (uint64x2 t, int64x2 t)
Form of expected instruction(s): vqshl.u64 q0, q0, q0

• int64x2 t vqshlq s64 (int64x2 t, int64x2 t)
Form of expected instruction(s): vqshl.s64 q0, q0, q0

• uint32x2 t vqrshl u32 (uint32x2 t, int32x2 t)
Form of expected instruction(s): vqrshl.u32 d0, d0, d0

• uint16x4 t vqrshl u16 (uint16x4 t, int16x4 t)
Form of expected instruction(s): vqrshl.u16 d0, d0, d0

• uint8x8 t vqrshl u8 (uint8x8 t, int8x8 t)
Form of expected instruction(s): vqrshl.u8 d0, d0, d0

• int32x2 t vqrshl s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vqrshl.s32 d0, d0, d0

• int16x4 t vqrshl s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vqrshl.s16 d0, d0, d0

• int8x8 t vqrshl s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vqrshl.s8 d0, d0, d0

Chapter 6: Extensions to the C Language Family 529

• uint64x1 t vqrshl u64 (uint64x1 t, int64x1 t)
Form of expected instruction(s): vqrshl.u64 d0, d0, d0

• int64x1 t vqrshl s64 (int64x1 t, int64x1 t)
Form of expected instruction(s): vqrshl.s64 d0, d0, d0

• uint32x4 t vqrshlq u32 (uint32x4 t, int32x4 t)
Form of expected instruction(s): vqrshl.u32 q0, q0, q0

• uint16x8 t vqrshlq u16 (uint16x8 t, int16x8 t)
Form of expected instruction(s): vqrshl.u16 q0, q0, q0

• uint8x16 t vqrshlq u8 (uint8x16 t, int8x16 t)
Form of expected instruction(s): vqrshl.u8 q0, q0, q0

• int32x4 t vqrshlq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vqrshl.s32 q0, q0, q0

• int16x8 t vqrshlq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vqrshl.s16 q0, q0, q0

• int8x16 t vqrshlq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vqrshl.s8 q0, q0, q0

• uint64x2 t vqrshlq u64 (uint64x2 t, int64x2 t)
Form of expected instruction(s): vqrshl.u64 q0, q0, q0

• int64x2 t vqrshlq s64 (int64x2 t, int64x2 t)
Form of expected instruction(s): vqrshl.s64 q0, q0, q0

6.57.6.33 Vector shift left by constant

• uint32x2 t vshl n u32 (uint32x2 t, const int)
Form of expected instruction(s): vshl.i32 d0, d0, #0

• uint16x4 t vshl n u16 (uint16x4 t, const int)
Form of expected instruction(s): vshl.i16 d0, d0, #0

• uint8x8 t vshl n u8 (uint8x8 t, const int)
Form of expected instruction(s): vshl.i8 d0, d0, #0

• int32x2 t vshl n s32 (int32x2 t, const int)
Form of expected instruction(s): vshl.i32 d0, d0, #0

• int16x4 t vshl n s16 (int16x4 t, const int)
Form of expected instruction(s): vshl.i16 d0, d0, #0

• int8x8 t vshl n s8 (int8x8 t, const int)
Form of expected instruction(s): vshl.i8 d0, d0, #0

• uint64x1 t vshl n u64 (uint64x1 t, const int)
Form of expected instruction(s): vshl.i64 d0, d0, #0

• int64x1 t vshl n s64 (int64x1 t, const int)
Form of expected instruction(s): vshl.i64 d0, d0, #0

• uint32x4 t vshlq n u32 (uint32x4 t, const int)
Form of expected instruction(s): vshl.i32 q0, q0, #0

• uint16x8 t vshlq n u16 (uint16x8 t, const int)
Form of expected instruction(s): vshl.i16 q0, q0, #0

530 Using the GNU Compiler Collection (GCC)

• uint8x16 t vshlq n u8 (uint8x16 t, const int)
Form of expected instruction(s): vshl.i8 q0, q0, #0

• int32x4 t vshlq n s32 (int32x4 t, const int)
Form of expected instruction(s): vshl.i32 q0, q0, #0

• int16x8 t vshlq n s16 (int16x8 t, const int)
Form of expected instruction(s): vshl.i16 q0, q0, #0

• int8x16 t vshlq n s8 (int8x16 t, const int)
Form of expected instruction(s): vshl.i8 q0, q0, #0

• uint64x2 t vshlq n u64 (uint64x2 t, const int)
Form of expected instruction(s): vshl.i64 q0, q0, #0

• int64x2 t vshlq n s64 (int64x2 t, const int)
Form of expected instruction(s): vshl.i64 q0, q0, #0

• uint32x2 t vqshl n u32 (uint32x2 t, const int)
Form of expected instruction(s): vqshl.u32 d0, d0, #0

• uint16x4 t vqshl n u16 (uint16x4 t, const int)
Form of expected instruction(s): vqshl.u16 d0, d0, #0

• uint8x8 t vqshl n u8 (uint8x8 t, const int)
Form of expected instruction(s): vqshl.u8 d0, d0, #0

• int32x2 t vqshl n s32 (int32x2 t, const int)
Form of expected instruction(s): vqshl.s32 d0, d0, #0

• int16x4 t vqshl n s16 (int16x4 t, const int)
Form of expected instruction(s): vqshl.s16 d0, d0, #0

• int8x8 t vqshl n s8 (int8x8 t, const int)
Form of expected instruction(s): vqshl.s8 d0, d0, #0

• uint64x1 t vqshl n u64 (uint64x1 t, const int)
Form of expected instruction(s): vqshl.u64 d0, d0, #0

• int64x1 t vqshl n s64 (int64x1 t, const int)
Form of expected instruction(s): vqshl.s64 d0, d0, #0

• uint32x4 t vqshlq n u32 (uint32x4 t, const int)
Form of expected instruction(s): vqshl.u32 q0, q0, #0

• uint16x8 t vqshlq n u16 (uint16x8 t, const int)
Form of expected instruction(s): vqshl.u16 q0, q0, #0

• uint8x16 t vqshlq n u8 (uint8x16 t, const int)
Form of expected instruction(s): vqshl.u8 q0, q0, #0

• int32x4 t vqshlq n s32 (int32x4 t, const int)
Form of expected instruction(s): vqshl.s32 q0, q0, #0

• int16x8 t vqshlq n s16 (int16x8 t, const int)
Form of expected instruction(s): vqshl.s16 q0, q0, #0

• int8x16 t vqshlq n s8 (int8x16 t, const int)
Form of expected instruction(s): vqshl.s8 q0, q0, #0

• uint64x2 t vqshlq n u64 (uint64x2 t, const int)
Form of expected instruction(s): vqshl.u64 q0, q0, #0

Chapter 6: Extensions to the C Language Family 531

• int64x2 t vqshlq n s64 (int64x2 t, const int)
Form of expected instruction(s): vqshl.s64 q0, q0, #0

• uint64x1 t vqshlu n s64 (int64x1 t, const int)
Form of expected instruction(s): vqshlu.s64 d0, d0, #0

• uint32x2 t vqshlu n s32 (int32x2 t, const int)
Form of expected instruction(s): vqshlu.s32 d0, d0, #0

• uint16x4 t vqshlu n s16 (int16x4 t, const int)
Form of expected instruction(s): vqshlu.s16 d0, d0, #0

• uint8x8 t vqshlu n s8 (int8x8 t, const int)
Form of expected instruction(s): vqshlu.s8 d0, d0, #0

• uint64x2 t vqshluq n s64 (int64x2 t, const int)
Form of expected instruction(s): vqshlu.s64 q0, q0, #0

• uint32x4 t vqshluq n s32 (int32x4 t, const int)
Form of expected instruction(s): vqshlu.s32 q0, q0, #0

• uint16x8 t vqshluq n s16 (int16x8 t, const int)
Form of expected instruction(s): vqshlu.s16 q0, q0, #0

• uint8x16 t vqshluq n s8 (int8x16 t, const int)
Form of expected instruction(s): vqshlu.s8 q0, q0, #0

• uint64x2 t vshll n u32 (uint32x2 t, const int)
Form of expected instruction(s): vshll.u32 q0, d0, #0

• uint32x4 t vshll n u16 (uint16x4 t, const int)
Form of expected instruction(s): vshll.u16 q0, d0, #0

• uint16x8 t vshll n u8 (uint8x8 t, const int)
Form of expected instruction(s): vshll.u8 q0, d0, #0

• int64x2 t vshll n s32 (int32x2 t, const int)
Form of expected instruction(s): vshll.s32 q0, d0, #0

• int32x4 t vshll n s16 (int16x4 t, const int)
Form of expected instruction(s): vshll.s16 q0, d0, #0

• int16x8 t vshll n s8 (int8x8 t, const int)
Form of expected instruction(s): vshll.s8 q0, d0, #0

6.57.6.34 Vector shift right by constant

• uint32x2 t vshr n u32 (uint32x2 t, const int)
Form of expected instruction(s): vshr.u32 d0, d0, #0

• uint16x4 t vshr n u16 (uint16x4 t, const int)
Form of expected instruction(s): vshr.u16 d0, d0, #0

• uint8x8 t vshr n u8 (uint8x8 t, const int)
Form of expected instruction(s): vshr.u8 d0, d0, #0

• int32x2 t vshr n s32 (int32x2 t, const int)
Form of expected instruction(s): vshr.s32 d0, d0, #0

• int16x4 t vshr n s16 (int16x4 t, const int)
Form of expected instruction(s): vshr.s16 d0, d0, #0

532 Using the GNU Compiler Collection (GCC)

• int8x8 t vshr n s8 (int8x8 t, const int)
Form of expected instruction(s): vshr.s8 d0, d0, #0

• uint64x1 t vshr n u64 (uint64x1 t, const int)
Form of expected instruction(s): vshr.u64 d0, d0, #0

• int64x1 t vshr n s64 (int64x1 t, const int)
Form of expected instruction(s): vshr.s64 d0, d0, #0

• uint32x4 t vshrq n u32 (uint32x4 t, const int)
Form of expected instruction(s): vshr.u32 q0, q0, #0

• uint16x8 t vshrq n u16 (uint16x8 t, const int)
Form of expected instruction(s): vshr.u16 q0, q0, #0

• uint8x16 t vshrq n u8 (uint8x16 t, const int)
Form of expected instruction(s): vshr.u8 q0, q0, #0

• int32x4 t vshrq n s32 (int32x4 t, const int)
Form of expected instruction(s): vshr.s32 q0, q0, #0

• int16x8 t vshrq n s16 (int16x8 t, const int)
Form of expected instruction(s): vshr.s16 q0, q0, #0

• int8x16 t vshrq n s8 (int8x16 t, const int)
Form of expected instruction(s): vshr.s8 q0, q0, #0

• uint64x2 t vshrq n u64 (uint64x2 t, const int)
Form of expected instruction(s): vshr.u64 q0, q0, #0

• int64x2 t vshrq n s64 (int64x2 t, const int)
Form of expected instruction(s): vshr.s64 q0, q0, #0

• uint32x2 t vrshr n u32 (uint32x2 t, const int)
Form of expected instruction(s): vrshr.u32 d0, d0, #0

• uint16x4 t vrshr n u16 (uint16x4 t, const int)
Form of expected instruction(s): vrshr.u16 d0, d0, #0

• uint8x8 t vrshr n u8 (uint8x8 t, const int)
Form of expected instruction(s): vrshr.u8 d0, d0, #0

• int32x2 t vrshr n s32 (int32x2 t, const int)
Form of expected instruction(s): vrshr.s32 d0, d0, #0

• int16x4 t vrshr n s16 (int16x4 t, const int)
Form of expected instruction(s): vrshr.s16 d0, d0, #0

• int8x8 t vrshr n s8 (int8x8 t, const int)
Form of expected instruction(s): vrshr.s8 d0, d0, #0

• uint64x1 t vrshr n u64 (uint64x1 t, const int)
Form of expected instruction(s): vrshr.u64 d0, d0, #0

• int64x1 t vrshr n s64 (int64x1 t, const int)
Form of expected instruction(s): vrshr.s64 d0, d0, #0

• uint32x4 t vrshrq n u32 (uint32x4 t, const int)
Form of expected instruction(s): vrshr.u32 q0, q0, #0

• uint16x8 t vrshrq n u16 (uint16x8 t, const int)
Form of expected instruction(s): vrshr.u16 q0, q0, #0

Chapter 6: Extensions to the C Language Family 533

• uint8x16 t vrshrq n u8 (uint8x16 t, const int)
Form of expected instruction(s): vrshr.u8 q0, q0, #0

• int32x4 t vrshrq n s32 (int32x4 t, const int)
Form of expected instruction(s): vrshr.s32 q0, q0, #0

• int16x8 t vrshrq n s16 (int16x8 t, const int)
Form of expected instruction(s): vrshr.s16 q0, q0, #0

• int8x16 t vrshrq n s8 (int8x16 t, const int)
Form of expected instruction(s): vrshr.s8 q0, q0, #0

• uint64x2 t vrshrq n u64 (uint64x2 t, const int)
Form of expected instruction(s): vrshr.u64 q0, q0, #0

• int64x2 t vrshrq n s64 (int64x2 t, const int)
Form of expected instruction(s): vrshr.s64 q0, q0, #0

• uint32x2 t vshrn n u64 (uint64x2 t, const int)
Form of expected instruction(s): vshrn.i64 d0, q0, #0

• uint16x4 t vshrn n u32 (uint32x4 t, const int)
Form of expected instruction(s): vshrn.i32 d0, q0, #0

• uint8x8 t vshrn n u16 (uint16x8 t, const int)
Form of expected instruction(s): vshrn.i16 d0, q0, #0

• int32x2 t vshrn n s64 (int64x2 t, const int)
Form of expected instruction(s): vshrn.i64 d0, q0, #0

• int16x4 t vshrn n s32 (int32x4 t, const int)
Form of expected instruction(s): vshrn.i32 d0, q0, #0

• int8x8 t vshrn n s16 (int16x8 t, const int)
Form of expected instruction(s): vshrn.i16 d0, q0, #0

• uint32x2 t vrshrn n u64 (uint64x2 t, const int)
Form of expected instruction(s): vrshrn.i64 d0, q0, #0

• uint16x4 t vrshrn n u32 (uint32x4 t, const int)
Form of expected instruction(s): vrshrn.i32 d0, q0, #0

• uint8x8 t vrshrn n u16 (uint16x8 t, const int)
Form of expected instruction(s): vrshrn.i16 d0, q0, #0

• int32x2 t vrshrn n s64 (int64x2 t, const int)
Form of expected instruction(s): vrshrn.i64 d0, q0, #0

• int16x4 t vrshrn n s32 (int32x4 t, const int)
Form of expected instruction(s): vrshrn.i32 d0, q0, #0

• int8x8 t vrshrn n s16 (int16x8 t, const int)
Form of expected instruction(s): vrshrn.i16 d0, q0, #0

• uint32x2 t vqshrn n u64 (uint64x2 t, const int)
Form of expected instruction(s): vqshrn.u64 d0, q0, #0

• uint16x4 t vqshrn n u32 (uint32x4 t, const int)
Form of expected instruction(s): vqshrn.u32 d0, q0, #0

• uint8x8 t vqshrn n u16 (uint16x8 t, const int)
Form of expected instruction(s): vqshrn.u16 d0, q0, #0

534 Using the GNU Compiler Collection (GCC)

• int32x2 t vqshrn n s64 (int64x2 t, const int)
Form of expected instruction(s): vqshrn.s64 d0, q0, #0

• int16x4 t vqshrn n s32 (int32x4 t, const int)
Form of expected instruction(s): vqshrn.s32 d0, q0, #0

• int8x8 t vqshrn n s16 (int16x8 t, const int)
Form of expected instruction(s): vqshrn.s16 d0, q0, #0

• uint32x2 t vqrshrn n u64 (uint64x2 t, const int)
Form of expected instruction(s): vqrshrn.u64 d0, q0, #0

• uint16x4 t vqrshrn n u32 (uint32x4 t, const int)
Form of expected instruction(s): vqrshrn.u32 d0, q0, #0

• uint8x8 t vqrshrn n u16 (uint16x8 t, const int)
Form of expected instruction(s): vqrshrn.u16 d0, q0, #0

• int32x2 t vqrshrn n s64 (int64x2 t, const int)
Form of expected instruction(s): vqrshrn.s64 d0, q0, #0

• int16x4 t vqrshrn n s32 (int32x4 t, const int)
Form of expected instruction(s): vqrshrn.s32 d0, q0, #0

• int8x8 t vqrshrn n s16 (int16x8 t, const int)
Form of expected instruction(s): vqrshrn.s16 d0, q0, #0

• uint32x2 t vqshrun n s64 (int64x2 t, const int)
Form of expected instruction(s): vqshrun.s64 d0, q0, #0

• uint16x4 t vqshrun n s32 (int32x4 t, const int)
Form of expected instruction(s): vqshrun.s32 d0, q0, #0

• uint8x8 t vqshrun n s16 (int16x8 t, const int)
Form of expected instruction(s): vqshrun.s16 d0, q0, #0

• uint32x2 t vqrshrun n s64 (int64x2 t, const int)
Form of expected instruction(s): vqrshrun.s64 d0, q0, #0

• uint16x4 t vqrshrun n s32 (int32x4 t, const int)
Form of expected instruction(s): vqrshrun.s32 d0, q0, #0

• uint8x8 t vqrshrun n s16 (int16x8 t, const int)
Form of expected instruction(s): vqrshrun.s16 d0, q0, #0

6.57.6.35 Vector shift right by constant and accumulate

• uint32x2 t vsra n u32 (uint32x2 t, uint32x2 t, const int)
Form of expected instruction(s): vsra.u32 d0, d0, #0

• uint16x4 t vsra n u16 (uint16x4 t, uint16x4 t, const int)
Form of expected instruction(s): vsra.u16 d0, d0, #0

• uint8x8 t vsra n u8 (uint8x8 t, uint8x8 t, const int)
Form of expected instruction(s): vsra.u8 d0, d0, #0

• int32x2 t vsra n s32 (int32x2 t, int32x2 t, const int)
Form of expected instruction(s): vsra.s32 d0, d0, #0

• int16x4 t vsra n s16 (int16x4 t, int16x4 t, const int)
Form of expected instruction(s): vsra.s16 d0, d0, #0

Chapter 6: Extensions to the C Language Family 535

• int8x8 t vsra n s8 (int8x8 t, int8x8 t, const int)
Form of expected instruction(s): vsra.s8 d0, d0, #0

• uint64x1 t vsra n u64 (uint64x1 t, uint64x1 t, const int)
Form of expected instruction(s): vsra.u64 d0, d0, #0

• int64x1 t vsra n s64 (int64x1 t, int64x1 t, const int)
Form of expected instruction(s): vsra.s64 d0, d0, #0

• uint32x4 t vsraq n u32 (uint32x4 t, uint32x4 t, const int)
Form of expected instruction(s): vsra.u32 q0, q0, #0

• uint16x8 t vsraq n u16 (uint16x8 t, uint16x8 t, const int)
Form of expected instruction(s): vsra.u16 q0, q0, #0

• uint8x16 t vsraq n u8 (uint8x16 t, uint8x16 t, const int)
Form of expected instruction(s): vsra.u8 q0, q0, #0

• int32x4 t vsraq n s32 (int32x4 t, int32x4 t, const int)
Form of expected instruction(s): vsra.s32 q0, q0, #0

• int16x8 t vsraq n s16 (int16x8 t, int16x8 t, const int)
Form of expected instruction(s): vsra.s16 q0, q0, #0

• int8x16 t vsraq n s8 (int8x16 t, int8x16 t, const int)
Form of expected instruction(s): vsra.s8 q0, q0, #0

• uint64x2 t vsraq n u64 (uint64x2 t, uint64x2 t, const int)
Form of expected instruction(s): vsra.u64 q0, q0, #0

• int64x2 t vsraq n s64 (int64x2 t, int64x2 t, const int)
Form of expected instruction(s): vsra.s64 q0, q0, #0

• uint32x2 t vrsra n u32 (uint32x2 t, uint32x2 t, const int)
Form of expected instruction(s): vrsra.u32 d0, d0, #0

• uint16x4 t vrsra n u16 (uint16x4 t, uint16x4 t, const int)
Form of expected instruction(s): vrsra.u16 d0, d0, #0

• uint8x8 t vrsra n u8 (uint8x8 t, uint8x8 t, const int)
Form of expected instruction(s): vrsra.u8 d0, d0, #0

• int32x2 t vrsra n s32 (int32x2 t, int32x2 t, const int)
Form of expected instruction(s): vrsra.s32 d0, d0, #0

• int16x4 t vrsra n s16 (int16x4 t, int16x4 t, const int)
Form of expected instruction(s): vrsra.s16 d0, d0, #0

• int8x8 t vrsra n s8 (int8x8 t, int8x8 t, const int)
Form of expected instruction(s): vrsra.s8 d0, d0, #0

• uint64x1 t vrsra n u64 (uint64x1 t, uint64x1 t, const int)
Form of expected instruction(s): vrsra.u64 d0, d0, #0

• int64x1 t vrsra n s64 (int64x1 t, int64x1 t, const int)
Form of expected instruction(s): vrsra.s64 d0, d0, #0

• uint32x4 t vrsraq n u32 (uint32x4 t, uint32x4 t, const int)
Form of expected instruction(s): vrsra.u32 q0, q0, #0

• uint16x8 t vrsraq n u16 (uint16x8 t, uint16x8 t, const int)
Form of expected instruction(s): vrsra.u16 q0, q0, #0

536 Using the GNU Compiler Collection (GCC)

• uint8x16 t vrsraq n u8 (uint8x16 t, uint8x16 t, const int)
Form of expected instruction(s): vrsra.u8 q0, q0, #0

• int32x4 t vrsraq n s32 (int32x4 t, int32x4 t, const int)
Form of expected instruction(s): vrsra.s32 q0, q0, #0

• int16x8 t vrsraq n s16 (int16x8 t, int16x8 t, const int)
Form of expected instruction(s): vrsra.s16 q0, q0, #0

• int8x16 t vrsraq n s8 (int8x16 t, int8x16 t, const int)
Form of expected instruction(s): vrsra.s8 q0, q0, #0

• uint64x2 t vrsraq n u64 (uint64x2 t, uint64x2 t, const int)
Form of expected instruction(s): vrsra.u64 q0, q0, #0

• int64x2 t vrsraq n s64 (int64x2 t, int64x2 t, const int)
Form of expected instruction(s): vrsra.s64 q0, q0, #0

6.57.6.36 Vector shift right and insert

• poly64x1 t vsri n p64 (poly64x1 t, poly64x1 t, const int)
Form of expected instruction(s): vsri.64 d0, d0, #0

• uint32x2 t vsri n u32 (uint32x2 t, uint32x2 t, const int)
Form of expected instruction(s): vsri.32 d0, d0, #0

• uint16x4 t vsri n u16 (uint16x4 t, uint16x4 t, const int)
Form of expected instruction(s): vsri.16 d0, d0, #0

• uint8x8 t vsri n u8 (uint8x8 t, uint8x8 t, const int)
Form of expected instruction(s): vsri.8 d0, d0, #0

• int32x2 t vsri n s32 (int32x2 t, int32x2 t, const int)
Form of expected instruction(s): vsri.32 d0, d0, #0

• int16x4 t vsri n s16 (int16x4 t, int16x4 t, const int)
Form of expected instruction(s): vsri.16 d0, d0, #0

• int8x8 t vsri n s8 (int8x8 t, int8x8 t, const int)
Form of expected instruction(s): vsri.8 d0, d0, #0

• uint64x1 t vsri n u64 (uint64x1 t, uint64x1 t, const int)
Form of expected instruction(s): vsri.64 d0, d0, #0

• int64x1 t vsri n s64 (int64x1 t, int64x1 t, const int)
Form of expected instruction(s): vsri.64 d0, d0, #0

• poly16x4 t vsri n p16 (poly16x4 t, poly16x4 t, const int)
Form of expected instruction(s): vsri.16 d0, d0, #0

• poly8x8 t vsri n p8 (poly8x8 t, poly8x8 t, const int)
Form of expected instruction(s): vsri.8 d0, d0, #0

• poly64x2 t vsriq n p64 (poly64x2 t, poly64x2 t, const int)
Form of expected instruction(s): vsri.64 q0, q0, #0

• uint32x4 t vsriq n u32 (uint32x4 t, uint32x4 t, const int)
Form of expected instruction(s): vsri.32 q0, q0, #0

• uint16x8 t vsriq n u16 (uint16x8 t, uint16x8 t, const int)
Form of expected instruction(s): vsri.16 q0, q0, #0

Chapter 6: Extensions to the C Language Family 537

• uint8x16 t vsriq n u8 (uint8x16 t, uint8x16 t, const int)
Form of expected instruction(s): vsri.8 q0, q0, #0

• int32x4 t vsriq n s32 (int32x4 t, int32x4 t, const int)
Form of expected instruction(s): vsri.32 q0, q0, #0

• int16x8 t vsriq n s16 (int16x8 t, int16x8 t, const int)
Form of expected instruction(s): vsri.16 q0, q0, #0

• int8x16 t vsriq n s8 (int8x16 t, int8x16 t, const int)
Form of expected instruction(s): vsri.8 q0, q0, #0

• uint64x2 t vsriq n u64 (uint64x2 t, uint64x2 t, const int)
Form of expected instruction(s): vsri.64 q0, q0, #0

• int64x2 t vsriq n s64 (int64x2 t, int64x2 t, const int)
Form of expected instruction(s): vsri.64 q0, q0, #0

• poly16x8 t vsriq n p16 (poly16x8 t, poly16x8 t, const int)
Form of expected instruction(s): vsri.16 q0, q0, #0

• poly8x16 t vsriq n p8 (poly8x16 t, poly8x16 t, const int)
Form of expected instruction(s): vsri.8 q0, q0, #0

6.57.6.37 Vector shift left and insert

• poly64x1 t vsli n p64 (poly64x1 t, poly64x1 t, const int)
Form of expected instruction(s): vsli.64 d0, d0, #0

• uint32x2 t vsli n u32 (uint32x2 t, uint32x2 t, const int)
Form of expected instruction(s): vsli.32 d0, d0, #0

• uint16x4 t vsli n u16 (uint16x4 t, uint16x4 t, const int)
Form of expected instruction(s): vsli.16 d0, d0, #0

• uint8x8 t vsli n u8 (uint8x8 t, uint8x8 t, const int)
Form of expected instruction(s): vsli.8 d0, d0, #0

• int32x2 t vsli n s32 (int32x2 t, int32x2 t, const int)
Form of expected instruction(s): vsli.32 d0, d0, #0

• int16x4 t vsli n s16 (int16x4 t, int16x4 t, const int)
Form of expected instruction(s): vsli.16 d0, d0, #0

• int8x8 t vsli n s8 (int8x8 t, int8x8 t, const int)
Form of expected instruction(s): vsli.8 d0, d0, #0

• uint64x1 t vsli n u64 (uint64x1 t, uint64x1 t, const int)
Form of expected instruction(s): vsli.64 d0, d0, #0

• int64x1 t vsli n s64 (int64x1 t, int64x1 t, const int)
Form of expected instruction(s): vsli.64 d0, d0, #0

• poly16x4 t vsli n p16 (poly16x4 t, poly16x4 t, const int)
Form of expected instruction(s): vsli.16 d0, d0, #0

• poly8x8 t vsli n p8 (poly8x8 t, poly8x8 t, const int)
Form of expected instruction(s): vsli.8 d0, d0, #0

• poly64x2 t vsliq n p64 (poly64x2 t, poly64x2 t, const int)
Form of expected instruction(s): vsli.64 q0, q0, #0

538 Using the GNU Compiler Collection (GCC)

• uint32x4 t vsliq n u32 (uint32x4 t, uint32x4 t, const int)
Form of expected instruction(s): vsli.32 q0, q0, #0

• uint16x8 t vsliq n u16 (uint16x8 t, uint16x8 t, const int)
Form of expected instruction(s): vsli.16 q0, q0, #0

• uint8x16 t vsliq n u8 (uint8x16 t, uint8x16 t, const int)
Form of expected instruction(s): vsli.8 q0, q0, #0

• int32x4 t vsliq n s32 (int32x4 t, int32x4 t, const int)
Form of expected instruction(s): vsli.32 q0, q0, #0

• int16x8 t vsliq n s16 (int16x8 t, int16x8 t, const int)
Form of expected instruction(s): vsli.16 q0, q0, #0

• int8x16 t vsliq n s8 (int8x16 t, int8x16 t, const int)
Form of expected instruction(s): vsli.8 q0, q0, #0

• uint64x2 t vsliq n u64 (uint64x2 t, uint64x2 t, const int)
Form of expected instruction(s): vsli.64 q0, q0, #0

• int64x2 t vsliq n s64 (int64x2 t, int64x2 t, const int)
Form of expected instruction(s): vsli.64 q0, q0, #0

• poly16x8 t vsliq n p16 (poly16x8 t, poly16x8 t, const int)
Form of expected instruction(s): vsli.16 q0, q0, #0

• poly8x16 t vsliq n p8 (poly8x16 t, poly8x16 t, const int)
Form of expected instruction(s): vsli.8 q0, q0, #0

6.57.6.38 Absolute value

• float32x2 t vabs f32 (float32x2 t)
Form of expected instruction(s): vabs.f32 d0, d0

• int32x2 t vabs s32 (int32x2 t)
Form of expected instruction(s): vabs.s32 d0, d0

• int16x4 t vabs s16 (int16x4 t)
Form of expected instruction(s): vabs.s16 d0, d0

• int8x8 t vabs s8 (int8x8 t)
Form of expected instruction(s): vabs.s8 d0, d0

• float32x4 t vabsq f32 (float32x4 t)
Form of expected instruction(s): vabs.f32 q0, q0

• int32x4 t vabsq s32 (int32x4 t)
Form of expected instruction(s): vabs.s32 q0, q0

• int16x8 t vabsq s16 (int16x8 t)
Form of expected instruction(s): vabs.s16 q0, q0

• int8x16 t vabsq s8 (int8x16 t)
Form of expected instruction(s): vabs.s8 q0, q0

• int32x2 t vqabs s32 (int32x2 t)
Form of expected instruction(s): vqabs.s32 d0, d0

• int16x4 t vqabs s16 (int16x4 t)
Form of expected instruction(s): vqabs.s16 d0, d0

Chapter 6: Extensions to the C Language Family 539

• int8x8 t vqabs s8 (int8x8 t)
Form of expected instruction(s): vqabs.s8 d0, d0

• int32x4 t vqabsq s32 (int32x4 t)
Form of expected instruction(s): vqabs.s32 q0, q0

• int16x8 t vqabsq s16 (int16x8 t)
Form of expected instruction(s): vqabs.s16 q0, q0

• int8x16 t vqabsq s8 (int8x16 t)
Form of expected instruction(s): vqabs.s8 q0, q0

6.57.6.39 Negation

• float32x2 t vneg f32 (float32x2 t)
Form of expected instruction(s): vneg.f32 d0, d0

• int32x2 t vneg s32 (int32x2 t)
Form of expected instruction(s): vneg.s32 d0, d0

• int16x4 t vneg s16 (int16x4 t)
Form of expected instruction(s): vneg.s16 d0, d0

• int8x8 t vneg s8 (int8x8 t)
Form of expected instruction(s): vneg.s8 d0, d0

• float32x4 t vnegq f32 (float32x4 t)
Form of expected instruction(s): vneg.f32 q0, q0

• int32x4 t vnegq s32 (int32x4 t)
Form of expected instruction(s): vneg.s32 q0, q0

• int16x8 t vnegq s16 (int16x8 t)
Form of expected instruction(s): vneg.s16 q0, q0

• int8x16 t vnegq s8 (int8x16 t)
Form of expected instruction(s): vneg.s8 q0, q0

• int32x2 t vqneg s32 (int32x2 t)
Form of expected instruction(s): vqneg.s32 d0, d0

• int16x4 t vqneg s16 (int16x4 t)
Form of expected instruction(s): vqneg.s16 d0, d0

• int8x8 t vqneg s8 (int8x8 t)
Form of expected instruction(s): vqneg.s8 d0, d0

• int32x4 t vqnegq s32 (int32x4 t)
Form of expected instruction(s): vqneg.s32 q0, q0

• int16x8 t vqnegq s16 (int16x8 t)
Form of expected instruction(s): vqneg.s16 q0, q0

• int8x16 t vqnegq s8 (int8x16 t)
Form of expected instruction(s): vqneg.s8 q0, q0

6.57.6.40 Bitwise not

• uint32x2 t vmvn u32 (uint32x2 t)
Form of expected instruction(s): vmvn d0, d0

540 Using the GNU Compiler Collection (GCC)

• uint16x4 t vmvn u16 (uint16x4 t)
Form of expected instruction(s): vmvn d0, d0

• uint8x8 t vmvn u8 (uint8x8 t)
Form of expected instruction(s): vmvn d0, d0

• int32x2 t vmvn s32 (int32x2 t)
Form of expected instruction(s): vmvn d0, d0

• int16x4 t vmvn s16 (int16x4 t)
Form of expected instruction(s): vmvn d0, d0

• int8x8 t vmvn s8 (int8x8 t)
Form of expected instruction(s): vmvn d0, d0

• poly8x8 t vmvn p8 (poly8x8 t)
Form of expected instruction(s): vmvn d0, d0

• uint32x4 t vmvnq u32 (uint32x4 t)
Form of expected instruction(s): vmvn q0, q0

• uint16x8 t vmvnq u16 (uint16x8 t)
Form of expected instruction(s): vmvn q0, q0

• uint8x16 t vmvnq u8 (uint8x16 t)
Form of expected instruction(s): vmvn q0, q0

• int32x4 t vmvnq s32 (int32x4 t)
Form of expected instruction(s): vmvn q0, q0

• int16x8 t vmvnq s16 (int16x8 t)
Form of expected instruction(s): vmvn q0, q0

• int8x16 t vmvnq s8 (int8x16 t)
Form of expected instruction(s): vmvn q0, q0

• poly8x16 t vmvnq p8 (poly8x16 t)
Form of expected instruction(s): vmvn q0, q0

6.57.6.41 Count leading sign bits

• int32x2 t vcls s32 (int32x2 t)
Form of expected instruction(s): vcls.s32 d0, d0

• int16x4 t vcls s16 (int16x4 t)
Form of expected instruction(s): vcls.s16 d0, d0

• int8x8 t vcls s8 (int8x8 t)
Form of expected instruction(s): vcls.s8 d0, d0

• int32x4 t vclsq s32 (int32x4 t)
Form of expected instruction(s): vcls.s32 q0, q0

• int16x8 t vclsq s16 (int16x8 t)
Form of expected instruction(s): vcls.s16 q0, q0

• int8x16 t vclsq s8 (int8x16 t)
Form of expected instruction(s): vcls.s8 q0, q0

6.57.6.42 Count leading zeros

• uint32x2 t vclz u32 (uint32x2 t)
Form of expected instruction(s): vclz.i32 d0, d0

Chapter 6: Extensions to the C Language Family 541

• uint16x4 t vclz u16 (uint16x4 t)
Form of expected instruction(s): vclz.i16 d0, d0

• uint8x8 t vclz u8 (uint8x8 t)
Form of expected instruction(s): vclz.i8 d0, d0

• int32x2 t vclz s32 (int32x2 t)
Form of expected instruction(s): vclz.i32 d0, d0

• int16x4 t vclz s16 (int16x4 t)
Form of expected instruction(s): vclz.i16 d0, d0

• int8x8 t vclz s8 (int8x8 t)
Form of expected instruction(s): vclz.i8 d0, d0

• uint32x4 t vclzq u32 (uint32x4 t)
Form of expected instruction(s): vclz.i32 q0, q0

• uint16x8 t vclzq u16 (uint16x8 t)
Form of expected instruction(s): vclz.i16 q0, q0

• uint8x16 t vclzq u8 (uint8x16 t)
Form of expected instruction(s): vclz.i8 q0, q0

• int32x4 t vclzq s32 (int32x4 t)
Form of expected instruction(s): vclz.i32 q0, q0

• int16x8 t vclzq s16 (int16x8 t)
Form of expected instruction(s): vclz.i16 q0, q0

• int8x16 t vclzq s8 (int8x16 t)
Form of expected instruction(s): vclz.i8 q0, q0

6.57.6.43 Count number of set bits

• uint8x8 t vcnt u8 (uint8x8 t)
Form of expected instruction(s): vcnt.8 d0, d0

• int8x8 t vcnt s8 (int8x8 t)
Form of expected instruction(s): vcnt.8 d0, d0

• poly8x8 t vcnt p8 (poly8x8 t)
Form of expected instruction(s): vcnt.8 d0, d0

• uint8x16 t vcntq u8 (uint8x16 t)
Form of expected instruction(s): vcnt.8 q0, q0

• int8x16 t vcntq s8 (int8x16 t)
Form of expected instruction(s): vcnt.8 q0, q0

• poly8x16 t vcntq p8 (poly8x16 t)
Form of expected instruction(s): vcnt.8 q0, q0

6.57.6.44 Reciprocal estimate

• float32x2 t vrecpe f32 (float32x2 t)
Form of expected instruction(s): vrecpe.f32 d0, d0

• uint32x2 t vrecpe u32 (uint32x2 t)
Form of expected instruction(s): vrecpe.u32 d0, d0

542 Using the GNU Compiler Collection (GCC)

• float32x4 t vrecpeq f32 (float32x4 t)
Form of expected instruction(s): vrecpe.f32 q0, q0

• uint32x4 t vrecpeq u32 (uint32x4 t)
Form of expected instruction(s): vrecpe.u32 q0, q0

6.57.6.45 Reciprocal square-root estimate

• float32x2 t vrsqrte f32 (float32x2 t)
Form of expected instruction(s): vrsqrte.f32 d0, d0

• uint32x2 t vrsqrte u32 (uint32x2 t)
Form of expected instruction(s): vrsqrte.u32 d0, d0

• float32x4 t vrsqrteq f32 (float32x4 t)
Form of expected instruction(s): vrsqrte.f32 q0, q0

• uint32x4 t vrsqrteq u32 (uint32x4 t)
Form of expected instruction(s): vrsqrte.u32 q0, q0

6.57.6.46 Get lanes from a vector

• uint32 t vget lane u32 (uint32x2 t, const int)
Form of expected instruction(s): vmov.32 r0, d0[0]

• uint16 t vget lane u16 (uint16x4 t, const int)
Form of expected instruction(s): vmov.u16 r0, d0[0]

• uint8 t vget lane u8 (uint8x8 t, const int)
Form of expected instruction(s): vmov.u8 r0, d0[0]

• int32 t vget lane s32 (int32x2 t, const int)
Form of expected instruction(s): vmov.32 r0, d0[0]

• int16 t vget lane s16 (int16x4 t, const int)
Form of expected instruction(s): vmov.s16 r0, d0[0]

• int8 t vget lane s8 (int8x8 t, const int)
Form of expected instruction(s): vmov.s8 r0, d0[0]

• float32 t vget lane f32 (float32x2 t, const int)
Form of expected instruction(s): vmov.32 r0, d0[0]

• poly16 t vget lane p16 (poly16x4 t, const int)
Form of expected instruction(s): vmov.u16 r0, d0[0]

• poly8 t vget lane p8 (poly8x8 t, const int)
Form of expected instruction(s): vmov.u8 r0, d0[0]

• uint64 t vget lane u64 (uint64x1 t, const int)

• int64 t vget lane s64 (int64x1 t, const int)

• uint32 t vgetq lane u32 (uint32x4 t, const int)
Form of expected instruction(s): vmov.32 r0, d0[0]

• uint16 t vgetq lane u16 (uint16x8 t, const int)
Form of expected instruction(s): vmov.u16 r0, d0[0]

• uint8 t vgetq lane u8 (uint8x16 t, const int)
Form of expected instruction(s): vmov.u8 r0, d0[0]

Chapter 6: Extensions to the C Language Family 543

• int32 t vgetq lane s32 (int32x4 t, const int)
Form of expected instruction(s): vmov.32 r0, d0[0]

• int16 t vgetq lane s16 (int16x8 t, const int)
Form of expected instruction(s): vmov.s16 r0, d0[0]

• int8 t vgetq lane s8 (int8x16 t, const int)
Form of expected instruction(s): vmov.s8 r0, d0[0]

• float32 t vgetq lane f32 (float32x4 t, const int)
Form of expected instruction(s): vmov.32 r0, d0[0]

• poly16 t vgetq lane p16 (poly16x8 t, const int)
Form of expected instruction(s): vmov.u16 r0, d0[0]

• poly8 t vgetq lane p8 (poly8x16 t, const int)
Form of expected instruction(s): vmov.u8 r0, d0[0]

• uint64 t vgetq lane u64 (uint64x2 t, const int)
Form of expected instruction(s): vmov r0, r0, d0 or fmrrd r0, r0, d0

• int64 t vgetq lane s64 (int64x2 t, const int)
Form of expected instruction(s): vmov r0, r0, d0 or fmrrd r0, r0, d0

6.57.6.47 Set lanes in a vector

• uint32x2 t vset lane u32 (uint32 t, uint32x2 t, const int)
Form of expected instruction(s): vmov.32 d0[0], r0

• uint16x4 t vset lane u16 (uint16 t, uint16x4 t, const int)
Form of expected instruction(s): vmov.16 d0[0], r0

• uint8x8 t vset lane u8 (uint8 t, uint8x8 t, const int)
Form of expected instruction(s): vmov.8 d0[0], r0

• int32x2 t vset lane s32 (int32 t, int32x2 t, const int)
Form of expected instruction(s): vmov.32 d0[0], r0

• int16x4 t vset lane s16 (int16 t, int16x4 t, const int)
Form of expected instruction(s): vmov.16 d0[0], r0

• int8x8 t vset lane s8 (int8 t, int8x8 t, const int)
Form of expected instruction(s): vmov.8 d0[0], r0

• float32x2 t vset lane f32 (float32 t, float32x2 t, const int)
Form of expected instruction(s): vmov.32 d0[0], r0

• poly16x4 t vset lane p16 (poly16 t, poly16x4 t, const int)
Form of expected instruction(s): vmov.16 d0[0], r0

• poly8x8 t vset lane p8 (poly8 t, poly8x8 t, const int)
Form of expected instruction(s): vmov.8 d0[0], r0

• uint64x1 t vset lane u64 (uint64 t, uint64x1 t, const int)
• int64x1 t vset lane s64 (int64 t, int64x1 t, const int)
• uint32x4 t vsetq lane u32 (uint32 t, uint32x4 t, const int)

Form of expected instruction(s): vmov.32 d0[0], r0

• uint16x8 t vsetq lane u16 (uint16 t, uint16x8 t, const int)
Form of expected instruction(s): vmov.16 d0[0], r0

544 Using the GNU Compiler Collection (GCC)

• uint8x16 t vsetq lane u8 (uint8 t, uint8x16 t, const int)
Form of expected instruction(s): vmov.8 d0[0], r0

• int32x4 t vsetq lane s32 (int32 t, int32x4 t, const int)
Form of expected instruction(s): vmov.32 d0[0], r0

• int16x8 t vsetq lane s16 (int16 t, int16x8 t, const int)
Form of expected instruction(s): vmov.16 d0[0], r0

• int8x16 t vsetq lane s8 (int8 t, int8x16 t, const int)
Form of expected instruction(s): vmov.8 d0[0], r0

• float32x4 t vsetq lane f32 (float32 t, float32x4 t, const int)
Form of expected instruction(s): vmov.32 d0[0], r0

• poly16x8 t vsetq lane p16 (poly16 t, poly16x8 t, const int)
Form of expected instruction(s): vmov.16 d0[0], r0

• poly8x16 t vsetq lane p8 (poly8 t, poly8x16 t, const int)
Form of expected instruction(s): vmov.8 d0[0], r0

• uint64x2 t vsetq lane u64 (uint64 t, uint64x2 t, const int)
Form of expected instruction(s): vmov d0, r0, r0

• int64x2 t vsetq lane s64 (int64 t, int64x2 t, const int)
Form of expected instruction(s): vmov d0, r0, r0

6.57.6.48 Create vector from literal bit pattern

• poly64x1 t vcreate p64 (uint64 t)
• uint32x2 t vcreate u32 (uint64 t)
• uint16x4 t vcreate u16 (uint64 t)
• uint8x8 t vcreate u8 (uint64 t)
• int32x2 t vcreate s32 (uint64 t)
• int16x4 t vcreate s16 (uint64 t)
• int8x8 t vcreate s8 (uint64 t)
• uint64x1 t vcreate u64 (uint64 t)
• int64x1 t vcreate s64 (uint64 t)
• float32x2 t vcreate f32 (uint64 t)
• poly16x4 t vcreate p16 (uint64 t)
• poly8x8 t vcreate p8 (uint64 t)

6.57.6.49 Set all lanes to the same value

• uint32x2 t vdup n u32 (uint32 t)
Form of expected instruction(s): vdup.32 d0, r0

• uint16x4 t vdup n u16 (uint16 t)
Form of expected instruction(s): vdup.16 d0, r0

• uint8x8 t vdup n u8 (uint8 t)
Form of expected instruction(s): vdup.8 d0, r0

• int32x2 t vdup n s32 (int32 t)
Form of expected instruction(s): vdup.32 d0, r0

Chapter 6: Extensions to the C Language Family 545

• int16x4 t vdup n s16 (int16 t)
Form of expected instruction(s): vdup.16 d0, r0

• int8x8 t vdup n s8 (int8 t)
Form of expected instruction(s): vdup.8 d0, r0

• float32x2 t vdup n f32 (float32 t)
Form of expected instruction(s): vdup.32 d0, r0

• poly16x4 t vdup n p16 (poly16 t)
Form of expected instruction(s): vdup.16 d0, r0

• poly8x8 t vdup n p8 (poly8 t)
Form of expected instruction(s): vdup.8 d0, r0

• poly64x1 t vdup n p64 (poly64 t)
• uint64x1 t vdup n u64 (uint64 t)
• int64x1 t vdup n s64 (int64 t)
• poly64x2 t vdupq n p64 (poly64 t)
• uint32x4 t vdupq n u32 (uint32 t)

Form of expected instruction(s): vdup.32 q0, r0

• uint16x8 t vdupq n u16 (uint16 t)
Form of expected instruction(s): vdup.16 q0, r0

• uint8x16 t vdupq n u8 (uint8 t)
Form of expected instruction(s): vdup.8 q0, r0

• int32x4 t vdupq n s32 (int32 t)
Form of expected instruction(s): vdup.32 q0, r0

• int16x8 t vdupq n s16 (int16 t)
Form of expected instruction(s): vdup.16 q0, r0

• int8x16 t vdupq n s8 (int8 t)
Form of expected instruction(s): vdup.8 q0, r0

• float32x4 t vdupq n f32 (float32 t)
Form of expected instruction(s): vdup.32 q0, r0

• poly16x8 t vdupq n p16 (poly16 t)
Form of expected instruction(s): vdup.16 q0, r0

• poly8x16 t vdupq n p8 (poly8 t)
Form of expected instruction(s): vdup.8 q0, r0

• uint64x2 t vdupq n u64 (uint64 t)
• int64x2 t vdupq n s64 (int64 t)
• uint32x2 t vmov n u32 (uint32 t)

Form of expected instruction(s): vdup.32 d0, r0

• uint16x4 t vmov n u16 (uint16 t)
Form of expected instruction(s): vdup.16 d0, r0

• uint8x8 t vmov n u8 (uint8 t)
Form of expected instruction(s): vdup.8 d0, r0

• int32x2 t vmov n s32 (int32 t)
Form of expected instruction(s): vdup.32 d0, r0

546 Using the GNU Compiler Collection (GCC)

• int16x4 t vmov n s16 (int16 t)
Form of expected instruction(s): vdup.16 d0, r0

• int8x8 t vmov n s8 (int8 t)
Form of expected instruction(s): vdup.8 d0, r0

• float32x2 t vmov n f32 (float32 t)
Form of expected instruction(s): vdup.32 d0, r0

• poly16x4 t vmov n p16 (poly16 t)
Form of expected instruction(s): vdup.16 d0, r0

• poly8x8 t vmov n p8 (poly8 t)
Form of expected instruction(s): vdup.8 d0, r0

• uint64x1 t vmov n u64 (uint64 t)
• int64x1 t vmov n s64 (int64 t)
• uint32x4 t vmovq n u32 (uint32 t)

Form of expected instruction(s): vdup.32 q0, r0

• uint16x8 t vmovq n u16 (uint16 t)
Form of expected instruction(s): vdup.16 q0, r0

• uint8x16 t vmovq n u8 (uint8 t)
Form of expected instruction(s): vdup.8 q0, r0

• int32x4 t vmovq n s32 (int32 t)
Form of expected instruction(s): vdup.32 q0, r0

• int16x8 t vmovq n s16 (int16 t)
Form of expected instruction(s): vdup.16 q0, r0

• int8x16 t vmovq n s8 (int8 t)
Form of expected instruction(s): vdup.8 q0, r0

• float32x4 t vmovq n f32 (float32 t)
Form of expected instruction(s): vdup.32 q0, r0

• poly16x8 t vmovq n p16 (poly16 t)
Form of expected instruction(s): vdup.16 q0, r0

• poly8x16 t vmovq n p8 (poly8 t)
Form of expected instruction(s): vdup.8 q0, r0

• uint64x2 t vmovq n u64 (uint64 t)
• int64x2 t vmovq n s64 (int64 t)
• uint32x2 t vdup lane u32 (uint32x2 t, const int)

Form of expected instruction(s): vdup.32 d0, d0[0]

• uint16x4 t vdup lane u16 (uint16x4 t, const int)
Form of expected instruction(s): vdup.16 d0, d0[0]

• uint8x8 t vdup lane u8 (uint8x8 t, const int)
Form of expected instruction(s): vdup.8 d0, d0[0]

• int32x2 t vdup lane s32 (int32x2 t, const int)
Form of expected instruction(s): vdup.32 d0, d0[0]

• int16x4 t vdup lane s16 (int16x4 t, const int)
Form of expected instruction(s): vdup.16 d0, d0[0]

Chapter 6: Extensions to the C Language Family 547

• int8x8 t vdup lane s8 (int8x8 t, const int)
Form of expected instruction(s): vdup.8 d0, d0[0]

• float32x2 t vdup lane f32 (float32x2 t, const int)
Form of expected instruction(s): vdup.32 d0, d0[0]

• poly16x4 t vdup lane p16 (poly16x4 t, const int)
Form of expected instruction(s): vdup.16 d0, d0[0]

• poly8x8 t vdup lane p8 (poly8x8 t, const int)
Form of expected instruction(s): vdup.8 d0, d0[0]

• poly64x1 t vdup lane p64 (poly64x1 t, const int)
• uint64x1 t vdup lane u64 (uint64x1 t, const int)
• int64x1 t vdup lane s64 (int64x1 t, const int)
• uint32x4 t vdupq lane u32 (uint32x2 t, const int)

Form of expected instruction(s): vdup.32 q0, d0[0]

• uint16x8 t vdupq lane u16 (uint16x4 t, const int)
Form of expected instruction(s): vdup.16 q0, d0[0]

• uint8x16 t vdupq lane u8 (uint8x8 t, const int)
Form of expected instruction(s): vdup.8 q0, d0[0]

• int32x4 t vdupq lane s32 (int32x2 t, const int)
Form of expected instruction(s): vdup.32 q0, d0[0]

• int16x8 t vdupq lane s16 (int16x4 t, const int)
Form of expected instruction(s): vdup.16 q0, d0[0]

• int8x16 t vdupq lane s8 (int8x8 t, const int)
Form of expected instruction(s): vdup.8 q0, d0[0]

• float32x4 t vdupq lane f32 (float32x2 t, const int)
Form of expected instruction(s): vdup.32 q0, d0[0]

• poly16x8 t vdupq lane p16 (poly16x4 t, const int)
Form of expected instruction(s): vdup.16 q0, d0[0]

• poly8x16 t vdupq lane p8 (poly8x8 t, const int)
Form of expected instruction(s): vdup.8 q0, d0[0]

• poly64x2 t vdupq lane p64 (poly64x1 t, const int)
• uint64x2 t vdupq lane u64 (uint64x1 t, const int)
• int64x2 t vdupq lane s64 (int64x1 t, const int)

6.57.6.50 Combining vectors

• poly64x2 t vcombine p64 (poly64x1 t, poly64x1 t)
• uint32x4 t vcombine u32 (uint32x2 t, uint32x2 t)
• uint16x8 t vcombine u16 (uint16x4 t, uint16x4 t)
• uint8x16 t vcombine u8 (uint8x8 t, uint8x8 t)
• int32x4 t vcombine s32 (int32x2 t, int32x2 t)
• int16x8 t vcombine s16 (int16x4 t, int16x4 t)
• int8x16 t vcombine s8 (int8x8 t, int8x8 t)

548 Using the GNU Compiler Collection (GCC)

• uint64x2 t vcombine u64 (uint64x1 t, uint64x1 t)
• int64x2 t vcombine s64 (int64x1 t, int64x1 t)
• float32x4 t vcombine f32 (float32x2 t, float32x2 t)
• poly16x8 t vcombine p16 (poly16x4 t, poly16x4 t)
• poly8x16 t vcombine p8 (poly8x8 t, poly8x8 t)

6.57.6.51 Splitting vectors

• poly64x1 t vget high p64 (poly64x2 t)
• uint32x2 t vget high u32 (uint32x4 t)
• uint16x4 t vget high u16 (uint16x8 t)
• uint8x8 t vget high u8 (uint8x16 t)
• int32x2 t vget high s32 (int32x4 t)
• int16x4 t vget high s16 (int16x8 t)
• int8x8 t vget high s8 (int8x16 t)
• uint64x1 t vget high u64 (uint64x2 t)
• int64x1 t vget high s64 (int64x2 t)
• float32x2 t vget high f32 (float32x4 t)
• poly16x4 t vget high p16 (poly16x8 t)
• poly8x8 t vget high p8 (poly8x16 t)
• uint32x2 t vget low u32 (uint32x4 t)

Form of expected instruction(s): vmov d0, d0

• uint16x4 t vget low u16 (uint16x8 t)
Form of expected instruction(s): vmov d0, d0

• uint8x8 t vget low u8 (uint8x16 t)
Form of expected instruction(s): vmov d0, d0

• int32x2 t vget low s32 (int32x4 t)
Form of expected instruction(s): vmov d0, d0

• int16x4 t vget low s16 (int16x8 t)
Form of expected instruction(s): vmov d0, d0

• int8x8 t vget low s8 (int8x16 t)
Form of expected instruction(s): vmov d0, d0

• float32x2 t vget low f32 (float32x4 t)
Form of expected instruction(s): vmov d0, d0

• poly16x4 t vget low p16 (poly16x8 t)
Form of expected instruction(s): vmov d0, d0

• poly8x8 t vget low p8 (poly8x16 t)
Form of expected instruction(s): vmov d0, d0

• poly64x1 t vget low p64 (poly64x2 t)
• uint64x1 t vget low u64 (uint64x2 t)
• int64x1 t vget low s64 (int64x2 t)

Chapter 6: Extensions to the C Language Family 549

6.57.6.52 Conversions

• float32x2 t vcvt f32 u32 (uint32x2 t)
Form of expected instruction(s): vcvt.f32.u32 d0, d0

• float32x2 t vcvt f32 s32 (int32x2 t)
Form of expected instruction(s): vcvt.f32.s32 d0, d0

• uint32x2 t vcvt u32 f32 (float32x2 t)
Form of expected instruction(s): vcvt.u32.f32 d0, d0

• int32x2 t vcvt s32 f32 (float32x2 t)
Form of expected instruction(s): vcvt.s32.f32 d0, d0

• float32x4 t vcvtq f32 u32 (uint32x4 t)
Form of expected instruction(s): vcvt.f32.u32 q0, q0

• float32x4 t vcvtq f32 s32 (int32x4 t)
Form of expected instruction(s): vcvt.f32.s32 q0, q0

• uint32x4 t vcvtq u32 f32 (float32x4 t)
Form of expected instruction(s): vcvt.u32.f32 q0, q0

• int32x4 t vcvtq s32 f32 (float32x4 t)
Form of expected instruction(s): vcvt.s32.f32 q0, q0

• float16x4 t vcvt f16 f32 (float32x4 t)
Form of expected instruction(s): vcvt.f16.f32 d0, q0

• float32x4 t vcvt f32 f16 (float16x4 t)
Form of expected instruction(s): vcvt.f32.f16 q0, d0

• float32x2 t vcvt n f32 u32 (uint32x2 t, const int)
Form of expected instruction(s): vcvt.f32.u32 d0, d0, #0

• float32x2 t vcvt n f32 s32 (int32x2 t, const int)
Form of expected instruction(s): vcvt.f32.s32 d0, d0, #0

• uint32x2 t vcvt n u32 f32 (float32x2 t, const int)
Form of expected instruction(s): vcvt.u32.f32 d0, d0, #0

• int32x2 t vcvt n s32 f32 (float32x2 t, const int)
Form of expected instruction(s): vcvt.s32.f32 d0, d0, #0

• float32x4 t vcvtq n f32 u32 (uint32x4 t, const int)
Form of expected instruction(s): vcvt.f32.u32 q0, q0, #0

• float32x4 t vcvtq n f32 s32 (int32x4 t, const int)
Form of expected instruction(s): vcvt.f32.s32 q0, q0, #0

• uint32x4 t vcvtq n u32 f32 (float32x4 t, const int)
Form of expected instruction(s): vcvt.u32.f32 q0, q0, #0

• int32x4 t vcvtq n s32 f32 (float32x4 t, const int)
Form of expected instruction(s): vcvt.s32.f32 q0, q0, #0

6.57.6.53 Move, single opcode narrowing

• uint32x2 t vmovn u64 (uint64x2 t)
Form of expected instruction(s): vmovn.i64 d0, q0

• uint16x4 t vmovn u32 (uint32x4 t)
Form of expected instruction(s): vmovn.i32 d0, q0

550 Using the GNU Compiler Collection (GCC)

• uint8x8 t vmovn u16 (uint16x8 t)
Form of expected instruction(s): vmovn.i16 d0, q0

• int32x2 t vmovn s64 (int64x2 t)
Form of expected instruction(s): vmovn.i64 d0, q0

• int16x4 t vmovn s32 (int32x4 t)
Form of expected instruction(s): vmovn.i32 d0, q0

• int8x8 t vmovn s16 (int16x8 t)
Form of expected instruction(s): vmovn.i16 d0, q0

• uint32x2 t vqmovn u64 (uint64x2 t)
Form of expected instruction(s): vqmovn.u64 d0, q0

• uint16x4 t vqmovn u32 (uint32x4 t)
Form of expected instruction(s): vqmovn.u32 d0, q0

• uint8x8 t vqmovn u16 (uint16x8 t)
Form of expected instruction(s): vqmovn.u16 d0, q0

• int32x2 t vqmovn s64 (int64x2 t)
Form of expected instruction(s): vqmovn.s64 d0, q0

• int16x4 t vqmovn s32 (int32x4 t)
Form of expected instruction(s): vqmovn.s32 d0, q0

• int8x8 t vqmovn s16 (int16x8 t)
Form of expected instruction(s): vqmovn.s16 d0, q0

• uint32x2 t vqmovun s64 (int64x2 t)
Form of expected instruction(s): vqmovun.s64 d0, q0

• uint16x4 t vqmovun s32 (int32x4 t)
Form of expected instruction(s): vqmovun.s32 d0, q0

• uint8x8 t vqmovun s16 (int16x8 t)
Form of expected instruction(s): vqmovun.s16 d0, q0

6.57.6.54 Move, single opcode long

• uint64x2 t vmovl u32 (uint32x2 t)
Form of expected instruction(s): vmovl.u32 q0, d0

• uint32x4 t vmovl u16 (uint16x4 t)
Form of expected instruction(s): vmovl.u16 q0, d0

• uint16x8 t vmovl u8 (uint8x8 t)
Form of expected instruction(s): vmovl.u8 q0, d0

• int64x2 t vmovl s32 (int32x2 t)
Form of expected instruction(s): vmovl.s32 q0, d0

• int32x4 t vmovl s16 (int16x4 t)
Form of expected instruction(s): vmovl.s16 q0, d0

• int16x8 t vmovl s8 (int8x8 t)
Form of expected instruction(s): vmovl.s8 q0, d0

6.57.6.55 Table lookup

• poly8x8 t vtbl1 p8 (poly8x8 t, uint8x8 t)
Form of expected instruction(s): vtbl.8 d0, {d0}, d0

Chapter 6: Extensions to the C Language Family 551

• int8x8 t vtbl1 s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vtbl.8 d0, {d0}, d0

• uint8x8 t vtbl1 u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vtbl.8 d0, {d0}, d0

• poly8x8 t vtbl2 p8 (poly8x8x2 t, uint8x8 t)
Form of expected instruction(s): vtbl.8 d0, {d0, d1}, d0

• int8x8 t vtbl2 s8 (int8x8x2 t, int8x8 t)
Form of expected instruction(s): vtbl.8 d0, {d0, d1}, d0

• uint8x8 t vtbl2 u8 (uint8x8x2 t, uint8x8 t)
Form of expected instruction(s): vtbl.8 d0, {d0, d1}, d0

• poly8x8 t vtbl3 p8 (poly8x8x3 t, uint8x8 t)
Form of expected instruction(s): vtbl.8 d0, {d0, d1, d2}, d0

• int8x8 t vtbl3 s8 (int8x8x3 t, int8x8 t)
Form of expected instruction(s): vtbl.8 d0, {d0, d1, d2}, d0

• uint8x8 t vtbl3 u8 (uint8x8x3 t, uint8x8 t)
Form of expected instruction(s): vtbl.8 d0, {d0, d1, d2}, d0

• poly8x8 t vtbl4 p8 (poly8x8x4 t, uint8x8 t)
Form of expected instruction(s): vtbl.8 d0, {d0, d1, d2, d3}, d0

• int8x8 t vtbl4 s8 (int8x8x4 t, int8x8 t)
Form of expected instruction(s): vtbl.8 d0, {d0, d1, d2, d3}, d0

• uint8x8 t vtbl4 u8 (uint8x8x4 t, uint8x8 t)
Form of expected instruction(s): vtbl.8 d0, {d0, d1, d2, d3}, d0

6.57.6.56 Extended table lookup

• poly8x8 t vtbx1 p8 (poly8x8 t, poly8x8 t, uint8x8 t)
Form of expected instruction(s): vtbx.8 d0, {d0}, d0

• int8x8 t vtbx1 s8 (int8x8 t, int8x8 t, int8x8 t)
Form of expected instruction(s): vtbx.8 d0, {d0}, d0

• uint8x8 t vtbx1 u8 (uint8x8 t, uint8x8 t, uint8x8 t)
Form of expected instruction(s): vtbx.8 d0, {d0}, d0

• poly8x8 t vtbx2 p8 (poly8x8 t, poly8x8x2 t, uint8x8 t)
Form of expected instruction(s): vtbx.8 d0, {d0, d1}, d0

• int8x8 t vtbx2 s8 (int8x8 t, int8x8x2 t, int8x8 t)
Form of expected instruction(s): vtbx.8 d0, {d0, d1}, d0

• uint8x8 t vtbx2 u8 (uint8x8 t, uint8x8x2 t, uint8x8 t)
Form of expected instruction(s): vtbx.8 d0, {d0, d1}, d0

• poly8x8 t vtbx3 p8 (poly8x8 t, poly8x8x3 t, uint8x8 t)
Form of expected instruction(s): vtbx.8 d0, {d0, d1, d2}, d0

• int8x8 t vtbx3 s8 (int8x8 t, int8x8x3 t, int8x8 t)
Form of expected instruction(s): vtbx.8 d0, {d0, d1, d2}, d0

• uint8x8 t vtbx3 u8 (uint8x8 t, uint8x8x3 t, uint8x8 t)
Form of expected instruction(s): vtbx.8 d0, {d0, d1, d2}, d0

552 Using the GNU Compiler Collection (GCC)

• poly8x8 t vtbx4 p8 (poly8x8 t, poly8x8x4 t, uint8x8 t)
Form of expected instruction(s): vtbx.8 d0, {d0, d1, d2, d3}, d0

• int8x8 t vtbx4 s8 (int8x8 t, int8x8x4 t, int8x8 t)
Form of expected instruction(s): vtbx.8 d0, {d0, d1, d2, d3}, d0

• uint8x8 t vtbx4 u8 (uint8x8 t, uint8x8x4 t, uint8x8 t)
Form of expected instruction(s): vtbx.8 d0, {d0, d1, d2, d3}, d0

6.57.6.57 Multiply, lane

• float32x2 t vmul lane f32 (float32x2 t, float32x2 t, const int)
Form of expected instruction(s): vmul.f32 d0, d0, d0[0]

• uint32x2 t vmul lane u32 (uint32x2 t, uint32x2 t, const int)
Form of expected instruction(s): vmul.i32 d0, d0, d0[0]

• uint16x4 t vmul lane u16 (uint16x4 t, uint16x4 t, const int)
Form of expected instruction(s): vmul.i16 d0, d0, d0[0]

• int32x2 t vmul lane s32 (int32x2 t, int32x2 t, const int)
Form of expected instruction(s): vmul.i32 d0, d0, d0[0]

• int16x4 t vmul lane s16 (int16x4 t, int16x4 t, const int)
Form of expected instruction(s): vmul.i16 d0, d0, d0[0]

• float32x4 t vmulq lane f32 (float32x4 t, float32x2 t, const int)
Form of expected instruction(s): vmul.f32 q0, q0, d0[0]

• uint32x4 t vmulq lane u32 (uint32x4 t, uint32x2 t, const int)
Form of expected instruction(s): vmul.i32 q0, q0, d0[0]

• uint16x8 t vmulq lane u16 (uint16x8 t, uint16x4 t, const int)
Form of expected instruction(s): vmul.i16 q0, q0, d0[0]

• int32x4 t vmulq lane s32 (int32x4 t, int32x2 t, const int)
Form of expected instruction(s): vmul.i32 q0, q0, d0[0]

• int16x8 t vmulq lane s16 (int16x8 t, int16x4 t, const int)
Form of expected instruction(s): vmul.i16 q0, q0, d0[0]

6.57.6.58 Long multiply, lane

• uint64x2 t vmull lane u32 (uint32x2 t, uint32x2 t, const int)
Form of expected instruction(s): vmull.u32 q0, d0, d0[0]

• uint32x4 t vmull lane u16 (uint16x4 t, uint16x4 t, const int)
Form of expected instruction(s): vmull.u16 q0, d0, d0[0]

• int64x2 t vmull lane s32 (int32x2 t, int32x2 t, const int)
Form of expected instruction(s): vmull.s32 q0, d0, d0[0]

• int32x4 t vmull lane s16 (int16x4 t, int16x4 t, const int)
Form of expected instruction(s): vmull.s16 q0, d0, d0[0]

6.57.6.59 Saturating doubling long multiply, lane

• int64x2 t vqdmull lane s32 (int32x2 t, int32x2 t, const int)
Form of expected instruction(s): vqdmull.s32 q0, d0, d0[0]

• int32x4 t vqdmull lane s16 (int16x4 t, int16x4 t, const int)
Form of expected instruction(s): vqdmull.s16 q0, d0, d0[0]

Chapter 6: Extensions to the C Language Family 553

6.57.6.60 Saturating doubling multiply high, lane

• int32x4 t vqdmulhq lane s32 (int32x4 t, int32x2 t, const int)
Form of expected instruction(s): vqdmulh.s32 q0, q0, d0[0]

• int16x8 t vqdmulhq lane s16 (int16x8 t, int16x4 t, const int)
Form of expected instruction(s): vqdmulh.s16 q0, q0, d0[0]

• int32x2 t vqdmulh lane s32 (int32x2 t, int32x2 t, const int)
Form of expected instruction(s): vqdmulh.s32 d0, d0, d0[0]

• int16x4 t vqdmulh lane s16 (int16x4 t, int16x4 t, const int)
Form of expected instruction(s): vqdmulh.s16 d0, d0, d0[0]

• int32x4 t vqrdmulhq lane s32 (int32x4 t, int32x2 t, const int)
Form of expected instruction(s): vqrdmulh.s32 q0, q0, d0[0]

• int16x8 t vqrdmulhq lane s16 (int16x8 t, int16x4 t, const int)
Form of expected instruction(s): vqrdmulh.s16 q0, q0, d0[0]

• int32x2 t vqrdmulh lane s32 (int32x2 t, int32x2 t, const int)
Form of expected instruction(s): vqrdmulh.s32 d0, d0, d0[0]

• int16x4 t vqrdmulh lane s16 (int16x4 t, int16x4 t, const int)
Form of expected instruction(s): vqrdmulh.s16 d0, d0, d0[0]

6.57.6.61 Multiply-accumulate, lane

• float32x2 t vmla lane f32 (float32x2 t, float32x2 t, float32x2 t, const int)
Form of expected instruction(s): vmla.f32 d0, d0, d0[0]

• uint32x2 t vmla lane u32 (uint32x2 t, uint32x2 t, uint32x2 t, const int)
Form of expected instruction(s): vmla.i32 d0, d0, d0[0]

• uint16x4 t vmla lane u16 (uint16x4 t, uint16x4 t, uint16x4 t, const int)
Form of expected instruction(s): vmla.i16 d0, d0, d0[0]

• int32x2 t vmla lane s32 (int32x2 t, int32x2 t, int32x2 t, const int)
Form of expected instruction(s): vmla.i32 d0, d0, d0[0]

• int16x4 t vmla lane s16 (int16x4 t, int16x4 t, int16x4 t, const int)
Form of expected instruction(s): vmla.i16 d0, d0, d0[0]

• float32x4 t vmlaq lane f32 (float32x4 t, float32x4 t, float32x2 t, const int)
Form of expected instruction(s): vmla.f32 q0, q0, d0[0]

• uint32x4 t vmlaq lane u32 (uint32x4 t, uint32x4 t, uint32x2 t, const int)
Form of expected instruction(s): vmla.i32 q0, q0, d0[0]

• uint16x8 t vmlaq lane u16 (uint16x8 t, uint16x8 t, uint16x4 t, const int)
Form of expected instruction(s): vmla.i16 q0, q0, d0[0]

• int32x4 t vmlaq lane s32 (int32x4 t, int32x4 t, int32x2 t, const int)
Form of expected instruction(s): vmla.i32 q0, q0, d0[0]

• int16x8 t vmlaq lane s16 (int16x8 t, int16x8 t, int16x4 t, const int)
Form of expected instruction(s): vmla.i16 q0, q0, d0[0]

• uint64x2 t vmlal lane u32 (uint64x2 t, uint32x2 t, uint32x2 t, const int)
Form of expected instruction(s): vmlal.u32 q0, d0, d0[0]

• uint32x4 t vmlal lane u16 (uint32x4 t, uint16x4 t, uint16x4 t, const int)
Form of expected instruction(s): vmlal.u16 q0, d0, d0[0]

554 Using the GNU Compiler Collection (GCC)

• int64x2 t vmlal lane s32 (int64x2 t, int32x2 t, int32x2 t, const int)
Form of expected instruction(s): vmlal.s32 q0, d0, d0[0]

• int32x4 t vmlal lane s16 (int32x4 t, int16x4 t, int16x4 t, const int)
Form of expected instruction(s): vmlal.s16 q0, d0, d0[0]

• int64x2 t vqdmlal lane s32 (int64x2 t, int32x2 t, int32x2 t, const int)
Form of expected instruction(s): vqdmlal.s32 q0, d0, d0[0]

• int32x4 t vqdmlal lane s16 (int32x4 t, int16x4 t, int16x4 t, const int)
Form of expected instruction(s): vqdmlal.s16 q0, d0, d0[0]

6.57.6.62 Multiply-subtract, lane

• float32x2 t vmls lane f32 (float32x2 t, float32x2 t, float32x2 t, const int)
Form of expected instruction(s): vmls.f32 d0, d0, d0[0]

• uint32x2 t vmls lane u32 (uint32x2 t, uint32x2 t, uint32x2 t, const int)
Form of expected instruction(s): vmls.i32 d0, d0, d0[0]

• uint16x4 t vmls lane u16 (uint16x4 t, uint16x4 t, uint16x4 t, const int)
Form of expected instruction(s): vmls.i16 d0, d0, d0[0]

• int32x2 t vmls lane s32 (int32x2 t, int32x2 t, int32x2 t, const int)
Form of expected instruction(s): vmls.i32 d0, d0, d0[0]

• int16x4 t vmls lane s16 (int16x4 t, int16x4 t, int16x4 t, const int)
Form of expected instruction(s): vmls.i16 d0, d0, d0[0]

• float32x4 t vmlsq lane f32 (float32x4 t, float32x4 t, float32x2 t, const int)
Form of expected instruction(s): vmls.f32 q0, q0, d0[0]

• uint32x4 t vmlsq lane u32 (uint32x4 t, uint32x4 t, uint32x2 t, const int)
Form of expected instruction(s): vmls.i32 q0, q0, d0[0]

• uint16x8 t vmlsq lane u16 (uint16x8 t, uint16x8 t, uint16x4 t, const int)
Form of expected instruction(s): vmls.i16 q0, q0, d0[0]

• int32x4 t vmlsq lane s32 (int32x4 t, int32x4 t, int32x2 t, const int)
Form of expected instruction(s): vmls.i32 q0, q0, d0[0]

• int16x8 t vmlsq lane s16 (int16x8 t, int16x8 t, int16x4 t, const int)
Form of expected instruction(s): vmls.i16 q0, q0, d0[0]

• uint64x2 t vmlsl lane u32 (uint64x2 t, uint32x2 t, uint32x2 t, const int)
Form of expected instruction(s): vmlsl.u32 q0, d0, d0[0]

• uint32x4 t vmlsl lane u16 (uint32x4 t, uint16x4 t, uint16x4 t, const int)
Form of expected instruction(s): vmlsl.u16 q0, d0, d0[0]

• int64x2 t vmlsl lane s32 (int64x2 t, int32x2 t, int32x2 t, const int)
Form of expected instruction(s): vmlsl.s32 q0, d0, d0[0]

• int32x4 t vmlsl lane s16 (int32x4 t, int16x4 t, int16x4 t, const int)
Form of expected instruction(s): vmlsl.s16 q0, d0, d0[0]

• int64x2 t vqdmlsl lane s32 (int64x2 t, int32x2 t, int32x2 t, const int)
Form of expected instruction(s): vqdmlsl.s32 q0, d0, d0[0]

• int32x4 t vqdmlsl lane s16 (int32x4 t, int16x4 t, int16x4 t, const int)
Form of expected instruction(s): vqdmlsl.s16 q0, d0, d0[0]

Chapter 6: Extensions to the C Language Family 555

6.57.6.63 Vector multiply by scalar

• float32x2 t vmul n f32 (float32x2 t, float32 t)
Form of expected instruction(s): vmul.f32 d0, d0, d0[0]

• uint32x2 t vmul n u32 (uint32x2 t, uint32 t)
Form of expected instruction(s): vmul.i32 d0, d0, d0[0]

• uint16x4 t vmul n u16 (uint16x4 t, uint16 t)
Form of expected instruction(s): vmul.i16 d0, d0, d0[0]

• int32x2 t vmul n s32 (int32x2 t, int32 t)
Form of expected instruction(s): vmul.i32 d0, d0, d0[0]

• int16x4 t vmul n s16 (int16x4 t, int16 t)
Form of expected instruction(s): vmul.i16 d0, d0, d0[0]

• float32x4 t vmulq n f32 (float32x4 t, float32 t)
Form of expected instruction(s): vmul.f32 q0, q0, d0[0]

• uint32x4 t vmulq n u32 (uint32x4 t, uint32 t)
Form of expected instruction(s): vmul.i32 q0, q0, d0[0]

• uint16x8 t vmulq n u16 (uint16x8 t, uint16 t)
Form of expected instruction(s): vmul.i16 q0, q0, d0[0]

• int32x4 t vmulq n s32 (int32x4 t, int32 t)
Form of expected instruction(s): vmul.i32 q0, q0, d0[0]

• int16x8 t vmulq n s16 (int16x8 t, int16 t)
Form of expected instruction(s): vmul.i16 q0, q0, d0[0]

6.57.6.64 Vector long multiply by scalar

• uint64x2 t vmull n u32 (uint32x2 t, uint32 t)
Form of expected instruction(s): vmull.u32 q0, d0, d0[0]

• uint32x4 t vmull n u16 (uint16x4 t, uint16 t)
Form of expected instruction(s): vmull.u16 q0, d0, d0[0]

• int64x2 t vmull n s32 (int32x2 t, int32 t)
Form of expected instruction(s): vmull.s32 q0, d0, d0[0]

• int32x4 t vmull n s16 (int16x4 t, int16 t)
Form of expected instruction(s): vmull.s16 q0, d0, d0[0]

6.57.6.65 Vector saturating doubling long multiply by scalar

• int64x2 t vqdmull n s32 (int32x2 t, int32 t)
Form of expected instruction(s): vqdmull.s32 q0, d0, d0[0]

• int32x4 t vqdmull n s16 (int16x4 t, int16 t)
Form of expected instruction(s): vqdmull.s16 q0, d0, d0[0]

6.57.6.66 Vector saturating doubling multiply high by scalar

• int32x4 t vqdmulhq n s32 (int32x4 t, int32 t)
Form of expected instruction(s): vqdmulh.s32 q0, q0, d0[0]

• int16x8 t vqdmulhq n s16 (int16x8 t, int16 t)
Form of expected instruction(s): vqdmulh.s16 q0, q0, d0[0]

556 Using the GNU Compiler Collection (GCC)

• int32x2 t vqdmulh n s32 (int32x2 t, int32 t)
Form of expected instruction(s): vqdmulh.s32 d0, d0, d0[0]

• int16x4 t vqdmulh n s16 (int16x4 t, int16 t)
Form of expected instruction(s): vqdmulh.s16 d0, d0, d0[0]

• int32x4 t vqrdmulhq n s32 (int32x4 t, int32 t)
Form of expected instruction(s): vqrdmulh.s32 q0, q0, d0[0]

• int16x8 t vqrdmulhq n s16 (int16x8 t, int16 t)
Form of expected instruction(s): vqrdmulh.s16 q0, q0, d0[0]

• int32x2 t vqrdmulh n s32 (int32x2 t, int32 t)
Form of expected instruction(s): vqrdmulh.s32 d0, d0, d0[0]

• int16x4 t vqrdmulh n s16 (int16x4 t, int16 t)
Form of expected instruction(s): vqrdmulh.s16 d0, d0, d0[0]

6.57.6.67 Vector multiply-accumulate by scalar

• float32x2 t vmla n f32 (float32x2 t, float32x2 t, float32 t)
Form of expected instruction(s): vmla.f32 d0, d0, d0[0]

• uint32x2 t vmla n u32 (uint32x2 t, uint32x2 t, uint32 t)
Form of expected instruction(s): vmla.i32 d0, d0, d0[0]

• uint16x4 t vmla n u16 (uint16x4 t, uint16x4 t, uint16 t)
Form of expected instruction(s): vmla.i16 d0, d0, d0[0]

• int32x2 t vmla n s32 (int32x2 t, int32x2 t, int32 t)
Form of expected instruction(s): vmla.i32 d0, d0, d0[0]

• int16x4 t vmla n s16 (int16x4 t, int16x4 t, int16 t)
Form of expected instruction(s): vmla.i16 d0, d0, d0[0]

• float32x4 t vmlaq n f32 (float32x4 t, float32x4 t, float32 t)
Form of expected instruction(s): vmla.f32 q0, q0, d0[0]

• uint32x4 t vmlaq n u32 (uint32x4 t, uint32x4 t, uint32 t)
Form of expected instruction(s): vmla.i32 q0, q0, d0[0]

• uint16x8 t vmlaq n u16 (uint16x8 t, uint16x8 t, uint16 t)
Form of expected instruction(s): vmla.i16 q0, q0, d0[0]

• int32x4 t vmlaq n s32 (int32x4 t, int32x4 t, int32 t)
Form of expected instruction(s): vmla.i32 q0, q0, d0[0]

• int16x8 t vmlaq n s16 (int16x8 t, int16x8 t, int16 t)
Form of expected instruction(s): vmla.i16 q0, q0, d0[0]

• uint64x2 t vmlal n u32 (uint64x2 t, uint32x2 t, uint32 t)
Form of expected instruction(s): vmlal.u32 q0, d0, d0[0]

• uint32x4 t vmlal n u16 (uint32x4 t, uint16x4 t, uint16 t)
Form of expected instruction(s): vmlal.u16 q0, d0, d0[0]

• int64x2 t vmlal n s32 (int64x2 t, int32x2 t, int32 t)
Form of expected instruction(s): vmlal.s32 q0, d0, d0[0]

• int32x4 t vmlal n s16 (int32x4 t, int16x4 t, int16 t)
Form of expected instruction(s): vmlal.s16 q0, d0, d0[0]

Chapter 6: Extensions to the C Language Family 557

• int64x2 t vqdmlal n s32 (int64x2 t, int32x2 t, int32 t)
Form of expected instruction(s): vqdmlal.s32 q0, d0, d0[0]

• int32x4 t vqdmlal n s16 (int32x4 t, int16x4 t, int16 t)
Form of expected instruction(s): vqdmlal.s16 q0, d0, d0[0]

6.57.6.68 Vector multiply-subtract by scalar

• float32x2 t vmls n f32 (float32x2 t, float32x2 t, float32 t)
Form of expected instruction(s): vmls.f32 d0, d0, d0[0]

• uint32x2 t vmls n u32 (uint32x2 t, uint32x2 t, uint32 t)
Form of expected instruction(s): vmls.i32 d0, d0, d0[0]

• uint16x4 t vmls n u16 (uint16x4 t, uint16x4 t, uint16 t)
Form of expected instruction(s): vmls.i16 d0, d0, d0[0]

• int32x2 t vmls n s32 (int32x2 t, int32x2 t, int32 t)
Form of expected instruction(s): vmls.i32 d0, d0, d0[0]

• int16x4 t vmls n s16 (int16x4 t, int16x4 t, int16 t)
Form of expected instruction(s): vmls.i16 d0, d0, d0[0]

• float32x4 t vmlsq n f32 (float32x4 t, float32x4 t, float32 t)
Form of expected instruction(s): vmls.f32 q0, q0, d0[0]

• uint32x4 t vmlsq n u32 (uint32x4 t, uint32x4 t, uint32 t)
Form of expected instruction(s): vmls.i32 q0, q0, d0[0]

• uint16x8 t vmlsq n u16 (uint16x8 t, uint16x8 t, uint16 t)
Form of expected instruction(s): vmls.i16 q0, q0, d0[0]

• int32x4 t vmlsq n s32 (int32x4 t, int32x4 t, int32 t)
Form of expected instruction(s): vmls.i32 q0, q0, d0[0]

• int16x8 t vmlsq n s16 (int16x8 t, int16x8 t, int16 t)
Form of expected instruction(s): vmls.i16 q0, q0, d0[0]

• uint64x2 t vmlsl n u32 (uint64x2 t, uint32x2 t, uint32 t)
Form of expected instruction(s): vmlsl.u32 q0, d0, d0[0]

• uint32x4 t vmlsl n u16 (uint32x4 t, uint16x4 t, uint16 t)
Form of expected instruction(s): vmlsl.u16 q0, d0, d0[0]

• int64x2 t vmlsl n s32 (int64x2 t, int32x2 t, int32 t)
Form of expected instruction(s): vmlsl.s32 q0, d0, d0[0]

• int32x4 t vmlsl n s16 (int32x4 t, int16x4 t, int16 t)
Form of expected instruction(s): vmlsl.s16 q0, d0, d0[0]

• int64x2 t vqdmlsl n s32 (int64x2 t, int32x2 t, int32 t)
Form of expected instruction(s): vqdmlsl.s32 q0, d0, d0[0]

• int32x4 t vqdmlsl n s16 (int32x4 t, int16x4 t, int16 t)
Form of expected instruction(s): vqdmlsl.s16 q0, d0, d0[0]

6.57.6.69 Vector extract

• poly64x1 t vext p64 (poly64x1 t, poly64x1 t, const int)
Form of expected instruction(s): vext.64 d0, d0, d0, #0

558 Using the GNU Compiler Collection (GCC)

• uint32x2 t vext u32 (uint32x2 t, uint32x2 t, const int)
Form of expected instruction(s): vext.32 d0, d0, d0, #0

• uint16x4 t vext u16 (uint16x4 t, uint16x4 t, const int)
Form of expected instruction(s): vext.16 d0, d0, d0, #0

• uint8x8 t vext u8 (uint8x8 t, uint8x8 t, const int)
Form of expected instruction(s): vext.8 d0, d0, d0, #0

• int32x2 t vext s32 (int32x2 t, int32x2 t, const int)
Form of expected instruction(s): vext.32 d0, d0, d0, #0

• int16x4 t vext s16 (int16x4 t, int16x4 t, const int)
Form of expected instruction(s): vext.16 d0, d0, d0, #0

• int8x8 t vext s8 (int8x8 t, int8x8 t, const int)
Form of expected instruction(s): vext.8 d0, d0, d0, #0

• uint64x1 t vext u64 (uint64x1 t, uint64x1 t, const int)
Form of expected instruction(s): vext.64 d0, d0, d0, #0

• int64x1 t vext s64 (int64x1 t, int64x1 t, const int)
Form of expected instruction(s): vext.64 d0, d0, d0, #0

• float32x2 t vext f32 (float32x2 t, float32x2 t, const int)
Form of expected instruction(s): vext.32 d0, d0, d0, #0

• poly16x4 t vext p16 (poly16x4 t, poly16x4 t, const int)
Form of expected instruction(s): vext.16 d0, d0, d0, #0

• poly8x8 t vext p8 (poly8x8 t, poly8x8 t, const int)
Form of expected instruction(s): vext.8 d0, d0, d0, #0

• poly64x2 t vextq p64 (poly64x2 t, poly64x2 t, const int)
Form of expected instruction(s): vext.64 q0, q0, q0, #0

• uint32x4 t vextq u32 (uint32x4 t, uint32x4 t, const int)
Form of expected instruction(s): vext.32 q0, q0, q0, #0

• uint16x8 t vextq u16 (uint16x8 t, uint16x8 t, const int)
Form of expected instruction(s): vext.16 q0, q0, q0, #0

• uint8x16 t vextq u8 (uint8x16 t, uint8x16 t, const int)
Form of expected instruction(s): vext.8 q0, q0, q0, #0

• int32x4 t vextq s32 (int32x4 t, int32x4 t, const int)
Form of expected instruction(s): vext.32 q0, q0, q0, #0

• int16x8 t vextq s16 (int16x8 t, int16x8 t, const int)
Form of expected instruction(s): vext.16 q0, q0, q0, #0

• int8x16 t vextq s8 (int8x16 t, int8x16 t, const int)
Form of expected instruction(s): vext.8 q0, q0, q0, #0

• uint64x2 t vextq u64 (uint64x2 t, uint64x2 t, const int)
Form of expected instruction(s): vext.64 q0, q0, q0, #0

• int64x2 t vextq s64 (int64x2 t, int64x2 t, const int)
Form of expected instruction(s): vext.64 q0, q0, q0, #0

• float32x4 t vextq f32 (float32x4 t, float32x4 t, const int)
Form of expected instruction(s): vext.32 q0, q0, q0, #0

Chapter 6: Extensions to the C Language Family 559

• poly16x8 t vextq p16 (poly16x8 t, poly16x8 t, const int)
Form of expected instruction(s): vext.16 q0, q0, q0, #0

• poly8x16 t vextq p8 (poly8x16 t, poly8x16 t, const int)
Form of expected instruction(s): vext.8 q0, q0, q0, #0

6.57.6.70 Reverse elements

• uint32x2 t vrev64 u32 (uint32x2 t)
Form of expected instruction(s): vrev64.32 d0, d0

• uint16x4 t vrev64 u16 (uint16x4 t)
Form of expected instruction(s): vrev64.16 d0, d0

• uint8x8 t vrev64 u8 (uint8x8 t)
Form of expected instruction(s): vrev64.8 d0, d0

• int32x2 t vrev64 s32 (int32x2 t)
Form of expected instruction(s): vrev64.32 d0, d0

• int16x4 t vrev64 s16 (int16x4 t)
Form of expected instruction(s): vrev64.16 d0, d0

• int8x8 t vrev64 s8 (int8x8 t)
Form of expected instruction(s): vrev64.8 d0, d0

• float32x2 t vrev64 f32 (float32x2 t)
Form of expected instruction(s): vrev64.32 d0, d0

• poly16x4 t vrev64 p16 (poly16x4 t)
Form of expected instruction(s): vrev64.16 d0, d0

• poly8x8 t vrev64 p8 (poly8x8 t)
Form of expected instruction(s): vrev64.8 d0, d0

• uint32x4 t vrev64q u32 (uint32x4 t)
Form of expected instruction(s): vrev64.32 q0, q0

• uint16x8 t vrev64q u16 (uint16x8 t)
Form of expected instruction(s): vrev64.16 q0, q0

• uint8x16 t vrev64q u8 (uint8x16 t)
Form of expected instruction(s): vrev64.8 q0, q0

• int32x4 t vrev64q s32 (int32x4 t)
Form of expected instruction(s): vrev64.32 q0, q0

• int16x8 t vrev64q s16 (int16x8 t)
Form of expected instruction(s): vrev64.16 q0, q0

• int8x16 t vrev64q s8 (int8x16 t)
Form of expected instruction(s): vrev64.8 q0, q0

• float32x4 t vrev64q f32 (float32x4 t)
Form of expected instruction(s): vrev64.32 q0, q0

• poly16x8 t vrev64q p16 (poly16x8 t)
Form of expected instruction(s): vrev64.16 q0, q0

• poly8x16 t vrev64q p8 (poly8x16 t)
Form of expected instruction(s): vrev64.8 q0, q0

560 Using the GNU Compiler Collection (GCC)

• uint16x4 t vrev32 u16 (uint16x4 t)
Form of expected instruction(s): vrev32.16 d0, d0

• int16x4 t vrev32 s16 (int16x4 t)
Form of expected instruction(s): vrev32.16 d0, d0

• uint8x8 t vrev32 u8 (uint8x8 t)
Form of expected instruction(s): vrev32.8 d0, d0

• int8x8 t vrev32 s8 (int8x8 t)
Form of expected instruction(s): vrev32.8 d0, d0

• poly16x4 t vrev32 p16 (poly16x4 t)
Form of expected instruction(s): vrev32.16 d0, d0

• poly8x8 t vrev32 p8 (poly8x8 t)
Form of expected instruction(s): vrev32.8 d0, d0

• uint16x8 t vrev32q u16 (uint16x8 t)
Form of expected instruction(s): vrev32.16 q0, q0

• int16x8 t vrev32q s16 (int16x8 t)
Form of expected instruction(s): vrev32.16 q0, q0

• uint8x16 t vrev32q u8 (uint8x16 t)
Form of expected instruction(s): vrev32.8 q0, q0

• int8x16 t vrev32q s8 (int8x16 t)
Form of expected instruction(s): vrev32.8 q0, q0

• poly16x8 t vrev32q p16 (poly16x8 t)
Form of expected instruction(s): vrev32.16 q0, q0

• poly8x16 t vrev32q p8 (poly8x16 t)
Form of expected instruction(s): vrev32.8 q0, q0

• uint8x8 t vrev16 u8 (uint8x8 t)
Form of expected instruction(s): vrev16.8 d0, d0

• int8x8 t vrev16 s8 (int8x8 t)
Form of expected instruction(s): vrev16.8 d0, d0

• poly8x8 t vrev16 p8 (poly8x8 t)
Form of expected instruction(s): vrev16.8 d0, d0

• uint8x16 t vrev16q u8 (uint8x16 t)
Form of expected instruction(s): vrev16.8 q0, q0

• int8x16 t vrev16q s8 (int8x16 t)
Form of expected instruction(s): vrev16.8 q0, q0

• poly8x16 t vrev16q p8 (poly8x16 t)
Form of expected instruction(s): vrev16.8 q0, q0

6.57.6.71 Bit selection

• poly64x1 t vbsl p64 (uint64x1 t, poly64x1 t, poly64x1 t)
Form of expected instruction(s): vbsl d0, d0, d0 or vbit d0, d0, d0 or vbif d0,
d0, d0

• uint32x2 t vbsl u32 (uint32x2 t, uint32x2 t, uint32x2 t)
Form of expected instruction(s): vbsl d0, d0, d0 or vbit d0, d0, d0 or vbif d0,
d0, d0

Chapter 6: Extensions to the C Language Family 561

• uint16x4 t vbsl u16 (uint16x4 t, uint16x4 t, uint16x4 t)
Form of expected instruction(s): vbsl d0, d0, d0 or vbit d0, d0, d0 or vbif d0,
d0, d0

• uint8x8 t vbsl u8 (uint8x8 t, uint8x8 t, uint8x8 t)
Form of expected instruction(s): vbsl d0, d0, d0 or vbit d0, d0, d0 or vbif d0,
d0, d0

• int32x2 t vbsl s32 (uint32x2 t, int32x2 t, int32x2 t)
Form of expected instruction(s): vbsl d0, d0, d0 or vbit d0, d0, d0 or vbif d0,
d0, d0

• int16x4 t vbsl s16 (uint16x4 t, int16x4 t, int16x4 t)
Form of expected instruction(s): vbsl d0, d0, d0 or vbit d0, d0, d0 or vbif d0,
d0, d0

• int8x8 t vbsl s8 (uint8x8 t, int8x8 t, int8x8 t)
Form of expected instruction(s): vbsl d0, d0, d0 or vbit d0, d0, d0 or vbif d0,
d0, d0

• uint64x1 t vbsl u64 (uint64x1 t, uint64x1 t, uint64x1 t)
Form of expected instruction(s): vbsl d0, d0, d0 or vbit d0, d0, d0 or vbif d0,
d0, d0

• int64x1 t vbsl s64 (uint64x1 t, int64x1 t, int64x1 t)
Form of expected instruction(s): vbsl d0, d0, d0 or vbit d0, d0, d0 or vbif d0,
d0, d0

• float32x2 t vbsl f32 (uint32x2 t, float32x2 t, float32x2 t)
Form of expected instruction(s): vbsl d0, d0, d0 or vbit d0, d0, d0 or vbif d0,
d0, d0

• poly16x4 t vbsl p16 (uint16x4 t, poly16x4 t, poly16x4 t)
Form of expected instruction(s): vbsl d0, d0, d0 or vbit d0, d0, d0 or vbif d0,
d0, d0

• poly8x8 t vbsl p8 (uint8x8 t, poly8x8 t, poly8x8 t)
Form of expected instruction(s): vbsl d0, d0, d0 or vbit d0, d0, d0 or vbif d0,
d0, d0

• poly64x2 t vbslq p64 (uint64x2 t, poly64x2 t, poly64x2 t)
Form of expected instruction(s): vbsl q0, q0, q0 or vbit q0, q0, q0 or vbif q0,
q0, q0

• uint32x4 t vbslq u32 (uint32x4 t, uint32x4 t, uint32x4 t)
Form of expected instruction(s): vbsl q0, q0, q0 or vbit q0, q0, q0 or vbif q0,
q0, q0

• uint16x8 t vbslq u16 (uint16x8 t, uint16x8 t, uint16x8 t)
Form of expected instruction(s): vbsl q0, q0, q0 or vbit q0, q0, q0 or vbif q0,
q0, q0

• uint8x16 t vbslq u8 (uint8x16 t, uint8x16 t, uint8x16 t)
Form of expected instruction(s): vbsl q0, q0, q0 or vbit q0, q0, q0 or vbif q0,
q0, q0

562 Using the GNU Compiler Collection (GCC)

• int32x4 t vbslq s32 (uint32x4 t, int32x4 t, int32x4 t)
Form of expected instruction(s): vbsl q0, q0, q0 or vbit q0, q0, q0 or vbif q0,
q0, q0

• int16x8 t vbslq s16 (uint16x8 t, int16x8 t, int16x8 t)
Form of expected instruction(s): vbsl q0, q0, q0 or vbit q0, q0, q0 or vbif q0,
q0, q0

• int8x16 t vbslq s8 (uint8x16 t, int8x16 t, int8x16 t)
Form of expected instruction(s): vbsl q0, q0, q0 or vbit q0, q0, q0 or vbif q0,
q0, q0

• uint64x2 t vbslq u64 (uint64x2 t, uint64x2 t, uint64x2 t)
Form of expected instruction(s): vbsl q0, q0, q0 or vbit q0, q0, q0 or vbif q0,
q0, q0

• int64x2 t vbslq s64 (uint64x2 t, int64x2 t, int64x2 t)
Form of expected instruction(s): vbsl q0, q0, q0 or vbit q0, q0, q0 or vbif q0,
q0, q0

• float32x4 t vbslq f32 (uint32x4 t, float32x4 t, float32x4 t)
Form of expected instruction(s): vbsl q0, q0, q0 or vbit q0, q0, q0 or vbif q0,
q0, q0

• poly16x8 t vbslq p16 (uint16x8 t, poly16x8 t, poly16x8 t)
Form of expected instruction(s): vbsl q0, q0, q0 or vbit q0, q0, q0 or vbif q0,
q0, q0

• poly8x16 t vbslq p8 (uint8x16 t, poly8x16 t, poly8x16 t)
Form of expected instruction(s): vbsl q0, q0, q0 or vbit q0, q0, q0 or vbif q0,
q0, q0

6.57.6.72 Transpose elements

• uint16x4x2 t vtrn u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vtrn.16 d0, d1

• uint8x8x2 t vtrn u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vtrn.8 d0, d1

• int16x4x2 t vtrn s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vtrn.16 d0, d1

• int8x8x2 t vtrn s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vtrn.8 d0, d1

• poly16x4x2 t vtrn p16 (poly16x4 t, poly16x4 t)
Form of expected instruction(s): vtrn.16 d0, d1

• poly8x8x2 t vtrn p8 (poly8x8 t, poly8x8 t)
Form of expected instruction(s): vtrn.8 d0, d1

• float32x2x2 t vtrn f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vuzp.32 d0, d1

• uint32x2x2 t vtrn u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vuzp.32 d0, d1

• int32x2x2 t vtrn s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vuzp.32 d0, d1

Chapter 6: Extensions to the C Language Family 563

• uint32x4x2 t vtrnq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vtrn.32 q0, q1

• uint16x8x2 t vtrnq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vtrn.16 q0, q1

• uint8x16x2 t vtrnq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vtrn.8 q0, q1

• int32x4x2 t vtrnq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vtrn.32 q0, q1

• int16x8x2 t vtrnq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vtrn.16 q0, q1

• int8x16x2 t vtrnq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vtrn.8 q0, q1

• float32x4x2 t vtrnq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vtrn.32 q0, q1

• poly16x8x2 t vtrnq p16 (poly16x8 t, poly16x8 t)
Form of expected instruction(s): vtrn.16 q0, q1

• poly8x16x2 t vtrnq p8 (poly8x16 t, poly8x16 t)
Form of expected instruction(s): vtrn.8 q0, q1

6.57.6.73 Zip elements

• uint16x4x2 t vzip u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vzip.16 d0, d1

• uint8x8x2 t vzip u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vzip.8 d0, d1

• int16x4x2 t vzip s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vzip.16 d0, d1

• int8x8x2 t vzip s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vzip.8 d0, d1

• poly16x4x2 t vzip p16 (poly16x4 t, poly16x4 t)
Form of expected instruction(s): vzip.16 d0, d1

• poly8x8x2 t vzip p8 (poly8x8 t, poly8x8 t)
Form of expected instruction(s): vzip.8 d0, d1

• float32x2x2 t vzip f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vuzp.32 d0, d1

• uint32x2x2 t vzip u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vuzp.32 d0, d1

• int32x2x2 t vzip s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vuzp.32 d0, d1

• uint32x4x2 t vzipq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vzip.32 q0, q1

• uint16x8x2 t vzipq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vzip.16 q0, q1

564 Using the GNU Compiler Collection (GCC)

• uint8x16x2 t vzipq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vzip.8 q0, q1

• int32x4x2 t vzipq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vzip.32 q0, q1

• int16x8x2 t vzipq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vzip.16 q0, q1

• int8x16x2 t vzipq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vzip.8 q0, q1

• float32x4x2 t vzipq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vzip.32 q0, q1

• poly16x8x2 t vzipq p16 (poly16x8 t, poly16x8 t)
Form of expected instruction(s): vzip.16 q0, q1

• poly8x16x2 t vzipq p8 (poly8x16 t, poly8x16 t)
Form of expected instruction(s): vzip.8 q0, q1

6.57.6.74 Unzip elements

• uint32x2x2 t vuzp u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vuzp.32 d0, d1

• uint16x4x2 t vuzp u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vuzp.16 d0, d1

• uint8x8x2 t vuzp u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vuzp.8 d0, d1

• int32x2x2 t vuzp s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vuzp.32 d0, d1

• int16x4x2 t vuzp s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vuzp.16 d0, d1

• int8x8x2 t vuzp s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vuzp.8 d0, d1

• float32x2x2 t vuzp f32 (float32x2 t, float32x2 t)
Form of expected instruction(s): vuzp.32 d0, d1

• poly16x4x2 t vuzp p16 (poly16x4 t, poly16x4 t)
Form of expected instruction(s): vuzp.16 d0, d1

• poly8x8x2 t vuzp p8 (poly8x8 t, poly8x8 t)
Form of expected instruction(s): vuzp.8 d0, d1

• uint32x4x2 t vuzpq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vuzp.32 q0, q1

• uint16x8x2 t vuzpq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vuzp.16 q0, q1

• uint8x16x2 t vuzpq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vuzp.8 q0, q1

• int32x4x2 t vuzpq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vuzp.32 q0, q1

Chapter 6: Extensions to the C Language Family 565

• int16x8x2 t vuzpq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vuzp.16 q0, q1

• int8x16x2 t vuzpq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vuzp.8 q0, q1

• float32x4x2 t vuzpq f32 (float32x4 t, float32x4 t)
Form of expected instruction(s): vuzp.32 q0, q1

• poly16x8x2 t vuzpq p16 (poly16x8 t, poly16x8 t)
Form of expected instruction(s): vuzp.16 q0, q1

• poly8x16x2 t vuzpq p8 (poly8x16 t, poly8x16 t)
Form of expected instruction(s): vuzp.8 q0, q1

6.57.6.75 Element/structure loads, VLD1 variants

• poly64x1 t vld1 p64 (const poly64 t *)
Form of expected instruction(s): vld1.64 {d0}, [r0]

• uint32x2 t vld1 u32 (const uint32 t *)
Form of expected instruction(s): vld1.32 {d0}, [r0]

• uint16x4 t vld1 u16 (const uint16 t *)
Form of expected instruction(s): vld1.16 {d0}, [r0]

• uint8x8 t vld1 u8 (const uint8 t *)
Form of expected instruction(s): vld1.8 {d0}, [r0]

• int32x2 t vld1 s32 (const int32 t *)
Form of expected instruction(s): vld1.32 {d0}, [r0]

• int16x4 t vld1 s16 (const int16 t *)
Form of expected instruction(s): vld1.16 {d0}, [r0]

• int8x8 t vld1 s8 (const int8 t *)
Form of expected instruction(s): vld1.8 {d0}, [r0]

• uint64x1 t vld1 u64 (const uint64 t *)
Form of expected instruction(s): vld1.64 {d0}, [r0]

• int64x1 t vld1 s64 (const int64 t *)
Form of expected instruction(s): vld1.64 {d0}, [r0]

• float32x2 t vld1 f32 (const float32 t *)
Form of expected instruction(s): vld1.32 {d0}, [r0]

• poly16x4 t vld1 p16 (const poly16 t *)
Form of expected instruction(s): vld1.16 {d0}, [r0]

• poly8x8 t vld1 p8 (const poly8 t *)
Form of expected instruction(s): vld1.8 {d0}, [r0]

• poly64x2 t vld1q p64 (const poly64 t *)
Form of expected instruction(s): vld1.64 {d0, d1}, [r0]

• uint32x4 t vld1q u32 (const uint32 t *)
Form of expected instruction(s): vld1.32 {d0, d1}, [r0]

• uint16x8 t vld1q u16 (const uint16 t *)
Form of expected instruction(s): vld1.16 {d0, d1}, [r0]

566 Using the GNU Compiler Collection (GCC)

• uint8x16 t vld1q u8 (const uint8 t *)
Form of expected instruction(s): vld1.8 {d0, d1}, [r0]

• int32x4 t vld1q s32 (const int32 t *)
Form of expected instruction(s): vld1.32 {d0, d1}, [r0]

• int16x8 t vld1q s16 (const int16 t *)
Form of expected instruction(s): vld1.16 {d0, d1}, [r0]

• int8x16 t vld1q s8 (const int8 t *)
Form of expected instruction(s): vld1.8 {d0, d1}, [r0]

• uint64x2 t vld1q u64 (const uint64 t *)
Form of expected instruction(s): vld1.64 {d0, d1}, [r0]

• int64x2 t vld1q s64 (const int64 t *)
Form of expected instruction(s): vld1.64 {d0, d1}, [r0]

• float32x4 t vld1q f32 (const float32 t *)
Form of expected instruction(s): vld1.32 {d0, d1}, [r0]

• poly16x8 t vld1q p16 (const poly16 t *)
Form of expected instruction(s): vld1.16 {d0, d1}, [r0]

• poly8x16 t vld1q p8 (const poly8 t *)
Form of expected instruction(s): vld1.8 {d0, d1}, [r0]

• uint32x2 t vld1 lane u32 (const uint32 t *, uint32x2 t, const int)
Form of expected instruction(s): vld1.32 {d0[0]}, [r0]

• uint16x4 t vld1 lane u16 (const uint16 t *, uint16x4 t, const int)
Form of expected instruction(s): vld1.16 {d0[0]}, [r0]

• uint8x8 t vld1 lane u8 (const uint8 t *, uint8x8 t, const int)
Form of expected instruction(s): vld1.8 {d0[0]}, [r0]

• int32x2 t vld1 lane s32 (const int32 t *, int32x2 t, const int)
Form of expected instruction(s): vld1.32 {d0[0]}, [r0]

• int16x4 t vld1 lane s16 (const int16 t *, int16x4 t, const int)
Form of expected instruction(s): vld1.16 {d0[0]}, [r0]

• int8x8 t vld1 lane s8 (const int8 t *, int8x8 t, const int)
Form of expected instruction(s): vld1.8 {d0[0]}, [r0]

• float32x2 t vld1 lane f32 (const float32 t *, float32x2 t, const int)
Form of expected instruction(s): vld1.32 {d0[0]}, [r0]

• poly16x4 t vld1 lane p16 (const poly16 t *, poly16x4 t, const int)
Form of expected instruction(s): vld1.16 {d0[0]}, [r0]

• poly8x8 t vld1 lane p8 (const poly8 t *, poly8x8 t, const int)
Form of expected instruction(s): vld1.8 {d0[0]}, [r0]

• poly64x1 t vld1 lane p64 (const poly64 t *, poly64x1 t, const int)
Form of expected instruction(s): vld1.64 {d0}, [r0]

• uint64x1 t vld1 lane u64 (const uint64 t *, uint64x1 t, const int)
Form of expected instruction(s): vld1.64 {d0}, [r0]

• int64x1 t vld1 lane s64 (const int64 t *, int64x1 t, const int)
Form of expected instruction(s): vld1.64 {d0}, [r0]

Chapter 6: Extensions to the C Language Family 567

• uint32x4 t vld1q lane u32 (const uint32 t *, uint32x4 t, const int)
Form of expected instruction(s): vld1.32 {d0[0]}, [r0]

• uint16x8 t vld1q lane u16 (const uint16 t *, uint16x8 t, const int)
Form of expected instruction(s): vld1.16 {d0[0]}, [r0]

• uint8x16 t vld1q lane u8 (const uint8 t *, uint8x16 t, const int)
Form of expected instruction(s): vld1.8 {d0[0]}, [r0]

• int32x4 t vld1q lane s32 (const int32 t *, int32x4 t, const int)
Form of expected instruction(s): vld1.32 {d0[0]}, [r0]

• int16x8 t vld1q lane s16 (const int16 t *, int16x8 t, const int)
Form of expected instruction(s): vld1.16 {d0[0]}, [r0]

• int8x16 t vld1q lane s8 (const int8 t *, int8x16 t, const int)
Form of expected instruction(s): vld1.8 {d0[0]}, [r0]

• float32x4 t vld1q lane f32 (const float32 t *, float32x4 t, const int)
Form of expected instruction(s): vld1.32 {d0[0]}, [r0]

• poly16x8 t vld1q lane p16 (const poly16 t *, poly16x8 t, const int)
Form of expected instruction(s): vld1.16 {d0[0]}, [r0]

• poly8x16 t vld1q lane p8 (const poly8 t *, poly8x16 t, const int)
Form of expected instruction(s): vld1.8 {d0[0]}, [r0]

• poly64x2 t vld1q lane p64 (const poly64 t *, poly64x2 t, const int)
Form of expected instruction(s): vld1.64 {d0}, [r0]

• uint64x2 t vld1q lane u64 (const uint64 t *, uint64x2 t, const int)
Form of expected instruction(s): vld1.64 {d0}, [r0]

• int64x2 t vld1q lane s64 (const int64 t *, int64x2 t, const int)
Form of expected instruction(s): vld1.64 {d0}, [r0]

• uint32x2 t vld1 dup u32 (const uint32 t *)
Form of expected instruction(s): vld1.32 {d0[]}, [r0]

• uint16x4 t vld1 dup u16 (const uint16 t *)
Form of expected instruction(s): vld1.16 {d0[]}, [r0]

• uint8x8 t vld1 dup u8 (const uint8 t *)
Form of expected instruction(s): vld1.8 {d0[]}, [r0]

• int32x2 t vld1 dup s32 (const int32 t *)
Form of expected instruction(s): vld1.32 {d0[]}, [r0]

• int16x4 t vld1 dup s16 (const int16 t *)
Form of expected instruction(s): vld1.16 {d0[]}, [r0]

• int8x8 t vld1 dup s8 (const int8 t *)
Form of expected instruction(s): vld1.8 {d0[]}, [r0]

• float32x2 t vld1 dup f32 (const float32 t *)
Form of expected instruction(s): vld1.32 {d0[]}, [r0]

• poly16x4 t vld1 dup p16 (const poly16 t *)
Form of expected instruction(s): vld1.16 {d0[]}, [r0]

• poly8x8 t vld1 dup p8 (const poly8 t *)
Form of expected instruction(s): vld1.8 {d0[]}, [r0]

568 Using the GNU Compiler Collection (GCC)

• poly64x1 t vld1 dup p64 (const poly64 t *)
Form of expected instruction(s): vld1.64 {d0}, [r0]

• uint64x1 t vld1 dup u64 (const uint64 t *)
Form of expected instruction(s): vld1.64 {d0}, [r0]

• int64x1 t vld1 dup s64 (const int64 t *)
Form of expected instruction(s): vld1.64 {d0}, [r0]

• uint32x4 t vld1q dup u32 (const uint32 t *)
Form of expected instruction(s): vld1.32 {d0[], d1[]}, [r0]

• uint16x8 t vld1q dup u16 (const uint16 t *)
Form of expected instruction(s): vld1.16 {d0[], d1[]}, [r0]

• uint8x16 t vld1q dup u8 (const uint8 t *)
Form of expected instruction(s): vld1.8 {d0[], d1[]}, [r0]

• int32x4 t vld1q dup s32 (const int32 t *)
Form of expected instruction(s): vld1.32 {d0[], d1[]}, [r0]

• int16x8 t vld1q dup s16 (const int16 t *)
Form of expected instruction(s): vld1.16 {d0[], d1[]}, [r0]

• int8x16 t vld1q dup s8 (const int8 t *)
Form of expected instruction(s): vld1.8 {d0[], d1[]}, [r0]

• float32x4 t vld1q dup f32 (const float32 t *)
Form of expected instruction(s): vld1.32 {d0[], d1[]}, [r0]

• poly16x8 t vld1q dup p16 (const poly16 t *)
Form of expected instruction(s): vld1.16 {d0[], d1[]}, [r0]

• poly8x16 t vld1q dup p8 (const poly8 t *)
Form of expected instruction(s): vld1.8 {d0[], d1[]}, [r0]

• poly64x2 t vld1q dup p64 (const poly64 t *)
Form of expected instruction(s): vld1.64 {d0}, [r0]

• uint64x2 t vld1q dup u64 (const uint64 t *)
Form of expected instruction(s): vld1.64 {d0}, [r0]

• int64x2 t vld1q dup s64 (const int64 t *)
Form of expected instruction(s): vld1.64 {d0}, [r0]

6.57.6.76 Element/structure stores, VST1 variants

• void vst1 p64 (poly64 t *, poly64x1 t)
Form of expected instruction(s): vst1.64 {d0}, [r0]

• void vst1 u32 (uint32 t *, uint32x2 t)
Form of expected instruction(s): vst1.32 {d0}, [r0]

• void vst1 u16 (uint16 t *, uint16x4 t)
Form of expected instruction(s): vst1.16 {d0}, [r0]

• void vst1 u8 (uint8 t *, uint8x8 t)
Form of expected instruction(s): vst1.8 {d0}, [r0]

• void vst1 s32 (int32 t *, int32x2 t)
Form of expected instruction(s): vst1.32 {d0}, [r0]

Chapter 6: Extensions to the C Language Family 569

• void vst1 s16 (int16 t *, int16x4 t)
Form of expected instruction(s): vst1.16 {d0}, [r0]

• void vst1 s8 (int8 t *, int8x8 t)
Form of expected instruction(s): vst1.8 {d0}, [r0]

• void vst1 u64 (uint64 t *, uint64x1 t)
Form of expected instruction(s): vst1.64 {d0}, [r0]

• void vst1 s64 (int64 t *, int64x1 t)
Form of expected instruction(s): vst1.64 {d0}, [r0]

• void vst1 f32 (float32 t *, float32x2 t)
Form of expected instruction(s): vst1.32 {d0}, [r0]

• void vst1 p16 (poly16 t *, poly16x4 t)
Form of expected instruction(s): vst1.16 {d0}, [r0]

• void vst1 p8 (poly8 t *, poly8x8 t)
Form of expected instruction(s): vst1.8 {d0}, [r0]

• void vst1q p64 (poly64 t *, poly64x2 t)
Form of expected instruction(s): vst1.64 {d0, d1}, [r0]

• void vst1q u32 (uint32 t *, uint32x4 t)
Form of expected instruction(s): vst1.32 {d0, d1}, [r0]

• void vst1q u16 (uint16 t *, uint16x8 t)
Form of expected instruction(s): vst1.16 {d0, d1}, [r0]

• void vst1q u8 (uint8 t *, uint8x16 t)
Form of expected instruction(s): vst1.8 {d0, d1}, [r0]

• void vst1q s32 (int32 t *, int32x4 t)
Form of expected instruction(s): vst1.32 {d0, d1}, [r0]

• void vst1q s16 (int16 t *, int16x8 t)
Form of expected instruction(s): vst1.16 {d0, d1}, [r0]

• void vst1q s8 (int8 t *, int8x16 t)
Form of expected instruction(s): vst1.8 {d0, d1}, [r0]

• void vst1q u64 (uint64 t *, uint64x2 t)
Form of expected instruction(s): vst1.64 {d0, d1}, [r0]

• void vst1q s64 (int64 t *, int64x2 t)
Form of expected instruction(s): vst1.64 {d0, d1}, [r0]

• void vst1q f32 (float32 t *, float32x4 t)
Form of expected instruction(s): vst1.32 {d0, d1}, [r0]

• void vst1q p16 (poly16 t *, poly16x8 t)
Form of expected instruction(s): vst1.16 {d0, d1}, [r0]

• void vst1q p8 (poly8 t *, poly8x16 t)
Form of expected instruction(s): vst1.8 {d0, d1}, [r0]

• void vst1 lane u32 (uint32 t *, uint32x2 t, const int)
Form of expected instruction(s): vst1.32 {d0[0]}, [r0]

• void vst1 lane u16 (uint16 t *, uint16x4 t, const int)
Form of expected instruction(s): vst1.16 {d0[0]}, [r0]

570 Using the GNU Compiler Collection (GCC)

• void vst1 lane u8 (uint8 t *, uint8x8 t, const int)
Form of expected instruction(s): vst1.8 {d0[0]}, [r0]

• void vst1 lane s32 (int32 t *, int32x2 t, const int)
Form of expected instruction(s): vst1.32 {d0[0]}, [r0]

• void vst1 lane s16 (int16 t *, int16x4 t, const int)
Form of expected instruction(s): vst1.16 {d0[0]}, [r0]

• void vst1 lane s8 (int8 t *, int8x8 t, const int)
Form of expected instruction(s): vst1.8 {d0[0]}, [r0]

• void vst1 lane f32 (float32 t *, float32x2 t, const int)
Form of expected instruction(s): vst1.32 {d0[0]}, [r0]

• void vst1 lane p16 (poly16 t *, poly16x4 t, const int)
Form of expected instruction(s): vst1.16 {d0[0]}, [r0]

• void vst1 lane p8 (poly8 t *, poly8x8 t, const int)
Form of expected instruction(s): vst1.8 {d0[0]}, [r0]

• void vst1 lane p64 (poly64 t *, poly64x1 t, const int)
Form of expected instruction(s): vst1.64 {d0}, [r0]

• void vst1 lane s64 (int64 t *, int64x1 t, const int)
Form of expected instruction(s): vst1.64 {d0}, [r0]

• void vst1 lane u64 (uint64 t *, uint64x1 t, const int)
Form of expected instruction(s): vst1.64 {d0}, [r0]

• void vst1q lane u32 (uint32 t *, uint32x4 t, const int)
Form of expected instruction(s): vst1.32 {d0[0]}, [r0]

• void vst1q lane u16 (uint16 t *, uint16x8 t, const int)
Form of expected instruction(s): vst1.16 {d0[0]}, [r0]

• void vst1q lane u8 (uint8 t *, uint8x16 t, const int)
Form of expected instruction(s): vst1.8 {d0[0]}, [r0]

• void vst1q lane s32 (int32 t *, int32x4 t, const int)
Form of expected instruction(s): vst1.32 {d0[0]}, [r0]

• void vst1q lane s16 (int16 t *, int16x8 t, const int)
Form of expected instruction(s): vst1.16 {d0[0]}, [r0]

• void vst1q lane s8 (int8 t *, int8x16 t, const int)
Form of expected instruction(s): vst1.8 {d0[0]}, [r0]

• void vst1q lane f32 (float32 t *, float32x4 t, const int)
Form of expected instruction(s): vst1.32 {d0[0]}, [r0]

• void vst1q lane p16 (poly16 t *, poly16x8 t, const int)
Form of expected instruction(s): vst1.16 {d0[0]}, [r0]

• void vst1q lane p8 (poly8 t *, poly8x16 t, const int)
Form of expected instruction(s): vst1.8 {d0[0]}, [r0]

• void vst1q lane p64 (poly64 t *, poly64x2 t, const int)
Form of expected instruction(s): vst1.64 {d0}, [r0]

• void vst1q lane s64 (int64 t *, int64x2 t, const int)
Form of expected instruction(s): vst1.64 {d0}, [r0]

Chapter 6: Extensions to the C Language Family 571

• void vst1q lane u64 (uint64 t *, uint64x2 t, const int)
Form of expected instruction(s): vst1.64 {d0}, [r0]

6.57.6.77 Element/structure loads, VLD2 variants

• uint32x2x2 t vld2 u32 (const uint32 t *)
Form of expected instruction(s): vld2.32 {d0, d1}, [r0]

• uint16x4x2 t vld2 u16 (const uint16 t *)
Form of expected instruction(s): vld2.16 {d0, d1}, [r0]

• uint8x8x2 t vld2 u8 (const uint8 t *)
Form of expected instruction(s): vld2.8 {d0, d1}, [r0]

• int32x2x2 t vld2 s32 (const int32 t *)
Form of expected instruction(s): vld2.32 {d0, d1}, [r0]

• int16x4x2 t vld2 s16 (const int16 t *)
Form of expected instruction(s): vld2.16 {d0, d1}, [r0]

• int8x8x2 t vld2 s8 (const int8 t *)
Form of expected instruction(s): vld2.8 {d0, d1}, [r0]

• float32x2x2 t vld2 f32 (const float32 t *)
Form of expected instruction(s): vld2.32 {d0, d1}, [r0]

• poly16x4x2 t vld2 p16 (const poly16 t *)
Form of expected instruction(s): vld2.16 {d0, d1}, [r0]

• poly8x8x2 t vld2 p8 (const poly8 t *)
Form of expected instruction(s): vld2.8 {d0, d1}, [r0]

• poly64x1x2 t vld2 p64 (const poly64 t *)
Form of expected instruction(s): vld1.64 {d0, d1}, [r0]

• uint64x1x2 t vld2 u64 (const uint64 t *)
Form of expected instruction(s): vld1.64 {d0, d1}, [r0]

• int64x1x2 t vld2 s64 (const int64 t *)
Form of expected instruction(s): vld1.64 {d0, d1}, [r0]

• uint32x4x2 t vld2q u32 (const uint32 t *)
Form of expected instruction(s): vld2.32 {d0, d1}, [r0]

• uint16x8x2 t vld2q u16 (const uint16 t *)
Form of expected instruction(s): vld2.16 {d0, d1}, [r0]

• uint8x16x2 t vld2q u8 (const uint8 t *)
Form of expected instruction(s): vld2.8 {d0, d1}, [r0]

• int32x4x2 t vld2q s32 (const int32 t *)
Form of expected instruction(s): vld2.32 {d0, d1}, [r0]

• int16x8x2 t vld2q s16 (const int16 t *)
Form of expected instruction(s): vld2.16 {d0, d1}, [r0]

• int8x16x2 t vld2q s8 (const int8 t *)
Form of expected instruction(s): vld2.8 {d0, d1}, [r0]

• float32x4x2 t vld2q f32 (const float32 t *)
Form of expected instruction(s): vld2.32 {d0, d1}, [r0]

572 Using the GNU Compiler Collection (GCC)

• poly16x8x2 t vld2q p16 (const poly16 t *)
Form of expected instruction(s): vld2.16 {d0, d1}, [r0]

• poly8x16x2 t vld2q p8 (const poly8 t *)
Form of expected instruction(s): vld2.8 {d0, d1}, [r0]

• uint32x2x2 t vld2 lane u32 (const uint32 t *, uint32x2x2 t, const int)
Form of expected instruction(s): vld2.32 {d0[0], d1[0]}, [r0]

• uint16x4x2 t vld2 lane u16 (const uint16 t *, uint16x4x2 t, const int)
Form of expected instruction(s): vld2.16 {d0[0], d1[0]}, [r0]

• uint8x8x2 t vld2 lane u8 (const uint8 t *, uint8x8x2 t, const int)
Form of expected instruction(s): vld2.8 {d0[0], d1[0]}, [r0]

• int32x2x2 t vld2 lane s32 (const int32 t *, int32x2x2 t, const int)
Form of expected instruction(s): vld2.32 {d0[0], d1[0]}, [r0]

• int16x4x2 t vld2 lane s16 (const int16 t *, int16x4x2 t, const int)
Form of expected instruction(s): vld2.16 {d0[0], d1[0]}, [r0]

• int8x8x2 t vld2 lane s8 (const int8 t *, int8x8x2 t, const int)
Form of expected instruction(s): vld2.8 {d0[0], d1[0]}, [r0]

• float32x2x2 t vld2 lane f32 (const float32 t *, float32x2x2 t, const int)
Form of expected instruction(s): vld2.32 {d0[0], d1[0]}, [r0]

• poly16x4x2 t vld2 lane p16 (const poly16 t *, poly16x4x2 t, const int)
Form of expected instruction(s): vld2.16 {d0[0], d1[0]}, [r0]

• poly8x8x2 t vld2 lane p8 (const poly8 t *, poly8x8x2 t, const int)
Form of expected instruction(s): vld2.8 {d0[0], d1[0]}, [r0]

• int32x4x2 t vld2q lane s32 (const int32 t *, int32x4x2 t, const int)
Form of expected instruction(s): vld2.32 {d0[0], d1[0]}, [r0]

• int16x8x2 t vld2q lane s16 (const int16 t *, int16x8x2 t, const int)
Form of expected instruction(s): vld2.16 {d0[0], d1[0]}, [r0]

• uint32x4x2 t vld2q lane u32 (const uint32 t *, uint32x4x2 t, const int)
Form of expected instruction(s): vld2.32 {d0[0], d1[0]}, [r0]

• uint16x8x2 t vld2q lane u16 (const uint16 t *, uint16x8x2 t, const int)
Form of expected instruction(s): vld2.16 {d0[0], d1[0]}, [r0]

• float32x4x2 t vld2q lane f32 (const float32 t *, float32x4x2 t, const int)
Form of expected instruction(s): vld2.32 {d0[0], d1[0]}, [r0]

• poly16x8x2 t vld2q lane p16 (const poly16 t *, poly16x8x2 t, const int)
Form of expected instruction(s): vld2.16 {d0[0], d1[0]}, [r0]

• uint32x2x2 t vld2 dup u32 (const uint32 t *)
Form of expected instruction(s): vld2.32 {d0[], d1[]}, [r0]

• uint16x4x2 t vld2 dup u16 (const uint16 t *)
Form of expected instruction(s): vld2.16 {d0[], d1[]}, [r0]

• uint8x8x2 t vld2 dup u8 (const uint8 t *)
Form of expected instruction(s): vld2.8 {d0[], d1[]}, [r0]

• int32x2x2 t vld2 dup s32 (const int32 t *)
Form of expected instruction(s): vld2.32 {d0[], d1[]}, [r0]

Chapter 6: Extensions to the C Language Family 573

• int16x4x2 t vld2 dup s16 (const int16 t *)
Form of expected instruction(s): vld2.16 {d0[], d1[]}, [r0]

• int8x8x2 t vld2 dup s8 (const int8 t *)
Form of expected instruction(s): vld2.8 {d0[], d1[]}, [r0]

• float32x2x2 t vld2 dup f32 (const float32 t *)
Form of expected instruction(s): vld2.32 {d0[], d1[]}, [r0]

• poly16x4x2 t vld2 dup p16 (const poly16 t *)
Form of expected instruction(s): vld2.16 {d0[], d1[]}, [r0]

• poly8x8x2 t vld2 dup p8 (const poly8 t *)
Form of expected instruction(s): vld2.8 {d0[], d1[]}, [r0]

• poly64x1x2 t vld2 dup p64 (const poly64 t *)
Form of expected instruction(s): vld1.64 {d0, d1}, [r0]

• uint64x1x2 t vld2 dup u64 (const uint64 t *)
Form of expected instruction(s): vld1.64 {d0, d1}, [r0]

• int64x1x2 t vld2 dup s64 (const int64 t *)
Form of expected instruction(s): vld1.64 {d0, d1}, [r0]

6.57.6.78 Element/structure stores, VST2 variants

• void vst2 u32 (uint32 t *, uint32x2x2 t)
Form of expected instruction(s): vst2.32 {d0, d1}, [r0]

• void vst2 u16 (uint16 t *, uint16x4x2 t)
Form of expected instruction(s): vst2.16 {d0, d1}, [r0]

• void vst2 u8 (uint8 t *, uint8x8x2 t)
Form of expected instruction(s): vst2.8 {d0, d1}, [r0]

• void vst2 s32 (int32 t *, int32x2x2 t)
Form of expected instruction(s): vst2.32 {d0, d1}, [r0]

• void vst2 s16 (int16 t *, int16x4x2 t)
Form of expected instruction(s): vst2.16 {d0, d1}, [r0]

• void vst2 s8 (int8 t *, int8x8x2 t)
Form of expected instruction(s): vst2.8 {d0, d1}, [r0]

• void vst2 f32 (float32 t *, float32x2x2 t)
Form of expected instruction(s): vst2.32 {d0, d1}, [r0]

• void vst2 p16 (poly16 t *, poly16x4x2 t)
Form of expected instruction(s): vst2.16 {d0, d1}, [r0]

• void vst2 p8 (poly8 t *, poly8x8x2 t)
Form of expected instruction(s): vst2.8 {d0, d1}, [r0]

• void vst2 p64 (poly64 t *, poly64x1x2 t)
Form of expected instruction(s): vst1.64 {d0, d1}, [r0]

• void vst2 u64 (uint64 t *, uint64x1x2 t)
Form of expected instruction(s): vst1.64 {d0, d1}, [r0]

• void vst2 s64 (int64 t *, int64x1x2 t)
Form of expected instruction(s): vst1.64 {d0, d1}, [r0]

574 Using the GNU Compiler Collection (GCC)

• void vst2q u32 (uint32 t *, uint32x4x2 t)
Form of expected instruction(s): vst2.32 {d0, d1}, [r0]

• void vst2q u16 (uint16 t *, uint16x8x2 t)
Form of expected instruction(s): vst2.16 {d0, d1}, [r0]

• void vst2q u8 (uint8 t *, uint8x16x2 t)
Form of expected instruction(s): vst2.8 {d0, d1}, [r0]

• void vst2q s32 (int32 t *, int32x4x2 t)
Form of expected instruction(s): vst2.32 {d0, d1}, [r0]

• void vst2q s16 (int16 t *, int16x8x2 t)
Form of expected instruction(s): vst2.16 {d0, d1}, [r0]

• void vst2q s8 (int8 t *, int8x16x2 t)
Form of expected instruction(s): vst2.8 {d0, d1}, [r0]

• void vst2q f32 (float32 t *, float32x4x2 t)
Form of expected instruction(s): vst2.32 {d0, d1}, [r0]

• void vst2q p16 (poly16 t *, poly16x8x2 t)
Form of expected instruction(s): vst2.16 {d0, d1}, [r0]

• void vst2q p8 (poly8 t *, poly8x16x2 t)
Form of expected instruction(s): vst2.8 {d0, d1}, [r0]

• void vst2 lane u32 (uint32 t *, uint32x2x2 t, const int)
Form of expected instruction(s): vst2.32 {d0[0], d1[0]}, [r0]

• void vst2 lane u16 (uint16 t *, uint16x4x2 t, const int)
Form of expected instruction(s): vst2.16 {d0[0], d1[0]}, [r0]

• void vst2 lane u8 (uint8 t *, uint8x8x2 t, const int)
Form of expected instruction(s): vst2.8 {d0[0], d1[0]}, [r0]

• void vst2 lane s32 (int32 t *, int32x2x2 t, const int)
Form of expected instruction(s): vst2.32 {d0[0], d1[0]}, [r0]

• void vst2 lane s16 (int16 t *, int16x4x2 t, const int)
Form of expected instruction(s): vst2.16 {d0[0], d1[0]}, [r0]

• void vst2 lane s8 (int8 t *, int8x8x2 t, const int)
Form of expected instruction(s): vst2.8 {d0[0], d1[0]}, [r0]

• void vst2 lane f32 (float32 t *, float32x2x2 t, const int)
Form of expected instruction(s): vst2.32 {d0[0], d1[0]}, [r0]

• void vst2 lane p16 (poly16 t *, poly16x4x2 t, const int)
Form of expected instruction(s): vst2.16 {d0[0], d1[0]}, [r0]

• void vst2 lane p8 (poly8 t *, poly8x8x2 t, const int)
Form of expected instruction(s): vst2.8 {d0[0], d1[0]}, [r0]

• void vst2q lane s32 (int32 t *, int32x4x2 t, const int)
Form of expected instruction(s): vst2.32 {d0[0], d1[0]}, [r0]

• void vst2q lane s16 (int16 t *, int16x8x2 t, const int)
Form of expected instruction(s): vst2.16 {d0[0], d1[0]}, [r0]

• void vst2q lane u32 (uint32 t *, uint32x4x2 t, const int)
Form of expected instruction(s): vst2.32 {d0[0], d1[0]}, [r0]

Chapter 6: Extensions to the C Language Family 575

• void vst2q lane u16 (uint16 t *, uint16x8x2 t, const int)
Form of expected instruction(s): vst2.16 {d0[0], d1[0]}, [r0]

• void vst2q lane f32 (float32 t *, float32x4x2 t, const int)
Form of expected instruction(s): vst2.32 {d0[0], d1[0]}, [r0]

• void vst2q lane p16 (poly16 t *, poly16x8x2 t, const int)
Form of expected instruction(s): vst2.16 {d0[0], d1[0]}, [r0]

6.57.6.79 Element/structure loads, VLD3 variants

• uint32x2x3 t vld3 u32 (const uint32 t *)
Form of expected instruction(s): vld3.32 {d0, d1, d2}, [r0]

• uint16x4x3 t vld3 u16 (const uint16 t *)
Form of expected instruction(s): vld3.16 {d0, d1, d2}, [r0]

• uint8x8x3 t vld3 u8 (const uint8 t *)
Form of expected instruction(s): vld3.8 {d0, d1, d2}, [r0]

• int32x2x3 t vld3 s32 (const int32 t *)
Form of expected instruction(s): vld3.32 {d0, d1, d2}, [r0]

• int16x4x3 t vld3 s16 (const int16 t *)
Form of expected instruction(s): vld3.16 {d0, d1, d2}, [r0]

• int8x8x3 t vld3 s8 (const int8 t *)
Form of expected instruction(s): vld3.8 {d0, d1, d2}, [r0]

• float32x2x3 t vld3 f32 (const float32 t *)
Form of expected instruction(s): vld3.32 {d0, d1, d2}, [r0]

• poly16x4x3 t vld3 p16 (const poly16 t *)
Form of expected instruction(s): vld3.16 {d0, d1, d2}, [r0]

• poly8x8x3 t vld3 p8 (const poly8 t *)
Form of expected instruction(s): vld3.8 {d0, d1, d2}, [r0]

• poly64x1x3 t vld3 p64 (const poly64 t *)
Form of expected instruction(s): vld1.64 {d0, d1, d2}, [r0]

• uint64x1x3 t vld3 u64 (const uint64 t *)
Form of expected instruction(s): vld1.64 {d0, d1, d2}, [r0]

• int64x1x3 t vld3 s64 (const int64 t *)
Form of expected instruction(s): vld1.64 {d0, d1, d2}, [r0]

• uint32x4x3 t vld3q u32 (const uint32 t *)
Form of expected instruction(s): vld3.32 {d0, d1, d2}, [r0]

• uint16x8x3 t vld3q u16 (const uint16 t *)
Form of expected instruction(s): vld3.16 {d0, d1, d2}, [r0]

• uint8x16x3 t vld3q u8 (const uint8 t *)
Form of expected instruction(s): vld3.8 {d0, d1, d2}, [r0]

• int32x4x3 t vld3q s32 (const int32 t *)
Form of expected instruction(s): vld3.32 {d0, d1, d2}, [r0]

• int16x8x3 t vld3q s16 (const int16 t *)
Form of expected instruction(s): vld3.16 {d0, d1, d2}, [r0]

576 Using the GNU Compiler Collection (GCC)

• int8x16x3 t vld3q s8 (const int8 t *)
Form of expected instruction(s): vld3.8 {d0, d1, d2}, [r0]

• float32x4x3 t vld3q f32 (const float32 t *)
Form of expected instruction(s): vld3.32 {d0, d1, d2}, [r0]

• poly16x8x3 t vld3q p16 (const poly16 t *)
Form of expected instruction(s): vld3.16 {d0, d1, d2}, [r0]

• poly8x16x3 t vld3q p8 (const poly8 t *)
Form of expected instruction(s): vld3.8 {d0, d1, d2}, [r0]

• uint32x2x3 t vld3 lane u32 (const uint32 t *, uint32x2x3 t, const int)
Form of expected instruction(s): vld3.32 {d0[0], d1[0], d2[0]}, [r0]

• uint16x4x3 t vld3 lane u16 (const uint16 t *, uint16x4x3 t, const int)
Form of expected instruction(s): vld3.16 {d0[0], d1[0], d2[0]}, [r0]

• uint8x8x3 t vld3 lane u8 (const uint8 t *, uint8x8x3 t, const int)
Form of expected instruction(s): vld3.8 {d0[0], d1[0], d2[0]}, [r0]

• int32x2x3 t vld3 lane s32 (const int32 t *, int32x2x3 t, const int)
Form of expected instruction(s): vld3.32 {d0[0], d1[0], d2[0]}, [r0]

• int16x4x3 t vld3 lane s16 (const int16 t *, int16x4x3 t, const int)
Form of expected instruction(s): vld3.16 {d0[0], d1[0], d2[0]}, [r0]

• int8x8x3 t vld3 lane s8 (const int8 t *, int8x8x3 t, const int)
Form of expected instruction(s): vld3.8 {d0[0], d1[0], d2[0]}, [r0]

• float32x2x3 t vld3 lane f32 (const float32 t *, float32x2x3 t, const int)
Form of expected instruction(s): vld3.32 {d0[0], d1[0], d2[0]}, [r0]

• poly16x4x3 t vld3 lane p16 (const poly16 t *, poly16x4x3 t, const int)
Form of expected instruction(s): vld3.16 {d0[0], d1[0], d2[0]}, [r0]

• poly8x8x3 t vld3 lane p8 (const poly8 t *, poly8x8x3 t, const int)
Form of expected instruction(s): vld3.8 {d0[0], d1[0], d2[0]}, [r0]

• int32x4x3 t vld3q lane s32 (const int32 t *, int32x4x3 t, const int)
Form of expected instruction(s): vld3.32 {d0[0], d1[0], d2[0]}, [r0]

• int16x8x3 t vld3q lane s16 (const int16 t *, int16x8x3 t, const int)
Form of expected instruction(s): vld3.16 {d0[0], d1[0], d2[0]}, [r0]

• uint32x4x3 t vld3q lane u32 (const uint32 t *, uint32x4x3 t, const int)
Form of expected instruction(s): vld3.32 {d0[0], d1[0], d2[0]}, [r0]

• uint16x8x3 t vld3q lane u16 (const uint16 t *, uint16x8x3 t, const int)
Form of expected instruction(s): vld3.16 {d0[0], d1[0], d2[0]}, [r0]

• float32x4x3 t vld3q lane f32 (const float32 t *, float32x4x3 t, const int)
Form of expected instruction(s): vld3.32 {d0[0], d1[0], d2[0]}, [r0]

• poly16x8x3 t vld3q lane p16 (const poly16 t *, poly16x8x3 t, const int)
Form of expected instruction(s): vld3.16 {d0[0], d1[0], d2[0]}, [r0]

• uint32x2x3 t vld3 dup u32 (const uint32 t *)
Form of expected instruction(s): vld3.32 {d0[], d1[], d2[]}, [r0]

• uint16x4x3 t vld3 dup u16 (const uint16 t *)
Form of expected instruction(s): vld3.16 {d0[], d1[], d2[]}, [r0]

Chapter 6: Extensions to the C Language Family 577

• uint8x8x3 t vld3 dup u8 (const uint8 t *)
Form of expected instruction(s): vld3.8 {d0[], d1[], d2[]}, [r0]

• int32x2x3 t vld3 dup s32 (const int32 t *)
Form of expected instruction(s): vld3.32 {d0[], d1[], d2[]}, [r0]

• int16x4x3 t vld3 dup s16 (const int16 t *)
Form of expected instruction(s): vld3.16 {d0[], d1[], d2[]}, [r0]

• int8x8x3 t vld3 dup s8 (const int8 t *)
Form of expected instruction(s): vld3.8 {d0[], d1[], d2[]}, [r0]

• float32x2x3 t vld3 dup f32 (const float32 t *)
Form of expected instruction(s): vld3.32 {d0[], d1[], d2[]}, [r0]

• poly16x4x3 t vld3 dup p16 (const poly16 t *)
Form of expected instruction(s): vld3.16 {d0[], d1[], d2[]}, [r0]

• poly8x8x3 t vld3 dup p8 (const poly8 t *)
Form of expected instruction(s): vld3.8 {d0[], d1[], d2[]}, [r0]

• poly64x1x3 t vld3 dup p64 (const poly64 t *)
Form of expected instruction(s): vld1.64 {d0, d1, d2}, [r0]

• uint64x1x3 t vld3 dup u64 (const uint64 t *)
Form of expected instruction(s): vld1.64 {d0, d1, d2}, [r0]

• int64x1x3 t vld3 dup s64 (const int64 t *)
Form of expected instruction(s): vld1.64 {d0, d1, d2}, [r0]

6.57.6.80 Element/structure stores, VST3 variants

• void vst3 u32 (uint32 t *, uint32x2x3 t)
Form of expected instruction(s): vst3.32 {d0, d1, d2, d3}, [r0]

• void vst3 u16 (uint16 t *, uint16x4x3 t)
Form of expected instruction(s): vst3.16 {d0, d1, d2, d3}, [r0]

• void vst3 u8 (uint8 t *, uint8x8x3 t)
Form of expected instruction(s): vst3.8 {d0, d1, d2, d3}, [r0]

• void vst3 s32 (int32 t *, int32x2x3 t)
Form of expected instruction(s): vst3.32 {d0, d1, d2, d3}, [r0]

• void vst3 s16 (int16 t *, int16x4x3 t)
Form of expected instruction(s): vst3.16 {d0, d1, d2, d3}, [r0]

• void vst3 s8 (int8 t *, int8x8x3 t)
Form of expected instruction(s): vst3.8 {d0, d1, d2, d3}, [r0]

• void vst3 f32 (float32 t *, float32x2x3 t)
Form of expected instruction(s): vst3.32 {d0, d1, d2, d3}, [r0]

• void vst3 p16 (poly16 t *, poly16x4x3 t)
Form of expected instruction(s): vst3.16 {d0, d1, d2, d3}, [r0]

• void vst3 p8 (poly8 t *, poly8x8x3 t)
Form of expected instruction(s): vst3.8 {d0, d1, d2, d3}, [r0]

• void vst3 p64 (poly64 t *, poly64x1x3 t)
Form of expected instruction(s): vst1.64 {d0, d1, d2, d3}, [r0]

578 Using the GNU Compiler Collection (GCC)

• void vst3 u64 (uint64 t *, uint64x1x3 t)
Form of expected instruction(s): vst1.64 {d0, d1, d2, d3}, [r0]

• void vst3 s64 (int64 t *, int64x1x3 t)
Form of expected instruction(s): vst1.64 {d0, d1, d2, d3}, [r0]

• void vst3q u32 (uint32 t *, uint32x4x3 t)
Form of expected instruction(s): vst3.32 {d0, d1, d2}, [r0]

• void vst3q u16 (uint16 t *, uint16x8x3 t)
Form of expected instruction(s): vst3.16 {d0, d1, d2}, [r0]

• void vst3q u8 (uint8 t *, uint8x16x3 t)
Form of expected instruction(s): vst3.8 {d0, d1, d2}, [r0]

• void vst3q s32 (int32 t *, int32x4x3 t)
Form of expected instruction(s): vst3.32 {d0, d1, d2}, [r0]

• void vst3q s16 (int16 t *, int16x8x3 t)
Form of expected instruction(s): vst3.16 {d0, d1, d2}, [r0]

• void vst3q s8 (int8 t *, int8x16x3 t)
Form of expected instruction(s): vst3.8 {d0, d1, d2}, [r0]

• void vst3q f32 (float32 t *, float32x4x3 t)
Form of expected instruction(s): vst3.32 {d0, d1, d2}, [r0]

• void vst3q p16 (poly16 t *, poly16x8x3 t)
Form of expected instruction(s): vst3.16 {d0, d1, d2}, [r0]

• void vst3q p8 (poly8 t *, poly8x16x3 t)
Form of expected instruction(s): vst3.8 {d0, d1, d2}, [r0]

• void vst3 lane u32 (uint32 t *, uint32x2x3 t, const int)
Form of expected instruction(s): vst3.32 {d0[0], d1[0], d2[0]}, [r0]

• void vst3 lane u16 (uint16 t *, uint16x4x3 t, const int)
Form of expected instruction(s): vst3.16 {d0[0], d1[0], d2[0]}, [r0]

• void vst3 lane u8 (uint8 t *, uint8x8x3 t, const int)
Form of expected instruction(s): vst3.8 {d0[0], d1[0], d2[0]}, [r0]

• void vst3 lane s32 (int32 t *, int32x2x3 t, const int)
Form of expected instruction(s): vst3.32 {d0[0], d1[0], d2[0]}, [r0]

• void vst3 lane s16 (int16 t *, int16x4x3 t, const int)
Form of expected instruction(s): vst3.16 {d0[0], d1[0], d2[0]}, [r0]

• void vst3 lane s8 (int8 t *, int8x8x3 t, const int)
Form of expected instruction(s): vst3.8 {d0[0], d1[0], d2[0]}, [r0]

• void vst3 lane f32 (float32 t *, float32x2x3 t, const int)
Form of expected instruction(s): vst3.32 {d0[0], d1[0], d2[0]}, [r0]

• void vst3 lane p16 (poly16 t *, poly16x4x3 t, const int)
Form of expected instruction(s): vst3.16 {d0[0], d1[0], d2[0]}, [r0]

• void vst3 lane p8 (poly8 t *, poly8x8x3 t, const int)
Form of expected instruction(s): vst3.8 {d0[0], d1[0], d2[0]}, [r0]

• void vst3q lane s32 (int32 t *, int32x4x3 t, const int)
Form of expected instruction(s): vst3.32 {d0[0], d1[0], d2[0]}, [r0]

Chapter 6: Extensions to the C Language Family 579

• void vst3q lane s16 (int16 t *, int16x8x3 t, const int)
Form of expected instruction(s): vst3.16 {d0[0], d1[0], d2[0]}, [r0]

• void vst3q lane u32 (uint32 t *, uint32x4x3 t, const int)
Form of expected instruction(s): vst3.32 {d0[0], d1[0], d2[0]}, [r0]

• void vst3q lane u16 (uint16 t *, uint16x8x3 t, const int)
Form of expected instruction(s): vst3.16 {d0[0], d1[0], d2[0]}, [r0]

• void vst3q lane f32 (float32 t *, float32x4x3 t, const int)
Form of expected instruction(s): vst3.32 {d0[0], d1[0], d2[0]}, [r0]

• void vst3q lane p16 (poly16 t *, poly16x8x3 t, const int)
Form of expected instruction(s): vst3.16 {d0[0], d1[0], d2[0]}, [r0]

6.57.6.81 Element/structure loads, VLD4 variants

• uint32x2x4 t vld4 u32 (const uint32 t *)
Form of expected instruction(s): vld4.32 {d0, d1, d2, d3}, [r0]

• uint16x4x4 t vld4 u16 (const uint16 t *)
Form of expected instruction(s): vld4.16 {d0, d1, d2, d3}, [r0]

• uint8x8x4 t vld4 u8 (const uint8 t *)
Form of expected instruction(s): vld4.8 {d0, d1, d2, d3}, [r0]

• int32x2x4 t vld4 s32 (const int32 t *)
Form of expected instruction(s): vld4.32 {d0, d1, d2, d3}, [r0]

• int16x4x4 t vld4 s16 (const int16 t *)
Form of expected instruction(s): vld4.16 {d0, d1, d2, d3}, [r0]

• int8x8x4 t vld4 s8 (const int8 t *)
Form of expected instruction(s): vld4.8 {d0, d1, d2, d3}, [r0]

• float32x2x4 t vld4 f32 (const float32 t *)
Form of expected instruction(s): vld4.32 {d0, d1, d2, d3}, [r0]

• poly16x4x4 t vld4 p16 (const poly16 t *)
Form of expected instruction(s): vld4.16 {d0, d1, d2, d3}, [r0]

• poly8x8x4 t vld4 p8 (const poly8 t *)
Form of expected instruction(s): vld4.8 {d0, d1, d2, d3}, [r0]

• poly64x1x4 t vld4 p64 (const poly64 t *)
Form of expected instruction(s): vld1.64 {d0, d1, d2, d3}, [r0]

• uint64x1x4 t vld4 u64 (const uint64 t *)
Form of expected instruction(s): vld1.64 {d0, d1, d2, d3}, [r0]

• int64x1x4 t vld4 s64 (const int64 t *)
Form of expected instruction(s): vld1.64 {d0, d1, d2, d3}, [r0]

• uint32x4x4 t vld4q u32 (const uint32 t *)
Form of expected instruction(s): vld4.32 {d0, d1, d2, d3}, [r0]

• uint16x8x4 t vld4q u16 (const uint16 t *)
Form of expected instruction(s): vld4.16 {d0, d1, d2, d3}, [r0]

• uint8x16x4 t vld4q u8 (const uint8 t *)
Form of expected instruction(s): vld4.8 {d0, d1, d2, d3}, [r0]

580 Using the GNU Compiler Collection (GCC)

• int32x4x4 t vld4q s32 (const int32 t *)
Form of expected instruction(s): vld4.32 {d0, d1, d2, d3}, [r0]

• int16x8x4 t vld4q s16 (const int16 t *)
Form of expected instruction(s): vld4.16 {d0, d1, d2, d3}, [r0]

• int8x16x4 t vld4q s8 (const int8 t *)
Form of expected instruction(s): vld4.8 {d0, d1, d2, d3}, [r0]

• float32x4x4 t vld4q f32 (const float32 t *)
Form of expected instruction(s): vld4.32 {d0, d1, d2, d3}, [r0]

• poly16x8x4 t vld4q p16 (const poly16 t *)
Form of expected instruction(s): vld4.16 {d0, d1, d2, d3}, [r0]

• poly8x16x4 t vld4q p8 (const poly8 t *)
Form of expected instruction(s): vld4.8 {d0, d1, d2, d3}, [r0]

• uint32x2x4 t vld4 lane u32 (const uint32 t *, uint32x2x4 t, const int)
Form of expected instruction(s): vld4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• uint16x4x4 t vld4 lane u16 (const uint16 t *, uint16x4x4 t, const int)
Form of expected instruction(s): vld4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• uint8x8x4 t vld4 lane u8 (const uint8 t *, uint8x8x4 t, const int)
Form of expected instruction(s): vld4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• int32x2x4 t vld4 lane s32 (const int32 t *, int32x2x4 t, const int)
Form of expected instruction(s): vld4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• int16x4x4 t vld4 lane s16 (const int16 t *, int16x4x4 t, const int)
Form of expected instruction(s): vld4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• int8x8x4 t vld4 lane s8 (const int8 t *, int8x8x4 t, const int)
Form of expected instruction(s): vld4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• float32x2x4 t vld4 lane f32 (const float32 t *, float32x2x4 t, const int)
Form of expected instruction(s): vld4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• poly16x4x4 t vld4 lane p16 (const poly16 t *, poly16x4x4 t, const int)
Form of expected instruction(s): vld4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• poly8x8x4 t vld4 lane p8 (const poly8 t *, poly8x8x4 t, const int)
Form of expected instruction(s): vld4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• int32x4x4 t vld4q lane s32 (const int32 t *, int32x4x4 t, const int)
Form of expected instruction(s): vld4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• int16x8x4 t vld4q lane s16 (const int16 t *, int16x8x4 t, const int)
Form of expected instruction(s): vld4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• uint32x4x4 t vld4q lane u32 (const uint32 t *, uint32x4x4 t, const int)
Form of expected instruction(s): vld4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• uint16x8x4 t vld4q lane u16 (const uint16 t *, uint16x8x4 t, const int)
Form of expected instruction(s): vld4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• float32x4x4 t vld4q lane f32 (const float32 t *, float32x4x4 t, const int)
Form of expected instruction(s): vld4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• poly16x8x4 t vld4q lane p16 (const poly16 t *, poly16x8x4 t, const int)
Form of expected instruction(s): vld4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]

Chapter 6: Extensions to the C Language Family 581

• uint32x2x4 t vld4 dup u32 (const uint32 t *)
Form of expected instruction(s): vld4.32 {d0[], d1[], d2[], d3[]}, [r0]

• uint16x4x4 t vld4 dup u16 (const uint16 t *)
Form of expected instruction(s): vld4.16 {d0[], d1[], d2[], d3[]}, [r0]

• uint8x8x4 t vld4 dup u8 (const uint8 t *)
Form of expected instruction(s): vld4.8 {d0[], d1[], d2[], d3[]}, [r0]

• int32x2x4 t vld4 dup s32 (const int32 t *)
Form of expected instruction(s): vld4.32 {d0[], d1[], d2[], d3[]}, [r0]

• int16x4x4 t vld4 dup s16 (const int16 t *)
Form of expected instruction(s): vld4.16 {d0[], d1[], d2[], d3[]}, [r0]

• int8x8x4 t vld4 dup s8 (const int8 t *)
Form of expected instruction(s): vld4.8 {d0[], d1[], d2[], d3[]}, [r0]

• float32x2x4 t vld4 dup f32 (const float32 t *)
Form of expected instruction(s): vld4.32 {d0[], d1[], d2[], d3[]}, [r0]

• poly16x4x4 t vld4 dup p16 (const poly16 t *)
Form of expected instruction(s): vld4.16 {d0[], d1[], d2[], d3[]}, [r0]

• poly8x8x4 t vld4 dup p8 (const poly8 t *)
Form of expected instruction(s): vld4.8 {d0[], d1[], d2[], d3[]}, [r0]

• poly64x1x4 t vld4 dup p64 (const poly64 t *)
Form of expected instruction(s): vld1.64 {d0, d1, d2, d3}, [r0]

• uint64x1x4 t vld4 dup u64 (const uint64 t *)
Form of expected instruction(s): vld1.64 {d0, d1, d2, d3}, [r0]

• int64x1x4 t vld4 dup s64 (const int64 t *)
Form of expected instruction(s): vld1.64 {d0, d1, d2, d3}, [r0]

6.57.6.82 Element/structure stores, VST4 variants

• void vst4 u32 (uint32 t *, uint32x2x4 t)
Form of expected instruction(s): vst4.32 {d0, d1, d2, d3}, [r0]

• void vst4 u16 (uint16 t *, uint16x4x4 t)
Form of expected instruction(s): vst4.16 {d0, d1, d2, d3}, [r0]

• void vst4 u8 (uint8 t *, uint8x8x4 t)
Form of expected instruction(s): vst4.8 {d0, d1, d2, d3}, [r0]

• void vst4 s32 (int32 t *, int32x2x4 t)
Form of expected instruction(s): vst4.32 {d0, d1, d2, d3}, [r0]

• void vst4 s16 (int16 t *, int16x4x4 t)
Form of expected instruction(s): vst4.16 {d0, d1, d2, d3}, [r0]

• void vst4 s8 (int8 t *, int8x8x4 t)
Form of expected instruction(s): vst4.8 {d0, d1, d2, d3}, [r0]

• void vst4 f32 (float32 t *, float32x2x4 t)
Form of expected instruction(s): vst4.32 {d0, d1, d2, d3}, [r0]

• void vst4 p16 (poly16 t *, poly16x4x4 t)
Form of expected instruction(s): vst4.16 {d0, d1, d2, d3}, [r0]

582 Using the GNU Compiler Collection (GCC)

• void vst4 p8 (poly8 t *, poly8x8x4 t)
Form of expected instruction(s): vst4.8 {d0, d1, d2, d3}, [r0]

• void vst4 p64 (poly64 t *, poly64x1x4 t)
Form of expected instruction(s): vst1.64 {d0, d1, d2, d3}, [r0]

• void vst4 u64 (uint64 t *, uint64x1x4 t)
Form of expected instruction(s): vst1.64 {d0, d1, d2, d3}, [r0]

• void vst4 s64 (int64 t *, int64x1x4 t)
Form of expected instruction(s): vst1.64 {d0, d1, d2, d3}, [r0]

• void vst4q u32 (uint32 t *, uint32x4x4 t)
Form of expected instruction(s): vst4.32 {d0, d1, d2, d3}, [r0]

• void vst4q u16 (uint16 t *, uint16x8x4 t)
Form of expected instruction(s): vst4.16 {d0, d1, d2, d3}, [r0]

• void vst4q u8 (uint8 t *, uint8x16x4 t)
Form of expected instruction(s): vst4.8 {d0, d1, d2, d3}, [r0]

• void vst4q s32 (int32 t *, int32x4x4 t)
Form of expected instruction(s): vst4.32 {d0, d1, d2, d3}, [r0]

• void vst4q s16 (int16 t *, int16x8x4 t)
Form of expected instruction(s): vst4.16 {d0, d1, d2, d3}, [r0]

• void vst4q s8 (int8 t *, int8x16x4 t)
Form of expected instruction(s): vst4.8 {d0, d1, d2, d3}, [r0]

• void vst4q f32 (float32 t *, float32x4x4 t)
Form of expected instruction(s): vst4.32 {d0, d1, d2, d3}, [r0]

• void vst4q p16 (poly16 t *, poly16x8x4 t)
Form of expected instruction(s): vst4.16 {d0, d1, d2, d3}, [r0]

• void vst4q p8 (poly8 t *, poly8x16x4 t)
Form of expected instruction(s): vst4.8 {d0, d1, d2, d3}, [r0]

• void vst4 lane u32 (uint32 t *, uint32x2x4 t, const int)
Form of expected instruction(s): vst4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• void vst4 lane u16 (uint16 t *, uint16x4x4 t, const int)
Form of expected instruction(s): vst4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• void vst4 lane u8 (uint8 t *, uint8x8x4 t, const int)
Form of expected instruction(s): vst4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• void vst4 lane s32 (int32 t *, int32x2x4 t, const int)
Form of expected instruction(s): vst4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• void vst4 lane s16 (int16 t *, int16x4x4 t, const int)
Form of expected instruction(s): vst4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• void vst4 lane s8 (int8 t *, int8x8x4 t, const int)
Form of expected instruction(s): vst4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• void vst4 lane f32 (float32 t *, float32x2x4 t, const int)
Form of expected instruction(s): vst4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• void vst4 lane p16 (poly16 t *, poly16x4x4 t, const int)
Form of expected instruction(s): vst4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]

Chapter 6: Extensions to the C Language Family 583

• void vst4 lane p8 (poly8 t *, poly8x8x4 t, const int)
Form of expected instruction(s): vst4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• void vst4q lane s32 (int32 t *, int32x4x4 t, const int)
Form of expected instruction(s): vst4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• void vst4q lane s16 (int16 t *, int16x8x4 t, const int)
Form of expected instruction(s): vst4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• void vst4q lane u32 (uint32 t *, uint32x4x4 t, const int)
Form of expected instruction(s): vst4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• void vst4q lane u16 (uint16 t *, uint16x8x4 t, const int)
Form of expected instruction(s): vst4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• void vst4q lane f32 (float32 t *, float32x4x4 t, const int)
Form of expected instruction(s): vst4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0]

• void vst4q lane p16 (poly16 t *, poly16x8x4 t, const int)
Form of expected instruction(s): vst4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0]

6.57.6.83 Logical operations (AND)

• uint32x2 t vand u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vand d0, d0, d0

• uint16x4 t vand u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vand d0, d0, d0

• uint8x8 t vand u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vand d0, d0, d0

• int32x2 t vand s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vand d0, d0, d0

• int16x4 t vand s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vand d0, d0, d0

• int8x8 t vand s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vand d0, d0, d0

• uint64x1 t vand u64 (uint64x1 t, uint64x1 t)
• int64x1 t vand s64 (int64x1 t, int64x1 t)
• uint32x4 t vandq u32 (uint32x4 t, uint32x4 t)

Form of expected instruction(s): vand q0, q0, q0

• uint16x8 t vandq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vand q0, q0, q0

• uint8x16 t vandq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vand q0, q0, q0

• int32x4 t vandq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vand q0, q0, q0

• int16x8 t vandq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vand q0, q0, q0

• int8x16 t vandq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vand q0, q0, q0

584 Using the GNU Compiler Collection (GCC)

• uint64x2 t vandq u64 (uint64x2 t, uint64x2 t)
Form of expected instruction(s): vand q0, q0, q0

• int64x2 t vandq s64 (int64x2 t, int64x2 t)
Form of expected instruction(s): vand q0, q0, q0

6.57.6.84 Logical operations (OR)

• uint32x2 t vorr u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vorr d0, d0, d0

• uint16x4 t vorr u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vorr d0, d0, d0

• uint8x8 t vorr u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vorr d0, d0, d0

• int32x2 t vorr s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vorr d0, d0, d0

• int16x4 t vorr s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vorr d0, d0, d0

• int8x8 t vorr s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vorr d0, d0, d0

• uint64x1 t vorr u64 (uint64x1 t, uint64x1 t)

• int64x1 t vorr s64 (int64x1 t, int64x1 t)

• uint32x4 t vorrq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vorr q0, q0, q0

• uint16x8 t vorrq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vorr q0, q0, q0

• uint8x16 t vorrq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vorr q0, q0, q0

• int32x4 t vorrq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vorr q0, q0, q0

• int16x8 t vorrq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vorr q0, q0, q0

• int8x16 t vorrq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vorr q0, q0, q0

• uint64x2 t vorrq u64 (uint64x2 t, uint64x2 t)
Form of expected instruction(s): vorr q0, q0, q0

• int64x2 t vorrq s64 (int64x2 t, int64x2 t)
Form of expected instruction(s): vorr q0, q0, q0

6.57.6.85 Logical operations (exclusive OR)

• uint32x2 t veor u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): veor d0, d0, d0

• uint16x4 t veor u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): veor d0, d0, d0

Chapter 6: Extensions to the C Language Family 585

• uint8x8 t veor u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): veor d0, d0, d0

• int32x2 t veor s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): veor d0, d0, d0

• int16x4 t veor s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): veor d0, d0, d0

• int8x8 t veor s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): veor d0, d0, d0

• uint64x1 t veor u64 (uint64x1 t, uint64x1 t)
• int64x1 t veor s64 (int64x1 t, int64x1 t)
• uint32x4 t veorq u32 (uint32x4 t, uint32x4 t)

Form of expected instruction(s): veor q0, q0, q0

• uint16x8 t veorq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): veor q0, q0, q0

• uint8x16 t veorq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): veor q0, q0, q0

• int32x4 t veorq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): veor q0, q0, q0

• int16x8 t veorq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): veor q0, q0, q0

• int8x16 t veorq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): veor q0, q0, q0

• uint64x2 t veorq u64 (uint64x2 t, uint64x2 t)
Form of expected instruction(s): veor q0, q0, q0

• int64x2 t veorq s64 (int64x2 t, int64x2 t)
Form of expected instruction(s): veor q0, q0, q0

6.57.6.86 Logical operations (AND-NOT)

• uint32x2 t vbic u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vbic d0, d0, d0

• uint16x4 t vbic u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vbic d0, d0, d0

• uint8x8 t vbic u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vbic d0, d0, d0

• int32x2 t vbic s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vbic d0, d0, d0

• int16x4 t vbic s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vbic d0, d0, d0

• int8x8 t vbic s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vbic d0, d0, d0

• uint64x1 t vbic u64 (uint64x1 t, uint64x1 t)
• int64x1 t vbic s64 (int64x1 t, int64x1 t)

586 Using the GNU Compiler Collection (GCC)

• uint32x4 t vbicq u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): vbic q0, q0, q0

• uint16x8 t vbicq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vbic q0, q0, q0

• uint8x16 t vbicq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vbic q0, q0, q0

• int32x4 t vbicq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vbic q0, q0, q0

• int16x8 t vbicq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vbic q0, q0, q0

• int8x16 t vbicq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vbic q0, q0, q0

• uint64x2 t vbicq u64 (uint64x2 t, uint64x2 t)
Form of expected instruction(s): vbic q0, q0, q0

• int64x2 t vbicq s64 (int64x2 t, int64x2 t)
Form of expected instruction(s): vbic q0, q0, q0

6.57.6.87 Logical operations (OR-NOT)

• uint32x2 t vorn u32 (uint32x2 t, uint32x2 t)
Form of expected instruction(s): vorn d0, d0, d0

• uint16x4 t vorn u16 (uint16x4 t, uint16x4 t)
Form of expected instruction(s): vorn d0, d0, d0

• uint8x8 t vorn u8 (uint8x8 t, uint8x8 t)
Form of expected instruction(s): vorn d0, d0, d0

• int32x2 t vorn s32 (int32x2 t, int32x2 t)
Form of expected instruction(s): vorn d0, d0, d0

• int16x4 t vorn s16 (int16x4 t, int16x4 t)
Form of expected instruction(s): vorn d0, d0, d0

• int8x8 t vorn s8 (int8x8 t, int8x8 t)
Form of expected instruction(s): vorn d0, d0, d0

• uint64x1 t vorn u64 (uint64x1 t, uint64x1 t)
• int64x1 t vorn s64 (int64x1 t, int64x1 t)
• uint32x4 t vornq u32 (uint32x4 t, uint32x4 t)

Form of expected instruction(s): vorn q0, q0, q0

• uint16x8 t vornq u16 (uint16x8 t, uint16x8 t)
Form of expected instruction(s): vorn q0, q0, q0

• uint8x16 t vornq u8 (uint8x16 t, uint8x16 t)
Form of expected instruction(s): vorn q0, q0, q0

• int32x4 t vornq s32 (int32x4 t, int32x4 t)
Form of expected instruction(s): vorn q0, q0, q0

• int16x8 t vornq s16 (int16x8 t, int16x8 t)
Form of expected instruction(s): vorn q0, q0, q0

Chapter 6: Extensions to the C Language Family 587

• int8x16 t vornq s8 (int8x16 t, int8x16 t)
Form of expected instruction(s): vorn q0, q0, q0

• uint64x2 t vornq u64 (uint64x2 t, uint64x2 t)
Form of expected instruction(s): vorn q0, q0, q0

• int64x2 t vornq s64 (int64x2 t, int64x2 t)
Form of expected instruction(s): vorn q0, q0, q0

6.57.6.88 Reinterpret casts

• poly8x8 t vreinterpret p8 p16 (poly16x4 t)
• poly8x8 t vreinterpret p8 f32 (float32x2 t)
• poly8x8 t vreinterpret p8 p64 (poly64x1 t)
• poly8x8 t vreinterpret p8 s64 (int64x1 t)
• poly8x8 t vreinterpret p8 u64 (uint64x1 t)
• poly8x8 t vreinterpret p8 s8 (int8x8 t)
• poly8x8 t vreinterpret p8 s16 (int16x4 t)
• poly8x8 t vreinterpret p8 s32 (int32x2 t)
• poly8x8 t vreinterpret p8 u8 (uint8x8 t)
• poly8x8 t vreinterpret p8 u16 (uint16x4 t)
• poly8x8 t vreinterpret p8 u32 (uint32x2 t)
• poly16x4 t vreinterpret p16 p8 (poly8x8 t)
• poly16x4 t vreinterpret p16 f32 (float32x2 t)
• poly16x4 t vreinterpret p16 p64 (poly64x1 t)
• poly16x4 t vreinterpret p16 s64 (int64x1 t)
• poly16x4 t vreinterpret p16 u64 (uint64x1 t)
• poly16x4 t vreinterpret p16 s8 (int8x8 t)
• poly16x4 t vreinterpret p16 s16 (int16x4 t)
• poly16x4 t vreinterpret p16 s32 (int32x2 t)
• poly16x4 t vreinterpret p16 u8 (uint8x8 t)
• poly16x4 t vreinterpret p16 u16 (uint16x4 t)
• poly16x4 t vreinterpret p16 u32 (uint32x2 t)
• float32x2 t vreinterpret f32 p8 (poly8x8 t)
• float32x2 t vreinterpret f32 p16 (poly16x4 t)
• float32x2 t vreinterpret f32 p64 (poly64x1 t)
• float32x2 t vreinterpret f32 s64 (int64x1 t)
• float32x2 t vreinterpret f32 u64 (uint64x1 t)
• float32x2 t vreinterpret f32 s8 (int8x8 t)
• float32x2 t vreinterpret f32 s16 (int16x4 t)
• float32x2 t vreinterpret f32 s32 (int32x2 t)
• float32x2 t vreinterpret f32 u8 (uint8x8 t)
• float32x2 t vreinterpret f32 u16 (uint16x4 t)

588 Using the GNU Compiler Collection (GCC)

• float32x2 t vreinterpret f32 u32 (uint32x2 t)
• poly64x1 t vreinterpret p64 p8 (poly8x8 t)
• poly64x1 t vreinterpret p64 p16 (poly16x4 t)
• poly64x1 t vreinterpret p64 f32 (float32x2 t)
• poly64x1 t vreinterpret p64 s64 (int64x1 t)
• poly64x1 t vreinterpret p64 u64 (uint64x1 t)
• poly64x1 t vreinterpret p64 s8 (int8x8 t)
• poly64x1 t vreinterpret p64 s16 (int16x4 t)
• poly64x1 t vreinterpret p64 s32 (int32x2 t)
• poly64x1 t vreinterpret p64 u8 (uint8x8 t)
• poly64x1 t vreinterpret p64 u16 (uint16x4 t)
• poly64x1 t vreinterpret p64 u32 (uint32x2 t)
• int64x1 t vreinterpret s64 p8 (poly8x8 t)
• int64x1 t vreinterpret s64 p16 (poly16x4 t)
• int64x1 t vreinterpret s64 f32 (float32x2 t)
• int64x1 t vreinterpret s64 p64 (poly64x1 t)
• int64x1 t vreinterpret s64 u64 (uint64x1 t)
• int64x1 t vreinterpret s64 s8 (int8x8 t)
• int64x1 t vreinterpret s64 s16 (int16x4 t)
• int64x1 t vreinterpret s64 s32 (int32x2 t)
• int64x1 t vreinterpret s64 u8 (uint8x8 t)
• int64x1 t vreinterpret s64 u16 (uint16x4 t)
• int64x1 t vreinterpret s64 u32 (uint32x2 t)
• uint64x1 t vreinterpret u64 p8 (poly8x8 t)
• uint64x1 t vreinterpret u64 p16 (poly16x4 t)
• uint64x1 t vreinterpret u64 f32 (float32x2 t)
• uint64x1 t vreinterpret u64 p64 (poly64x1 t)
• uint64x1 t vreinterpret u64 s64 (int64x1 t)
• uint64x1 t vreinterpret u64 s8 (int8x8 t)
• uint64x1 t vreinterpret u64 s16 (int16x4 t)
• uint64x1 t vreinterpret u64 s32 (int32x2 t)
• uint64x1 t vreinterpret u64 u8 (uint8x8 t)
• uint64x1 t vreinterpret u64 u16 (uint16x4 t)
• uint64x1 t vreinterpret u64 u32 (uint32x2 t)
• int8x8 t vreinterpret s8 p8 (poly8x8 t)
• int8x8 t vreinterpret s8 p16 (poly16x4 t)
• int8x8 t vreinterpret s8 f32 (float32x2 t)
• int8x8 t vreinterpret s8 p64 (poly64x1 t)
• int8x8 t vreinterpret s8 s64 (int64x1 t)

Chapter 6: Extensions to the C Language Family 589

• int8x8 t vreinterpret s8 u64 (uint64x1 t)
• int8x8 t vreinterpret s8 s16 (int16x4 t)
• int8x8 t vreinterpret s8 s32 (int32x2 t)
• int8x8 t vreinterpret s8 u8 (uint8x8 t)
• int8x8 t vreinterpret s8 u16 (uint16x4 t)
• int8x8 t vreinterpret s8 u32 (uint32x2 t)
• int16x4 t vreinterpret s16 p8 (poly8x8 t)
• int16x4 t vreinterpret s16 p16 (poly16x4 t)
• int16x4 t vreinterpret s16 f32 (float32x2 t)
• int16x4 t vreinterpret s16 p64 (poly64x1 t)
• int16x4 t vreinterpret s16 s64 (int64x1 t)
• int16x4 t vreinterpret s16 u64 (uint64x1 t)
• int16x4 t vreinterpret s16 s8 (int8x8 t)
• int16x4 t vreinterpret s16 s32 (int32x2 t)
• int16x4 t vreinterpret s16 u8 (uint8x8 t)
• int16x4 t vreinterpret s16 u16 (uint16x4 t)
• int16x4 t vreinterpret s16 u32 (uint32x2 t)
• int32x2 t vreinterpret s32 p8 (poly8x8 t)
• int32x2 t vreinterpret s32 p16 (poly16x4 t)
• int32x2 t vreinterpret s32 f32 (float32x2 t)
• int32x2 t vreinterpret s32 p64 (poly64x1 t)
• int32x2 t vreinterpret s32 s64 (int64x1 t)
• int32x2 t vreinterpret s32 u64 (uint64x1 t)
• int32x2 t vreinterpret s32 s8 (int8x8 t)
• int32x2 t vreinterpret s32 s16 (int16x4 t)
• int32x2 t vreinterpret s32 u8 (uint8x8 t)
• int32x2 t vreinterpret s32 u16 (uint16x4 t)
• int32x2 t vreinterpret s32 u32 (uint32x2 t)
• uint8x8 t vreinterpret u8 p8 (poly8x8 t)
• uint8x8 t vreinterpret u8 p16 (poly16x4 t)
• uint8x8 t vreinterpret u8 f32 (float32x2 t)
• uint8x8 t vreinterpret u8 p64 (poly64x1 t)
• uint8x8 t vreinterpret u8 s64 (int64x1 t)
• uint8x8 t vreinterpret u8 u64 (uint64x1 t)
• uint8x8 t vreinterpret u8 s8 (int8x8 t)
• uint8x8 t vreinterpret u8 s16 (int16x4 t)
• uint8x8 t vreinterpret u8 s32 (int32x2 t)
• uint8x8 t vreinterpret u8 u16 (uint16x4 t)
• uint8x8 t vreinterpret u8 u32 (uint32x2 t)

590 Using the GNU Compiler Collection (GCC)

• uint16x4 t vreinterpret u16 p8 (poly8x8 t)
• uint16x4 t vreinterpret u16 p16 (poly16x4 t)
• uint16x4 t vreinterpret u16 f32 (float32x2 t)
• uint16x4 t vreinterpret u16 p64 (poly64x1 t)
• uint16x4 t vreinterpret u16 s64 (int64x1 t)
• uint16x4 t vreinterpret u16 u64 (uint64x1 t)
• uint16x4 t vreinterpret u16 s8 (int8x8 t)
• uint16x4 t vreinterpret u16 s16 (int16x4 t)
• uint16x4 t vreinterpret u16 s32 (int32x2 t)
• uint16x4 t vreinterpret u16 u8 (uint8x8 t)
• uint16x4 t vreinterpret u16 u32 (uint32x2 t)
• uint32x2 t vreinterpret u32 p8 (poly8x8 t)
• uint32x2 t vreinterpret u32 p16 (poly16x4 t)
• uint32x2 t vreinterpret u32 f32 (float32x2 t)
• uint32x2 t vreinterpret u32 p64 (poly64x1 t)
• uint32x2 t vreinterpret u32 s64 (int64x1 t)
• uint32x2 t vreinterpret u32 u64 (uint64x1 t)
• uint32x2 t vreinterpret u32 s8 (int8x8 t)
• uint32x2 t vreinterpret u32 s16 (int16x4 t)
• uint32x2 t vreinterpret u32 s32 (int32x2 t)
• uint32x2 t vreinterpret u32 u8 (uint8x8 t)
• uint32x2 t vreinterpret u32 u16 (uint16x4 t)
• poly8x16 t vreinterpretq p8 p16 (poly16x8 t)
• poly8x16 t vreinterpretq p8 f32 (float32x4 t)
• poly8x16 t vreinterpretq p8 p64 (poly64x2 t)
• poly8x16 t vreinterpretq p8 p128 (poly128 t)
• poly8x16 t vreinterpretq p8 s64 (int64x2 t)
• poly8x16 t vreinterpretq p8 u64 (uint64x2 t)
• poly8x16 t vreinterpretq p8 s8 (int8x16 t)
• poly8x16 t vreinterpretq p8 s16 (int16x8 t)
• poly8x16 t vreinterpretq p8 s32 (int32x4 t)
• poly8x16 t vreinterpretq p8 u8 (uint8x16 t)
• poly8x16 t vreinterpretq p8 u16 (uint16x8 t)
• poly8x16 t vreinterpretq p8 u32 (uint32x4 t)
• poly16x8 t vreinterpretq p16 p8 (poly8x16 t)
• poly16x8 t vreinterpretq p16 f32 (float32x4 t)
• poly16x8 t vreinterpretq p16 p64 (poly64x2 t)
• poly16x8 t vreinterpretq p16 p128 (poly128 t)
• poly16x8 t vreinterpretq p16 s64 (int64x2 t)

Chapter 6: Extensions to the C Language Family 591

• poly16x8 t vreinterpretq p16 u64 (uint64x2 t)
• poly16x8 t vreinterpretq p16 s8 (int8x16 t)
• poly16x8 t vreinterpretq p16 s16 (int16x8 t)
• poly16x8 t vreinterpretq p16 s32 (int32x4 t)
• poly16x8 t vreinterpretq p16 u8 (uint8x16 t)
• poly16x8 t vreinterpretq p16 u16 (uint16x8 t)
• poly16x8 t vreinterpretq p16 u32 (uint32x4 t)
• float32x4 t vreinterpretq f32 p8 (poly8x16 t)
• float32x4 t vreinterpretq f32 p16 (poly16x8 t)
• float32x4 t vreinterpretq f32 p64 (poly64x2 t)
• float32x4 t vreinterpretq f32 p128 (poly128 t)
• float32x4 t vreinterpretq f32 s64 (int64x2 t)
• float32x4 t vreinterpretq f32 u64 (uint64x2 t)
• float32x4 t vreinterpretq f32 s8 (int8x16 t)
• float32x4 t vreinterpretq f32 s16 (int16x8 t)
• float32x4 t vreinterpretq f32 s32 (int32x4 t)
• float32x4 t vreinterpretq f32 u8 (uint8x16 t)
• float32x4 t vreinterpretq f32 u16 (uint16x8 t)
• float32x4 t vreinterpretq f32 u32 (uint32x4 t)
• poly64x2 t vreinterpretq p64 p8 (poly8x16 t)
• poly64x2 t vreinterpretq p64 p16 (poly16x8 t)
• poly64x2 t vreinterpretq p64 f32 (float32x4 t)
• poly64x2 t vreinterpretq p64 p128 (poly128 t)
• poly64x2 t vreinterpretq p64 s64 (int64x2 t)
• poly64x2 t vreinterpretq p64 u64 (uint64x2 t)
• poly64x2 t vreinterpretq p64 s8 (int8x16 t)
• poly64x2 t vreinterpretq p64 s16 (int16x8 t)
• poly64x2 t vreinterpretq p64 s32 (int32x4 t)
• poly64x2 t vreinterpretq p64 u8 (uint8x16 t)
• poly64x2 t vreinterpretq p64 u16 (uint16x8 t)
• poly64x2 t vreinterpretq p64 u32 (uint32x4 t)
• poly128 t vreinterpretq p128 p8 (poly8x16 t)
• poly128 t vreinterpretq p128 p16 (poly16x8 t)
• poly128 t vreinterpretq p128 f32 (float32x4 t)
• poly128 t vreinterpretq p128 p64 (poly64x2 t)
• poly128 t vreinterpretq p128 s64 (int64x2 t)
• poly128 t vreinterpretq p128 u64 (uint64x2 t)
• poly128 t vreinterpretq p128 s8 (int8x16 t)
• poly128 t vreinterpretq p128 s16 (int16x8 t)

592 Using the GNU Compiler Collection (GCC)

• poly128 t vreinterpretq p128 s32 (int32x4 t)
• poly128 t vreinterpretq p128 u8 (uint8x16 t)
• poly128 t vreinterpretq p128 u16 (uint16x8 t)
• poly128 t vreinterpretq p128 u32 (uint32x4 t)
• int64x2 t vreinterpretq s64 p8 (poly8x16 t)
• int64x2 t vreinterpretq s64 p16 (poly16x8 t)
• int64x2 t vreinterpretq s64 f32 (float32x4 t)
• int64x2 t vreinterpretq s64 p64 (poly64x2 t)
• int64x2 t vreinterpretq s64 p128 (poly128 t)
• int64x2 t vreinterpretq s64 u64 (uint64x2 t)
• int64x2 t vreinterpretq s64 s8 (int8x16 t)
• int64x2 t vreinterpretq s64 s16 (int16x8 t)
• int64x2 t vreinterpretq s64 s32 (int32x4 t)
• int64x2 t vreinterpretq s64 u8 (uint8x16 t)
• int64x2 t vreinterpretq s64 u16 (uint16x8 t)
• int64x2 t vreinterpretq s64 u32 (uint32x4 t)
• uint64x2 t vreinterpretq u64 p8 (poly8x16 t)
• uint64x2 t vreinterpretq u64 p16 (poly16x8 t)
• uint64x2 t vreinterpretq u64 f32 (float32x4 t)
• uint64x2 t vreinterpretq u64 p64 (poly64x2 t)
• uint64x2 t vreinterpretq u64 p128 (poly128 t)
• uint64x2 t vreinterpretq u64 s64 (int64x2 t)
• uint64x2 t vreinterpretq u64 s8 (int8x16 t)
• uint64x2 t vreinterpretq u64 s16 (int16x8 t)
• uint64x2 t vreinterpretq u64 s32 (int32x4 t)
• uint64x2 t vreinterpretq u64 u8 (uint8x16 t)
• uint64x2 t vreinterpretq u64 u16 (uint16x8 t)
• uint64x2 t vreinterpretq u64 u32 (uint32x4 t)
• int8x16 t vreinterpretq s8 p8 (poly8x16 t)
• int8x16 t vreinterpretq s8 p16 (poly16x8 t)
• int8x16 t vreinterpretq s8 f32 (float32x4 t)
• int8x16 t vreinterpretq s8 p64 (poly64x2 t)
• int8x16 t vreinterpretq s8 p128 (poly128 t)
• int8x16 t vreinterpretq s8 s64 (int64x2 t)
• int8x16 t vreinterpretq s8 u64 (uint64x2 t)
• int8x16 t vreinterpretq s8 s16 (int16x8 t)
• int8x16 t vreinterpretq s8 s32 (int32x4 t)
• int8x16 t vreinterpretq s8 u8 (uint8x16 t)
• int8x16 t vreinterpretq s8 u16 (uint16x8 t)

Chapter 6: Extensions to the C Language Family 593

• int8x16 t vreinterpretq s8 u32 (uint32x4 t)
• int16x8 t vreinterpretq s16 p8 (poly8x16 t)
• int16x8 t vreinterpretq s16 p16 (poly16x8 t)
• int16x8 t vreinterpretq s16 f32 (float32x4 t)
• int16x8 t vreinterpretq s16 p64 (poly64x2 t)
• int16x8 t vreinterpretq s16 p128 (poly128 t)
• int16x8 t vreinterpretq s16 s64 (int64x2 t)
• int16x8 t vreinterpretq s16 u64 (uint64x2 t)
• int16x8 t vreinterpretq s16 s8 (int8x16 t)
• int16x8 t vreinterpretq s16 s32 (int32x4 t)
• int16x8 t vreinterpretq s16 u8 (uint8x16 t)
• int16x8 t vreinterpretq s16 u16 (uint16x8 t)
• int16x8 t vreinterpretq s16 u32 (uint32x4 t)
• int32x4 t vreinterpretq s32 p8 (poly8x16 t)
• int32x4 t vreinterpretq s32 p16 (poly16x8 t)
• int32x4 t vreinterpretq s32 f32 (float32x4 t)
• int32x4 t vreinterpretq s32 p64 (poly64x2 t)
• int32x4 t vreinterpretq s32 p128 (poly128 t)
• int32x4 t vreinterpretq s32 s64 (int64x2 t)
• int32x4 t vreinterpretq s32 u64 (uint64x2 t)
• int32x4 t vreinterpretq s32 s8 (int8x16 t)
• int32x4 t vreinterpretq s32 s16 (int16x8 t)
• int32x4 t vreinterpretq s32 u8 (uint8x16 t)
• int32x4 t vreinterpretq s32 u16 (uint16x8 t)
• int32x4 t vreinterpretq s32 u32 (uint32x4 t)
• uint8x16 t vreinterpretq u8 p8 (poly8x16 t)
• uint8x16 t vreinterpretq u8 p16 (poly16x8 t)
• uint8x16 t vreinterpretq u8 f32 (float32x4 t)
• uint8x16 t vreinterpretq u8 p64 (poly64x2 t)
• uint8x16 t vreinterpretq u8 p128 (poly128 t)
• uint8x16 t vreinterpretq u8 s64 (int64x2 t)
• uint8x16 t vreinterpretq u8 u64 (uint64x2 t)
• uint8x16 t vreinterpretq u8 s8 (int8x16 t)
• uint8x16 t vreinterpretq u8 s16 (int16x8 t)
• uint8x16 t vreinterpretq u8 s32 (int32x4 t)
• uint8x16 t vreinterpretq u8 u16 (uint16x8 t)
• uint8x16 t vreinterpretq u8 u32 (uint32x4 t)
• uint16x8 t vreinterpretq u16 p8 (poly8x16 t)
• uint16x8 t vreinterpretq u16 p16 (poly16x8 t)

594 Using the GNU Compiler Collection (GCC)

• uint16x8 t vreinterpretq u16 f32 (float32x4 t)
• uint16x8 t vreinterpretq u16 p64 (poly64x2 t)
• uint16x8 t vreinterpretq u16 p128 (poly128 t)
• uint16x8 t vreinterpretq u16 s64 (int64x2 t)
• uint16x8 t vreinterpretq u16 u64 (uint64x2 t)
• uint16x8 t vreinterpretq u16 s8 (int8x16 t)
• uint16x8 t vreinterpretq u16 s16 (int16x8 t)
• uint16x8 t vreinterpretq u16 s32 (int32x4 t)
• uint16x8 t vreinterpretq u16 u8 (uint8x16 t)
• uint16x8 t vreinterpretq u16 u32 (uint32x4 t)
• uint32x4 t vreinterpretq u32 p8 (poly8x16 t)
• uint32x4 t vreinterpretq u32 p16 (poly16x8 t)
• uint32x4 t vreinterpretq u32 f32 (float32x4 t)
• uint32x4 t vreinterpretq u32 p64 (poly64x2 t)
• uint32x4 t vreinterpretq u32 p128 (poly128 t)
• uint32x4 t vreinterpretq u32 s64 (int64x2 t)
• uint32x4 t vreinterpretq u32 u64 (uint64x2 t)
• uint32x4 t vreinterpretq u32 s8 (int8x16 t)
• uint32x4 t vreinterpretq u32 s16 (int16x8 t)
• uint32x4 t vreinterpretq u32 s32 (int32x4 t)
• uint32x4 t vreinterpretq u32 u8 (uint8x16 t)
• uint32x4 t vreinterpretq u32 u16 (uint16x8 t)
• poly128 t vldrq p128(poly128 t const *)
• void vstrq p128(poly128 t *, poly128 t)
• uint64x1 t vceq p64 (poly64x1 t, poly64x1 t)
• uint64x1 t vtst p64 (poly64x1 t, poly64x1 t)
• uint32 t vsha1h u32 (uint32 t)

Form of expected instruction(s): sha1h.32 q0, q1

• uint32x4 t vsha1cq u32 (uint32x4 t, uint32 t, uint32x4 t)
Form of expected instruction(s): sha1c.32 q0, q1, q2

• uint32x4 t vsha1pq u32 (uint32x4 t, uint32 t, uint32x4 t)
Form of expected instruction(s): sha1p.32 q0, q1, q2

• uint32x4 t vsha1mq u32 (uint32x4 t, uint32 t, uint32x4 t)
Form of expected instruction(s): sha1m.32 q0, q1, q2

• uint32x4 t vsha1su0q u32 (uint32x4 t, uint32x4 t, uint32x4 t)
Form of expected instruction(s): sha1su0.32 q0, q1, q2

• uint32x4 t vsha1su1q u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): sha1su1.32 q0, q1, q2

• uint32x4 t vsha256hq u32 (uint32x4 t, uint32x4 t, uint32x4 t)
Form of expected instruction(s): sha256h.32 q0, q1, q2

Chapter 6: Extensions to the C Language Family 595

• uint32x4 t vsha256h2q u32 (uint32x4 t, uint32x4 t, uint32x4 t)
Form of expected instruction(s): sha256h2.32 q0, q1, q2

• uint32x4 t vsha256su0q u32 (uint32x4 t, uint32x4 t)
Form of expected instruction(s): sha256su0.32 q0, q1

• uint32x4 t vsha256su1q u32 (uint32x4 t, uint32x4 t, uint32x4 t)
Form of expected instruction(s): sha256su1.32 q0, q1, q2

• poly128 t vmull p64 (poly64 t a, poly64 t b)
Form of expected instruction(s): vmull.p64 q0, d1, d2

• poly128 t vmull high p64 (poly64x2 t a, poly64x2 t b)
Form of expected instruction(s): vmull.p64 q0, d1, d2

6.57.7 ARM ACLE Intrinsics

These built-in intrinsics for the ARMv8-A CRC32 extension are available when the
‘-march=armv8-a+crc’ switch is used:

6.57.7.1 CRC32 intrinsics

• uint32 t crc32b (uint32 t, uint8 t)
Form of expected instruction(s): crc32b r0, r0, r0

• uint32 t crc32h (uint32 t, uint16 t)
Form of expected instruction(s): crc32h r0, r0, r0

• uint32 t crc32w (uint32 t, uint32 t)
Form of expected instruction(s): crc32w r0, r0, r0

• uint32 t crc32d (uint32 t, uint64 t)
Form of expected instruction(s): Two crc32w r0, r0, r0 instructions for AArch32.
One crc32w w0, w0, x0 instruction for AArch64.

• uint32 t crc32cb (uint32 t, uint8 t)
Form of expected instruction(s): crc32cb r0, r0, r0

• uint32 t crc32ch (uint32 t, uint16 t)
Form of expected instruction(s): crc32ch r0, r0, r0

• uint32 t crc32cw (uint32 t, uint32 t)
Form of expected instruction(s): crc32cw r0, r0, r0

• uint32 t crc32cd (uint32 t, uint64 t)
Form of expected instruction(s): Two crc32cw r0, r0, r0 instructions for AArch32.
One crc32cw w0, w0, x0 instruction for AArch64.

6.57.8 AVR Built-in Functions

For each built-in function for AVR, there is an equally named, uppercase built-in macro
defined. That way users can easily query if or if not a specific built-in is implemented or not.
For example, if __builtin_avr_nop is available the macro __BUILTIN_AVR_NOP is defined
to 1 and undefined otherwise.

The following built-in functions map to the respective machine instruction, i.e. nop, sei,
cli, sleep, wdr, swap, fmul, fmuls resp. fmulsu. The three fmul* built-ins are imple-
mented as library call if no hardware multiplier is available.

596 Using the GNU Compiler Collection (GCC)

void __builtin_avr_nop (void)

void __builtin_avr_sei (void)

void __builtin_avr_cli (void)

void __builtin_avr_sleep (void)

void __builtin_avr_wdr (void)

unsigned char __builtin_avr_swap (unsigned char)

unsigned int __builtin_avr_fmul (unsigned char, unsigned char)

int __builtin_avr_fmuls (char, char)

int __builtin_avr_fmulsu (char, unsigned char)

In order to delay execution for a specific number of cycles, GCC implements
void __builtin_avr_delay_cycles (unsigned long ticks)

ticks is the number of ticks to delay execution. Note that this built-in does not take into
account the effect of interrupts that might increase delay time. ticks must be a compile-
time integer constant; delays with a variable number of cycles are not supported.

char __builtin_avr_flash_segment (const __memx void*)

This built-in takes a byte address to the 24-bit [AVR Named Address Spaces], page 362
__memx and returns the number of the flash segment (the 64 KiB chunk) where the address
points to. Counting starts at 0. If the address does not point to flash memory, return -1.

unsigned char __builtin_avr_insert_bits (unsigned long map, unsigned char bits, unsigned char val)

Insert bits from bits into val and return the resulting value. The nibbles of map determine
how the insertion is performed: Let X be the n-th nibble of map

1. If X is 0xf, then the n-th bit of val is returned unaltered.

2. If X is in the range 0. . . 7, then the n-th result bit is set to the X-th bit of bits

3. If X is in the range 8. . .0xe, then the n-th result bit is undefined.

One typical use case for this built-in is adjusting input and output values to non-contiguous
port layouts. Some examples:

// same as val, bits is unused

__builtin_avr_insert_bits (0xffffffff, bits, val)

// same as bits, val is unused

__builtin_avr_insert_bits (0x76543210, bits, val)

// same as rotating bits by 4

__builtin_avr_insert_bits (0x32107654, bits, 0)

// high nibble of result is the high nibble of val

// low nibble of result is the low nibble of bits

__builtin_avr_insert_bits (0xffff3210, bits, val)

// reverse the bit order of bits

__builtin_avr_insert_bits (0x01234567, bits, 0)

6.57.9 Blackfin Built-in Functions

Currently, there are two Blackfin-specific built-in functions. These are used for generating
CSYNC and SSYNC machine insns without using inline assembly; by using these built-in
functions the compiler can automatically add workarounds for hardware errata involving
these instructions. These functions are named as follows:

void __builtin_bfin_csync (void)

void __builtin_bfin_ssync (void)

Chapter 6: Extensions to the C Language Family 597

6.57.10 FR-V Built-in Functions

GCC provides many FR-V-specific built-in functions. In general, these functions are in-
tended to be compatible with those described by FR-V Family, Softune C/C++ Compiler
Manual (V6), Fujitsu Semiconductor. The two exceptions are __MDUNPACKH and __MBTOHE,
the GCC forms of which pass 128-bit values by pointer rather than by value.

Most of the functions are named after specific FR-V instructions. Such functions are said
to be “directly mapped” and are summarized here in tabular form.

6.57.10.1 Argument Types

The arguments to the built-in functions can be divided into three groups: register numbers,
compile-time constants and run-time values. In order to make this classification clear at a
glance, the arguments and return values are given the following pseudo types:
Pseudo type Real C type Constant? Description
uh unsigned short No an unsigned halfword
uw1 unsigned int No an unsigned word
sw1 int No a signed word
uw2 unsigned long long No an unsigned doubleword
sw2 long long No a signed doubleword
const int Yes an integer constant
acc int Yes an ACC register number
iacc int Yes an IACC register number

These pseudo types are not defined by GCC, they are simply a notational convenience
used in this manual.

Arguments of type uh, uw1, sw1, uw2 and sw2 are evaluated at run time. They correspond
to register operands in the underlying FR-V instructions.
const arguments represent immediate operands in the underlying FR-V instructions.

They must be compile-time constants.
acc arguments are evaluated at compile time and specify the number of an accumulator

register. For example, an acc argument of 2 selects the ACC2 register.
iacc arguments are similar to acc arguments but specify the number of an IACC register.

See see Section 6.57.10.5 [Other Built-in Functions], page 600 for more details.

6.57.10.2 Directly-mapped Integer Functions

The functions listed below map directly to FR-V I-type instructions.
Function prototype Example usage Assembly output
sw1 __ADDSS (sw1, sw1) c = __ADDSS (a, b) ADDSS a,b,c
sw1 __SCAN (sw1, sw1) c = __SCAN (a, b) SCAN a,b,c
sw1 __SCUTSS (sw1) b = __SCUTSS (a) SCUTSS a,b
sw1 __SLASS (sw1, sw1) c = __SLASS (a, b) SLASS a,b,c
void __SMASS (sw1, sw1) __SMASS (a, b) SMASS a,b
void __SMSSS (sw1, sw1) __SMSSS (a, b) SMSSS a,b
void __SMU (sw1, sw1) __SMU (a, b) SMU a,b
sw2 __SMUL (sw1, sw1) c = __SMUL (a, b) SMUL a,b,c
sw1 __SUBSS (sw1, sw1) c = __SUBSS (a, b) SUBSS a,b,c
uw2 __UMUL (uw1, uw1) c = __UMUL (a, b) UMUL a,b,c

598 Using the GNU Compiler Collection (GCC)

6.57.10.3 Directly-mapped Media Functions

The functions listed below map directly to FR-V M-type instructions.

Function prototype Example usage Assembly output
uw1 __MABSHS (sw1) b = __MABSHS (a) MABSHS a,b
void __MADDACCS (acc, acc) __MADDACCS (b, a) MADDACCS a,b
sw1 __MADDHSS (sw1, sw1) c = __MADDHSS (a, b) MADDHSS a,b,c
uw1 __MADDHUS (uw1, uw1) c = __MADDHUS (a, b) MADDHUS a,b,c
uw1 __MAND (uw1, uw1) c = __MAND (a, b) MAND a,b,c
void __MASACCS (acc, acc) __MASACCS (b, a) MASACCS a,b
uw1 __MAVEH (uw1, uw1) c = __MAVEH (a, b) MAVEH a,b,c
uw2 __MBTOH (uw1) b = __MBTOH (a) MBTOH a,b
void __MBTOHE (uw1 *, uw1) __MBTOHE (&b, a) MBTOHE a,b
void __MCLRACC (acc) __MCLRACC (a) MCLRACC a

void __MCLRACCA (void) __MCLRACCA () MCLRACCA
uw1 __Mcop1 (uw1, uw1) c = __Mcop1 (a, b) Mcop1 a,b,c
uw1 __Mcop2 (uw1, uw1) c = __Mcop2 (a, b) Mcop2 a,b,c
uw1 __MCPLHI (uw2, const) c = __MCPLHI (a, b) MCPLHI a,#b,c
uw1 __MCPLI (uw2, const) c = __MCPLI (a, b) MCPLI a,#b,c
void __MCPXIS (acc, sw1, sw1) __MCPXIS (c, a, b) MCPXIS a,b,c
void __MCPXIU (acc, uw1, uw1) __MCPXIU (c, a, b) MCPXIU a,b,c
void __MCPXRS (acc, sw1, sw1) __MCPXRS (c, a, b) MCPXRS a,b,c
void __MCPXRU (acc, uw1, uw1) __MCPXRU (c, a, b) MCPXRU a,b,c
uw1 __MCUT (acc, uw1) c = __MCUT (a, b) MCUT a,b,c
uw1 __MCUTSS (acc, sw1) c = __MCUTSS (a, b) MCUTSS a,b,c
void __MDADDACCS (acc, acc) __MDADDACCS (b, a) MDADDACCS a,b
void __MDASACCS (acc, acc) __MDASACCS (b, a) MDASACCS a,b
uw2 __MDCUTSSI (acc, const) c = __MDCUTSSI (a, b) MDCUTSSI a,#b,c
uw2 __MDPACKH (uw2, uw2) c = __MDPACKH (a, b) MDPACKH a,b,c
uw2 __MDROTLI (uw2, const) c = __MDROTLI (a, b) MDROTLI a,#b,c
void __MDSUBACCS (acc, acc) __MDSUBACCS (b, a) MDSUBACCS a,b
void __MDUNPACKH (uw1 *, uw2) __MDUNPACKH (&b, a) MDUNPACKH a,b
uw2 __MEXPDHD (uw1, const) c = __MEXPDHD (a, b) MEXPDHD a,#b,c
uw1 __MEXPDHW (uw1, const) c = __MEXPDHW (a, b) MEXPDHW a,#b,c
uw1 __MHDSETH (uw1, const) c = __MHDSETH (a, b) MHDSETH a,#b,c
sw1 __MHDSETS (const) b = __MHDSETS (a) MHDSETS #a,b
uw1 __MHSETHIH (uw1, const) b = __MHSETHIH (b, a) MHSETHIH #a,b
sw1 __MHSETHIS (sw1, const) b = __MHSETHIS (b, a) MHSETHIS #a,b
uw1 __MHSETLOH (uw1, const) b = __MHSETLOH (b, a) MHSETLOH #a,b
sw1 __MHSETLOS (sw1, const) b = __MHSETLOS (b, a) MHSETLOS #a,b
uw1 __MHTOB (uw2) b = __MHTOB (a) MHTOB a,b
void __MMACHS (acc, sw1, sw1) __MMACHS (c, a, b) MMACHS a,b,c
void __MMACHU (acc, uw1, uw1) __MMACHU (c, a, b) MMACHU a,b,c
void __MMRDHS (acc, sw1, sw1) __MMRDHS (c, a, b) MMRDHS a,b,c
void __MMRDHU (acc, uw1, uw1) __MMRDHU (c, a, b) MMRDHU a,b,c
void __MMULHS (acc, sw1, sw1) __MMULHS (c, a, b) MMULHS a,b,c
void __MMULHU (acc, uw1, uw1) __MMULHU (c, a, b) MMULHU a,b,c

Chapter 6: Extensions to the C Language Family 599

void __MMULXHS (acc, sw1, sw1) __MMULXHS (c, a, b) MMULXHS a,b,c
void __MMULXHU (acc, uw1, uw1) __MMULXHU (c, a, b) MMULXHU a,b,c
uw1 __MNOT (uw1) b = __MNOT (a) MNOT a,b
uw1 __MOR (uw1, uw1) c = __MOR (a, b) MOR a,b,c
uw1 __MPACKH (uh, uh) c = __MPACKH (a, b) MPACKH a,b,c
sw2 __MQADDHSS (sw2, sw2) c = __MQADDHSS (a, b) MQADDHSS a,b,c
uw2 __MQADDHUS (uw2, uw2) c = __MQADDHUS (a, b) MQADDHUS a,b,c
void __MQCPXIS (acc, sw2, sw2) __MQCPXIS (c, a, b) MQCPXIS a,b,c
void __MQCPXIU (acc, uw2, uw2) __MQCPXIU (c, a, b) MQCPXIU a,b,c
void __MQCPXRS (acc, sw2, sw2) __MQCPXRS (c, a, b) MQCPXRS a,b,c
void __MQCPXRU (acc, uw2, uw2) __MQCPXRU (c, a, b) MQCPXRU a,b,c
sw2 __MQLCLRHS (sw2, sw2) c = __MQLCLRHS (a, b) MQLCLRHS a,b,c
sw2 __MQLMTHS (sw2, sw2) c = __MQLMTHS (a, b) MQLMTHS a,b,c
void __MQMACHS (acc, sw2, sw2) __MQMACHS (c, a, b) MQMACHS a,b,c
void __MQMACHU (acc, uw2, uw2) __MQMACHU (c, a, b) MQMACHU a,b,c
void __MQMACXHS (acc, sw2, sw2) __MQMACXHS (c, a, b) MQMACXHS a,b,c
void __MQMULHS (acc, sw2, sw2) __MQMULHS (c, a, b) MQMULHS a,b,c
void __MQMULHU (acc, uw2, uw2) __MQMULHU (c, a, b) MQMULHU a,b,c
void __MQMULXHS (acc, sw2, sw2) __MQMULXHS (c, a, b) MQMULXHS a,b,c
void __MQMULXHU (acc, uw2, uw2) __MQMULXHU (c, a, b) MQMULXHU a,b,c
sw2 __MQSATHS (sw2, sw2) c = __MQSATHS (a, b) MQSATHS a,b,c
uw2 __MQSLLHI (uw2, int) c = __MQSLLHI (a, b) MQSLLHI a,b,c
sw2 __MQSRAHI (sw2, int) c = __MQSRAHI (a, b) MQSRAHI a,b,c
sw2 __MQSUBHSS (sw2, sw2) c = __MQSUBHSS (a, b) MQSUBHSS a,b,c
uw2 __MQSUBHUS (uw2, uw2) c = __MQSUBHUS (a, b) MQSUBHUS a,b,c
void __MQXMACHS (acc, sw2, sw2) __MQXMACHS (c, a, b) MQXMACHS a,b,c
void __MQXMACXHS (acc, sw2, sw2) __MQXMACXHS (c, a, b) MQXMACXHS a,b,c
uw1 __MRDACC (acc) b = __MRDACC (a) MRDACC a,b
uw1 __MRDACCG (acc) b = __MRDACCG (a) MRDACCG a,b
uw1 __MROTLI (uw1, const) c = __MROTLI (a, b) MROTLI a,#b,c
uw1 __MROTRI (uw1, const) c = __MROTRI (a, b) MROTRI a,#b,c
sw1 __MSATHS (sw1, sw1) c = __MSATHS (a, b) MSATHS a,b,c
uw1 __MSATHU (uw1, uw1) c = __MSATHU (a, b) MSATHU a,b,c
uw1 __MSLLHI (uw1, const) c = __MSLLHI (a, b) MSLLHI a,#b,c
sw1 __MSRAHI (sw1, const) c = __MSRAHI (a, b) MSRAHI a,#b,c
uw1 __MSRLHI (uw1, const) c = __MSRLHI (a, b) MSRLHI a,#b,c
void __MSUBACCS (acc, acc) __MSUBACCS (b, a) MSUBACCS a,b
sw1 __MSUBHSS (sw1, sw1) c = __MSUBHSS (a, b) MSUBHSS a,b,c
uw1 __MSUBHUS (uw1, uw1) c = __MSUBHUS (a, b) MSUBHUS a,b,c
void __MTRAP (void) __MTRAP () MTRAP
uw2 __MUNPACKH (uw1) b = __MUNPACKH (a) MUNPACKH a,b
uw1 __MWCUT (uw2, uw1) c = __MWCUT (a, b) MWCUT a,b,c
void __MWTACC (acc, uw1) __MWTACC (b, a) MWTACC a,b
void __MWTACCG (acc, uw1) __MWTACCG (b, a) MWTACCG a,b
uw1 __MXOR (uw1, uw1) c = __MXOR (a, b) MXOR a,b,c

600 Using the GNU Compiler Collection (GCC)

6.57.10.4 Raw read/write Functions

This sections describes built-in functions related to read and write instructions to access
memory. These functions generate membar instructions to flush the I/O load and stores
where appropriate, as described in Fujitsu’s manual described above.

unsigned char __builtin_read8 (void *data)
unsigned short __builtin_read16 (void *data)
unsigned long __builtin_read32 (void *data)
unsigned long long __builtin_read64 (void *data)
void __builtin_write8 (void *data, unsigned char datum)
void __builtin_write16 (void *data, unsigned short datum)
void __builtin_write32 (void *data, unsigned long datum)
void __builtin_write64 (void *data, unsigned long long datum)

6.57.10.5 Other Built-in Functions

This section describes built-in functions that are not named after a specific FR-V instruc-
tion.

sw2 __IACCreadll (iacc reg)
Return the full 64-bit value of IACC0. The reg argument is reserved for future
expansion and must be 0.

sw1 __IACCreadl (iacc reg)
Return the value of IACC0H if reg is 0 and IACC0L if reg is 1. Other values
of reg are rejected as invalid.

void __IACCsetll (iacc reg, sw2 x)
Set the full 64-bit value of IACC0 to x. The reg argument is reserved for future
expansion and must be 0.

void __IACCsetl (iacc reg, sw1 x)
Set IACC0H to x if reg is 0 and IACC0L to x if reg is 1. Other values of reg
are rejected as invalid.

void __data_prefetch0 (const void *x)
Use the dcpl instruction to load the contents of address x into the data cache.

void __data_prefetch (const void *x)
Use the nldub instruction to load the contents of address x into the data cache.
The instruction is issued in slot I1.

6.57.11 X86 Built-in Functions

These built-in functions are available for the i386 and x86-64 family of computers, depending
on the command-line switches used.

If you specify command-line switches such as ‘-msse’, the compiler could use the extended
instruction sets even if the built-ins are not used explicitly in the program. For this reason,
applications that perform run-time CPU detection must compile separate files for each
supported architecture, using the appropriate flags. In particular, the file containing the
CPU detection code should be compiled without these options.

Chapter 6: Extensions to the C Language Family 601

The following machine modes are available for use with MMX built-in functions (see
Section 6.49 [Vector Extensions], page 471): V2SI for a vector of two 32-bit integers, V4HI
for a vector of four 16-bit integers, and V8QI for a vector of eight 8-bit integers. Some of
the built-in functions operate on MMX registers as a whole 64-bit entity, these use V1DI as
their mode.

If 3DNow! extensions are enabled, V2SF is used as a mode for a vector of two 32-bit
floating-point values.

If SSE extensions are enabled, V4SF is used for a vector of four 32-bit floating-point
values. Some instructions use a vector of four 32-bit integers, these use V4SI. Finally, some
instructions operate on an entire vector register, interpreting it as a 128-bit integer, these
use mode TI.

In 64-bit mode, the x86-64 family of processors uses additional built-in functions for
efficient use of TF (__float128) 128-bit floating point and TC 128-bit complex floating-
point values.

The following floating-point built-in functions are available in 64-bit mode. All of them
implement the function that is part of the name.

__float128 __builtin_fabsq (__float128)

__float128 __builtin_copysignq (__float128, __float128)

The following built-in function is always available.

void __builtin_ia32_pause (void)
Generates the pause machine instruction with a compiler memory barrier.

The following floating-point built-in functions are made available in the 64-bit mode.

__float128 __builtin_infq (void)
Similar to __builtin_inf, except the return type is __float128.

__float128 __builtin_huge_valq (void)
Similar to __builtin_huge_val, except the return type is __float128.

The following built-in functions are always available and can be used to check the target
platform type.

[Built-in Function]void __builtin_cpu_init (void)
This function runs the CPU detection code to check the type of CPU and the features
supported. This built-in function needs to be invoked along with the built-in functions
to check CPU type and features, __builtin_cpu_is and __builtin_cpu_supports,
only when used in a function that is executed before any constructors are called. The
CPU detection code is automatically executed in a very high priority constructor.
For example, this function has to be used in ifunc resolvers that check for CPU type
using the built-in functions __builtin_cpu_is and __builtin_cpu_supports, or in
constructors on targets that don’t support constructor priority.

static void (*resolve_memcpy (void)) (void)

{

// ifunc resolvers fire before constructors, explicitly call the init

// function.

__builtin_cpu_init ();

if (__builtin_cpu_supports ("ssse3"))

602 Using the GNU Compiler Collection (GCC)

return ssse3_memcpy; // super fast memcpy with ssse3 instructions.

else

return default_memcpy;

}

void *memcpy (void *, const void *, size_t)

__attribute__ ((ifunc ("resolve_memcpy")));

[Built-in Function]int __builtin_cpu_is (const char *cpuname)
This function returns a positive integer if the run-time CPU is of type cpuname and
returns 0 otherwise. The following CPU names can be detected:

‘intel’ Intel CPU.

‘atom’ Intel Atom CPU.

‘core2’ Intel Core 2 CPU.

‘corei7’ Intel Core i7 CPU.

‘nehalem’ Intel Core i7 Nehalem CPU.

‘westmere’
Intel Core i7 Westmere CPU.

‘sandybridge’
Intel Core i7 Sandy Bridge CPU.

‘amd’ AMD CPU.

‘amdfam10h’
AMD Family 10h CPU.

‘barcelona’
AMD Family 10h Barcelona CPU.

‘shanghai’
AMD Family 10h Shanghai CPU.

‘istanbul’
AMD Family 10h Istanbul CPU.

‘btver1’ AMD Family 14h CPU.

‘amdfam15h’
AMD Family 15h CPU.

‘bdver1’ AMD Family 15h Bulldozer version 1.

‘bdver2’ AMD Family 15h Bulldozer version 2.

‘bdver3’ AMD Family 15h Bulldozer version 3.

‘bdver4’ AMD Family 15h Bulldozer version 4.

‘btver2’ AMD Family 16h CPU.

Here is an example:

Chapter 6: Extensions to the C Language Family 603

if (__builtin_cpu_is ("corei7"))

{

do_corei7 (); // Core i7 specific implementation.

}

else

{

do_generic (); // Generic implementation.

}

[Built-in Function]int __builtin_cpu_supports (const char *feature)
This function returns a positive integer if the run-time CPU supports feature and
returns 0 otherwise. The following features can be detected:

‘cmov’ CMOV instruction.

‘mmx’ MMX instructions.

‘popcnt’ POPCNT instruction.

‘sse’ SSE instructions.

‘sse2’ SSE2 instructions.

‘sse3’ SSE3 instructions.

‘ssse3’ SSSE3 instructions.

‘sse4.1’ SSE4.1 instructions.

‘sse4.2’ SSE4.2 instructions.

‘avx’ AVX instructions.

‘avx2’ AVX2 instructions.

Here is an example:
if (__builtin_cpu_supports ("popcnt"))

{

asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");

}

else

{

count = generic_countbits (n); //generic implementation.

}

The following built-in functions are made available by ‘-mmmx’. All of them generate the
machine instruction that is part of the name.

v8qi __builtin_ia32_paddb (v8qi, v8qi)

v4hi __builtin_ia32_paddw (v4hi, v4hi)

v2si __builtin_ia32_paddd (v2si, v2si)

v8qi __builtin_ia32_psubb (v8qi, v8qi)

v4hi __builtin_ia32_psubw (v4hi, v4hi)

v2si __builtin_ia32_psubd (v2si, v2si)

v8qi __builtin_ia32_paddsb (v8qi, v8qi)

v4hi __builtin_ia32_paddsw (v4hi, v4hi)

v8qi __builtin_ia32_psubsb (v8qi, v8qi)

v4hi __builtin_ia32_psubsw (v4hi, v4hi)

v8qi __builtin_ia32_paddusb (v8qi, v8qi)

v4hi __builtin_ia32_paddusw (v4hi, v4hi)

604 Using the GNU Compiler Collection (GCC)

v8qi __builtin_ia32_psubusb (v8qi, v8qi)

v4hi __builtin_ia32_psubusw (v4hi, v4hi)

v4hi __builtin_ia32_pmullw (v4hi, v4hi)

v4hi __builtin_ia32_pmulhw (v4hi, v4hi)

di __builtin_ia32_pand (di, di)

di __builtin_ia32_pandn (di,di)

di __builtin_ia32_por (di, di)

di __builtin_ia32_pxor (di, di)

v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)

v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)

v2si __builtin_ia32_pcmpeqd (v2si, v2si)

v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)

v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)

v2si __builtin_ia32_pcmpgtd (v2si, v2si)

v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)

v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)

v2si __builtin_ia32_punpckhdq (v2si, v2si)

v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)

v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)

v2si __builtin_ia32_punpckldq (v2si, v2si)

v8qi __builtin_ia32_packsswb (v4hi, v4hi)

v4hi __builtin_ia32_packssdw (v2si, v2si)

v8qi __builtin_ia32_packuswb (v4hi, v4hi)

v4hi __builtin_ia32_psllw (v4hi, v4hi)

v2si __builtin_ia32_pslld (v2si, v2si)

v1di __builtin_ia32_psllq (v1di, v1di)

v4hi __builtin_ia32_psrlw (v4hi, v4hi)

v2si __builtin_ia32_psrld (v2si, v2si)

v1di __builtin_ia32_psrlq (v1di, v1di)

v4hi __builtin_ia32_psraw (v4hi, v4hi)

v2si __builtin_ia32_psrad (v2si, v2si)

v4hi __builtin_ia32_psllwi (v4hi, int)

v2si __builtin_ia32_pslldi (v2si, int)

v1di __builtin_ia32_psllqi (v1di, int)

v4hi __builtin_ia32_psrlwi (v4hi, int)

v2si __builtin_ia32_psrldi (v2si, int)

v1di __builtin_ia32_psrlqi (v1di, int)

v4hi __builtin_ia32_psrawi (v4hi, int)

v2si __builtin_ia32_psradi (v2si, int)

The following built-in functions are made available either with ‘-msse’, or with a com-
bination of ‘-m3dnow’ and ‘-march=athlon’. All of them generate the machine instruction
that is part of the name.

v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)

v8qi __builtin_ia32_pavgb (v8qi, v8qi)

v4hi __builtin_ia32_pavgw (v4hi, v4hi)

v1di __builtin_ia32_psadbw (v8qi, v8qi)

v8qi __builtin_ia32_pmaxub (v8qi, v8qi)

v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)

v8qi __builtin_ia32_pminub (v8qi, v8qi)

v4hi __builtin_ia32_pminsw (v4hi, v4hi)

int __builtin_ia32_pmovmskb (v8qi)

void __builtin_ia32_maskmovq (v8qi, v8qi, char *)

void __builtin_ia32_movntq (di *, di)

void __builtin_ia32_sfence (void)

Chapter 6: Extensions to the C Language Family 605

The following built-in functions are available when ‘-msse’ is used. All of them generate
the machine instruction that is part of the name.

int __builtin_ia32_comieq (v4sf, v4sf)

int __builtin_ia32_comineq (v4sf, v4sf)

int __builtin_ia32_comilt (v4sf, v4sf)

int __builtin_ia32_comile (v4sf, v4sf)

int __builtin_ia32_comigt (v4sf, v4sf)

int __builtin_ia32_comige (v4sf, v4sf)

int __builtin_ia32_ucomieq (v4sf, v4sf)

int __builtin_ia32_ucomineq (v4sf, v4sf)

int __builtin_ia32_ucomilt (v4sf, v4sf)

int __builtin_ia32_ucomile (v4sf, v4sf)

int __builtin_ia32_ucomigt (v4sf, v4sf)

int __builtin_ia32_ucomige (v4sf, v4sf)

v4sf __builtin_ia32_addps (v4sf, v4sf)

v4sf __builtin_ia32_subps (v4sf, v4sf)

v4sf __builtin_ia32_mulps (v4sf, v4sf)

v4sf __builtin_ia32_divps (v4sf, v4sf)

v4sf __builtin_ia32_addss (v4sf, v4sf)

v4sf __builtin_ia32_subss (v4sf, v4sf)

v4sf __builtin_ia32_mulss (v4sf, v4sf)

v4sf __builtin_ia32_divss (v4sf, v4sf)

v4sf __builtin_ia32_cmpeqps (v4sf, v4sf)

v4sf __builtin_ia32_cmpltps (v4sf, v4sf)

v4sf __builtin_ia32_cmpleps (v4sf, v4sf)

v4sf __builtin_ia32_cmpgtps (v4sf, v4sf)

v4sf __builtin_ia32_cmpgeps (v4sf, v4sf)

v4sf __builtin_ia32_cmpunordps (v4sf, v4sf)

v4sf __builtin_ia32_cmpneqps (v4sf, v4sf)

v4sf __builtin_ia32_cmpnltps (v4sf, v4sf)

v4sf __builtin_ia32_cmpnleps (v4sf, v4sf)

v4sf __builtin_ia32_cmpngtps (v4sf, v4sf)

v4sf __builtin_ia32_cmpngeps (v4sf, v4sf)

v4sf __builtin_ia32_cmpordps (v4sf, v4sf)

v4sf __builtin_ia32_cmpeqss (v4sf, v4sf)

v4sf __builtin_ia32_cmpltss (v4sf, v4sf)

v4sf __builtin_ia32_cmpless (v4sf, v4sf)

v4sf __builtin_ia32_cmpunordss (v4sf, v4sf)

v4sf __builtin_ia32_cmpneqss (v4sf, v4sf)

v4sf __builtin_ia32_cmpnltss (v4sf, v4sf)

v4sf __builtin_ia32_cmpnless (v4sf, v4sf)

v4sf __builtin_ia32_cmpordss (v4sf, v4sf)

v4sf __builtin_ia32_maxps (v4sf, v4sf)

v4sf __builtin_ia32_maxss (v4sf, v4sf)

v4sf __builtin_ia32_minps (v4sf, v4sf)

v4sf __builtin_ia32_minss (v4sf, v4sf)

v4sf __builtin_ia32_andps (v4sf, v4sf)

v4sf __builtin_ia32_andnps (v4sf, v4sf)

v4sf __builtin_ia32_orps (v4sf, v4sf)

v4sf __builtin_ia32_xorps (v4sf, v4sf)

v4sf __builtin_ia32_movss (v4sf, v4sf)

v4sf __builtin_ia32_movhlps (v4sf, v4sf)

v4sf __builtin_ia32_movlhps (v4sf, v4sf)

v4sf __builtin_ia32_unpckhps (v4sf, v4sf)

v4sf __builtin_ia32_unpcklps (v4sf, v4sf)

v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)

v4sf __builtin_ia32_cvtsi2ss (v4sf, int)

v2si __builtin_ia32_cvtps2pi (v4sf)

606 Using the GNU Compiler Collection (GCC)

int __builtin_ia32_cvtss2si (v4sf)

v2si __builtin_ia32_cvttps2pi (v4sf)

int __builtin_ia32_cvttss2si (v4sf)

v4sf __builtin_ia32_rcpps (v4sf)

v4sf __builtin_ia32_rsqrtps (v4sf)

v4sf __builtin_ia32_sqrtps (v4sf)

v4sf __builtin_ia32_rcpss (v4sf)

v4sf __builtin_ia32_rsqrtss (v4sf)

v4sf __builtin_ia32_sqrtss (v4sf)

v4sf __builtin_ia32_shufps (v4sf, v4sf, int)

void __builtin_ia32_movntps (float *, v4sf)

int __builtin_ia32_movmskps (v4sf)

The following built-in functions are available when ‘-msse’ is used.

v4sf __builtin_ia32_loadups (float *)
Generates the movups machine instruction as a load from memory.

void __builtin_ia32_storeups (float *, v4sf)
Generates the movups machine instruction as a store to memory.

v4sf __builtin_ia32_loadss (float *)
Generates the movss machine instruction as a load from memory.

v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
Generates the movhps machine instruction as a load from memory.

v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
Generates the movlps machine instruction as a load from memory

void __builtin_ia32_storehps (v2sf *, v4sf)
Generates the movhps machine instruction as a store to memory.

void __builtin_ia32_storelps (v2sf *, v4sf)
Generates the movlps machine instruction as a store to memory.

The following built-in functions are available when ‘-msse2’ is used. All of them generate
the machine instruction that is part of the name.

int __builtin_ia32_comisdeq (v2df, v2df)

int __builtin_ia32_comisdlt (v2df, v2df)

int __builtin_ia32_comisdle (v2df, v2df)

int __builtin_ia32_comisdgt (v2df, v2df)

int __builtin_ia32_comisdge (v2df, v2df)

int __builtin_ia32_comisdneq (v2df, v2df)

int __builtin_ia32_ucomisdeq (v2df, v2df)

int __builtin_ia32_ucomisdlt (v2df, v2df)

int __builtin_ia32_ucomisdle (v2df, v2df)

int __builtin_ia32_ucomisdgt (v2df, v2df)

int __builtin_ia32_ucomisdge (v2df, v2df)

int __builtin_ia32_ucomisdneq (v2df, v2df)

v2df __builtin_ia32_cmpeqpd (v2df, v2df)

v2df __builtin_ia32_cmpltpd (v2df, v2df)

v2df __builtin_ia32_cmplepd (v2df, v2df)

v2df __builtin_ia32_cmpgtpd (v2df, v2df)

v2df __builtin_ia32_cmpgepd (v2df, v2df)

v2df __builtin_ia32_cmpunordpd (v2df, v2df)

v2df __builtin_ia32_cmpneqpd (v2df, v2df)

v2df __builtin_ia32_cmpnltpd (v2df, v2df)

Chapter 6: Extensions to the C Language Family 607

v2df __builtin_ia32_cmpnlepd (v2df, v2df)

v2df __builtin_ia32_cmpngtpd (v2df, v2df)

v2df __builtin_ia32_cmpngepd (v2df, v2df)

v2df __builtin_ia32_cmpordpd (v2df, v2df)

v2df __builtin_ia32_cmpeqsd (v2df, v2df)

v2df __builtin_ia32_cmpltsd (v2df, v2df)

v2df __builtin_ia32_cmplesd (v2df, v2df)

v2df __builtin_ia32_cmpunordsd (v2df, v2df)

v2df __builtin_ia32_cmpneqsd (v2df, v2df)

v2df __builtin_ia32_cmpnltsd (v2df, v2df)

v2df __builtin_ia32_cmpnlesd (v2df, v2df)

v2df __builtin_ia32_cmpordsd (v2df, v2df)

v2di __builtin_ia32_paddq (v2di, v2di)

v2di __builtin_ia32_psubq (v2di, v2di)

v2df __builtin_ia32_addpd (v2df, v2df)

v2df __builtin_ia32_subpd (v2df, v2df)

v2df __builtin_ia32_mulpd (v2df, v2df)

v2df __builtin_ia32_divpd (v2df, v2df)

v2df __builtin_ia32_addsd (v2df, v2df)

v2df __builtin_ia32_subsd (v2df, v2df)

v2df __builtin_ia32_mulsd (v2df, v2df)

v2df __builtin_ia32_divsd (v2df, v2df)

v2df __builtin_ia32_minpd (v2df, v2df)

v2df __builtin_ia32_maxpd (v2df, v2df)

v2df __builtin_ia32_minsd (v2df, v2df)

v2df __builtin_ia32_maxsd (v2df, v2df)

v2df __builtin_ia32_andpd (v2df, v2df)

v2df __builtin_ia32_andnpd (v2df, v2df)

v2df __builtin_ia32_orpd (v2df, v2df)

v2df __builtin_ia32_xorpd (v2df, v2df)

v2df __builtin_ia32_movsd (v2df, v2df)

v2df __builtin_ia32_unpckhpd (v2df, v2df)

v2df __builtin_ia32_unpcklpd (v2df, v2df)

v16qi __builtin_ia32_paddb128 (v16qi, v16qi)

v8hi __builtin_ia32_paddw128 (v8hi, v8hi)

v4si __builtin_ia32_paddd128 (v4si, v4si)

v2di __builtin_ia32_paddq128 (v2di, v2di)

v16qi __builtin_ia32_psubb128 (v16qi, v16qi)

v8hi __builtin_ia32_psubw128 (v8hi, v8hi)

v4si __builtin_ia32_psubd128 (v4si, v4si)

v2di __builtin_ia32_psubq128 (v2di, v2di)

v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)

v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)

v2di __builtin_ia32_pand128 (v2di, v2di)

v2di __builtin_ia32_pandn128 (v2di, v2di)

v2di __builtin_ia32_por128 (v2di, v2di)

v2di __builtin_ia32_pxor128 (v2di, v2di)

v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)

v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)

v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)

v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)

v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)

v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)

v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)

v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)

v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)

v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)

v16qi __builtin_ia32_pminub128 (v16qi, v16qi)

608 Using the GNU Compiler Collection (GCC)

v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)

v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)

v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)

v4si __builtin_ia32_punpckhdq128 (v4si, v4si)

v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)

v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)

v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)

v4si __builtin_ia32_punpckldq128 (v4si, v4si)

v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)

v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)

v8hi __builtin_ia32_packssdw128 (v4si, v4si)

v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)

v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)

void __builtin_ia32_maskmovdqu (v16qi, v16qi)

v2df __builtin_ia32_loadupd (double *)

void __builtin_ia32_storeupd (double *, v2df)

v2df __builtin_ia32_loadhpd (v2df, double const *)

v2df __builtin_ia32_loadlpd (v2df, double const *)

int __builtin_ia32_movmskpd (v2df)

int __builtin_ia32_pmovmskb128 (v16qi)

void __builtin_ia32_movnti (int *, int)

void __builtin_ia32_movnti64 (long long int *, long long int)

void __builtin_ia32_movntpd (double *, v2df)

void __builtin_ia32_movntdq (v2df *, v2df)

v4si __builtin_ia32_pshufd (v4si, int)

v8hi __builtin_ia32_pshuflw (v8hi, int)

v8hi __builtin_ia32_pshufhw (v8hi, int)

v2di __builtin_ia32_psadbw128 (v16qi, v16qi)

v2df __builtin_ia32_sqrtpd (v2df)

v2df __builtin_ia32_sqrtsd (v2df)

v2df __builtin_ia32_shufpd (v2df, v2df, int)

v2df __builtin_ia32_cvtdq2pd (v4si)

v4sf __builtin_ia32_cvtdq2ps (v4si)

v4si __builtin_ia32_cvtpd2dq (v2df)

v2si __builtin_ia32_cvtpd2pi (v2df)

v4sf __builtin_ia32_cvtpd2ps (v2df)

v4si __builtin_ia32_cvttpd2dq (v2df)

v2si __builtin_ia32_cvttpd2pi (v2df)

v2df __builtin_ia32_cvtpi2pd (v2si)

int __builtin_ia32_cvtsd2si (v2df)

int __builtin_ia32_cvttsd2si (v2df)

long long __builtin_ia32_cvtsd2si64 (v2df)

long long __builtin_ia32_cvttsd2si64 (v2df)

v4si __builtin_ia32_cvtps2dq (v4sf)

v2df __builtin_ia32_cvtps2pd (v4sf)

v4si __builtin_ia32_cvttps2dq (v4sf)

v2df __builtin_ia32_cvtsi2sd (v2df, int)

v2df __builtin_ia32_cvtsi642sd (v2df, long long)

v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)

v2df __builtin_ia32_cvtss2sd (v2df, v4sf)

void __builtin_ia32_clflush (const void *)

void __builtin_ia32_lfence (void)

void __builtin_ia32_mfence (void)

v16qi __builtin_ia32_loaddqu (const char *)

void __builtin_ia32_storedqu (char *, v16qi)

v1di __builtin_ia32_pmuludq (v2si, v2si)

v2di __builtin_ia32_pmuludq128 (v4si, v4si)

v8hi __builtin_ia32_psllw128 (v8hi, v8hi)

Chapter 6: Extensions to the C Language Family 609

v4si __builtin_ia32_pslld128 (v4si, v4si)

v2di __builtin_ia32_psllq128 (v2di, v2di)

v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)

v4si __builtin_ia32_psrld128 (v4si, v4si)

v2di __builtin_ia32_psrlq128 (v2di, v2di)

v8hi __builtin_ia32_psraw128 (v8hi, v8hi)

v4si __builtin_ia32_psrad128 (v4si, v4si)

v2di __builtin_ia32_pslldqi128 (v2di, int)

v8hi __builtin_ia32_psllwi128 (v8hi, int)

v4si __builtin_ia32_pslldi128 (v4si, int)

v2di __builtin_ia32_psllqi128 (v2di, int)

v2di __builtin_ia32_psrldqi128 (v2di, int)

v8hi __builtin_ia32_psrlwi128 (v8hi, int)

v4si __builtin_ia32_psrldi128 (v4si, int)

v2di __builtin_ia32_psrlqi128 (v2di, int)

v8hi __builtin_ia32_psrawi128 (v8hi, int)

v4si __builtin_ia32_psradi128 (v4si, int)

v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)

v2di __builtin_ia32_movq128 (v2di)

The following built-in functions are available when ‘-msse3’ is used. All of them generate
the machine instruction that is part of the name.

v2df __builtin_ia32_addsubpd (v2df, v2df)

v4sf __builtin_ia32_addsubps (v4sf, v4sf)

v2df __builtin_ia32_haddpd (v2df, v2df)

v4sf __builtin_ia32_haddps (v4sf, v4sf)

v2df __builtin_ia32_hsubpd (v2df, v2df)

v4sf __builtin_ia32_hsubps (v4sf, v4sf)

v16qi __builtin_ia32_lddqu (char const *)

void __builtin_ia32_monitor (void *, unsigned int, unsigned int)

v4sf __builtin_ia32_movshdup (v4sf)

v4sf __builtin_ia32_movsldup (v4sf)

void __builtin_ia32_mwait (unsigned int, unsigned int)

The following built-in functions are available when ‘-mssse3’ is used. All of them generate
the machine instruction that is part of the name.

v2si __builtin_ia32_phaddd (v2si, v2si)

v4hi __builtin_ia32_phaddw (v4hi, v4hi)

v4hi __builtin_ia32_phaddsw (v4hi, v4hi)

v2si __builtin_ia32_phsubd (v2si, v2si)

v4hi __builtin_ia32_phsubw (v4hi, v4hi)

v4hi __builtin_ia32_phsubsw (v4hi, v4hi)

v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)

v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)

v8qi __builtin_ia32_pshufb (v8qi, v8qi)

v8qi __builtin_ia32_psignb (v8qi, v8qi)

v2si __builtin_ia32_psignd (v2si, v2si)

v4hi __builtin_ia32_psignw (v4hi, v4hi)

v1di __builtin_ia32_palignr (v1di, v1di, int)

v8qi __builtin_ia32_pabsb (v8qi)

v2si __builtin_ia32_pabsd (v2si)

v4hi __builtin_ia32_pabsw (v4hi)

The following built-in functions are available when ‘-mssse3’ is used. All of them generate
the machine instruction that is part of the name.

v4si __builtin_ia32_phaddd128 (v4si, v4si)

v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)

v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)

610 Using the GNU Compiler Collection (GCC)

v4si __builtin_ia32_phsubd128 (v4si, v4si)

v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)

v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)

v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)

v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)

v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)

v16qi __builtin_ia32_psignb128 (v16qi, v16qi)

v4si __builtin_ia32_psignd128 (v4si, v4si)

v8hi __builtin_ia32_psignw128 (v8hi, v8hi)

v2di __builtin_ia32_palignr128 (v2di, v2di, int)

v16qi __builtin_ia32_pabsb128 (v16qi)

v4si __builtin_ia32_pabsd128 (v4si)

v8hi __builtin_ia32_pabsw128 (v8hi)

The following built-in functions are available when ‘-msse4.1’ is used. All of them
generate the machine instruction that is part of the name.

v2df __builtin_ia32_blendpd (v2df, v2df, const int)

v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)

v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)

v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)

v2df __builtin_ia32_dppd (v2df, v2df, const int)

v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)

v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)

v2di __builtin_ia32_movntdqa (v2di *);

v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)

v8hi __builtin_ia32_packusdw128 (v4si, v4si)

v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)

v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)

v2di __builtin_ia32_pcmpeqq (v2di, v2di)

v8hi __builtin_ia32_phminposuw128 (v8hi)

v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)

v4si __builtin_ia32_pmaxsd128 (v4si, v4si)

v4si __builtin_ia32_pmaxud128 (v4si, v4si)

v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)

v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)

v4si __builtin_ia32_pminsd128 (v4si, v4si)

v4si __builtin_ia32_pminud128 (v4si, v4si)

v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)

v4si __builtin_ia32_pmovsxbd128 (v16qi)

v2di __builtin_ia32_pmovsxbq128 (v16qi)

v8hi __builtin_ia32_pmovsxbw128 (v16qi)

v2di __builtin_ia32_pmovsxdq128 (v4si)

v4si __builtin_ia32_pmovsxwd128 (v8hi)

v2di __builtin_ia32_pmovsxwq128 (v8hi)

v4si __builtin_ia32_pmovzxbd128 (v16qi)

v2di __builtin_ia32_pmovzxbq128 (v16qi)

v8hi __builtin_ia32_pmovzxbw128 (v16qi)

v2di __builtin_ia32_pmovzxdq128 (v4si)

v4si __builtin_ia32_pmovzxwd128 (v8hi)

v2di __builtin_ia32_pmovzxwq128 (v8hi)

v2di __builtin_ia32_pmuldq128 (v4si, v4si)

v4si __builtin_ia32_pmulld128 (v4si, v4si)

int __builtin_ia32_ptestc128 (v2di, v2di)

int __builtin_ia32_ptestnzc128 (v2di, v2di)

int __builtin_ia32_ptestz128 (v2di, v2di)

v2df __builtin_ia32_roundpd (v2df, const int)

v4sf __builtin_ia32_roundps (v4sf, const int)

v2df __builtin_ia32_roundsd (v2df, v2df, const int)

Chapter 6: Extensions to the C Language Family 611

v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)

The following built-in functions are available when ‘-msse4.1’ is used.

v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
Generates the insertps machine instruction.

int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
Generates the pextrb machine instruction.

v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
Generates the pinsrb machine instruction.

v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
Generates the pinsrd machine instruction.

v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
Generates the pinsrq machine instruction in 64bit mode.

The following built-in functions are changed to generate new SSE4.1 instructions when
‘-msse4.1’ is used.

float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
Generates the extractps machine instruction.

int __builtin_ia32_vec_ext_v4si (v4si, const int)
Generates the pextrd machine instruction.

long long __builtin_ia32_vec_ext_v2di (v2di, const int)
Generates the pextrq machine instruction in 64bit mode.

The following built-in functions are available when ‘-msse4.2’ is used. All of them
generate the machine instruction that is part of the name.

v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)

int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)

int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)

int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)

int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)

int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)

int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)

v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)

int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)

int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)

int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)

int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)

int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)

int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)

v2di __builtin_ia32_pcmpgtq (v2di, v2di)

The following built-in functions are available when ‘-msse4.2’ is used.

unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
Generates the crc32b machine instruction.

unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
Generates the crc32w machine instruction.

unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
Generates the crc32l machine instruction.

612 Using the GNU Compiler Collection (GCC)

unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long
long)

Generates the crc32q machine instruction.

The following built-in functions are changed to generate new SSE4.2 instructions when
‘-msse4.2’ is used.

int __builtin_popcount (unsigned int)
Generates the popcntl machine instruction.

int __builtin_popcountl (unsigned long)
Generates the popcntl or popcntq machine instruction, depending on the size
of unsigned long.

int __builtin_popcountll (unsigned long long)
Generates the popcntq machine instruction.

The following built-in functions are available when ‘-mavx’ is used. All of them generate
the machine instruction that is part of the name.

v4df __builtin_ia32_addpd256 (v4df,v4df)

v8sf __builtin_ia32_addps256 (v8sf,v8sf)

v4df __builtin_ia32_addsubpd256 (v4df,v4df)

v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)

v4df __builtin_ia32_andnpd256 (v4df,v4df)

v8sf __builtin_ia32_andnps256 (v8sf,v8sf)

v4df __builtin_ia32_andpd256 (v4df,v4df)

v8sf __builtin_ia32_andps256 (v8sf,v8sf)

v4df __builtin_ia32_blendpd256 (v4df,v4df,int)

v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)

v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)

v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)

v2df __builtin_ia32_cmppd (v2df,v2df,int)

v4df __builtin_ia32_cmppd256 (v4df,v4df,int)

v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)

v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)

v2df __builtin_ia32_cmpsd (v2df,v2df,int)

v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)

v4df __builtin_ia32_cvtdq2pd256 (v4si)

v8sf __builtin_ia32_cvtdq2ps256 (v8si)

v4si __builtin_ia32_cvtpd2dq256 (v4df)

v4sf __builtin_ia32_cvtpd2ps256 (v4df)

v8si __builtin_ia32_cvtps2dq256 (v8sf)

v4df __builtin_ia32_cvtps2pd256 (v4sf)

v4si __builtin_ia32_cvttpd2dq256 (v4df)

v8si __builtin_ia32_cvttps2dq256 (v8sf)

v4df __builtin_ia32_divpd256 (v4df,v4df)

v8sf __builtin_ia32_divps256 (v8sf,v8sf)

v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)

v4df __builtin_ia32_haddpd256 (v4df,v4df)

v8sf __builtin_ia32_haddps256 (v8sf,v8sf)

v4df __builtin_ia32_hsubpd256 (v4df,v4df)

v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)

v32qi __builtin_ia32_lddqu256 (pcchar)

v32qi __builtin_ia32_loaddqu256 (pcchar)

v4df __builtin_ia32_loadupd256 (pcdouble)

v8sf __builtin_ia32_loadups256 (pcfloat)

v2df __builtin_ia32_maskloadpd (pcv2df,v2df)

Chapter 6: Extensions to the C Language Family 613

v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)

v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)

v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)

void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)

void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)

void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)

void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)

v4df __builtin_ia32_maxpd256 (v4df,v4df)

v8sf __builtin_ia32_maxps256 (v8sf,v8sf)

v4df __builtin_ia32_minpd256 (v4df,v4df)

v8sf __builtin_ia32_minps256 (v8sf,v8sf)

v4df __builtin_ia32_movddup256 (v4df)

int __builtin_ia32_movmskpd256 (v4df)

int __builtin_ia32_movmskps256 (v8sf)

v8sf __builtin_ia32_movshdup256 (v8sf)

v8sf __builtin_ia32_movsldup256 (v8sf)

v4df __builtin_ia32_mulpd256 (v4df,v4df)

v8sf __builtin_ia32_mulps256 (v8sf,v8sf)

v4df __builtin_ia32_orpd256 (v4df,v4df)

v8sf __builtin_ia32_orps256 (v8sf,v8sf)

v2df __builtin_ia32_pd_pd256 (v4df)

v4df __builtin_ia32_pd256_pd (v2df)

v4sf __builtin_ia32_ps_ps256 (v8sf)

v8sf __builtin_ia32_ps256_ps (v4sf)

int __builtin_ia32_ptestc256 (v4di,v4di,ptest)

int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)

int __builtin_ia32_ptestz256 (v4di,v4di,ptest)

v8sf __builtin_ia32_rcpps256 (v8sf)

v4df __builtin_ia32_roundpd256 (v4df,int)

v8sf __builtin_ia32_roundps256 (v8sf,int)

v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)

v8sf __builtin_ia32_rsqrtps256 (v8sf)

v4df __builtin_ia32_shufpd256 (v4df,v4df,int)

v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)

v4si __builtin_ia32_si_si256 (v8si)

v8si __builtin_ia32_si256_si (v4si)

v4df __builtin_ia32_sqrtpd256 (v4df)

v8sf __builtin_ia32_sqrtps_nr256 (v8sf)

v8sf __builtin_ia32_sqrtps256 (v8sf)

void __builtin_ia32_storedqu256 (pchar,v32qi)

void __builtin_ia32_storeupd256 (pdouble,v4df)

void __builtin_ia32_storeups256 (pfloat,v8sf)

v4df __builtin_ia32_subpd256 (v4df,v4df)

v8sf __builtin_ia32_subps256 (v8sf,v8sf)

v4df __builtin_ia32_unpckhpd256 (v4df,v4df)

v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)

v4df __builtin_ia32_unpcklpd256 (v4df,v4df)

v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)

v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)

v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)

v4df __builtin_ia32_vbroadcastsd256 (pcdouble)

v4sf __builtin_ia32_vbroadcastss (pcfloat)

v8sf __builtin_ia32_vbroadcastss256 (pcfloat)

v2df __builtin_ia32_vextractf128_pd256 (v4df,int)

v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)

v4si __builtin_ia32_vextractf128_si256 (v8si,int)

v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)

v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)

614 Using the GNU Compiler Collection (GCC)

v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)

v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)

v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)

v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)

v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)

v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)

v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)

v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)

v2df __builtin_ia32_vpermilpd (v2df,int)

v4df __builtin_ia32_vpermilpd256 (v4df,int)

v4sf __builtin_ia32_vpermilps (v4sf,int)

v8sf __builtin_ia32_vpermilps256 (v8sf,int)

v2df __builtin_ia32_vpermilvarpd (v2df,v2di)

v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)

v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)

v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)

int __builtin_ia32_vtestcpd (v2df,v2df,ptest)

int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)

int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)

int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)

int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)

int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)

int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)

int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)

int __builtin_ia32_vtestzpd (v2df,v2df,ptest)

int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)

int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)

int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)

void __builtin_ia32_vzeroall (void)

void __builtin_ia32_vzeroupper (void)

v4df __builtin_ia32_xorpd256 (v4df,v4df)

v8sf __builtin_ia32_xorps256 (v8sf,v8sf)

The following built-in functions are available when ‘-mavx2’ is used. All of them generate
the machine instruction that is part of the name.

v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,v32qi,int)

v32qi __builtin_ia32_pabsb256 (v32qi)

v16hi __builtin_ia32_pabsw256 (v16hi)

v8si __builtin_ia32_pabsd256 (v8si)

v16hi __builtin_ia32_packssdw256 (v8si,v8si)

v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)

v16hi __builtin_ia32_packusdw256 (v8si,v8si)

v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)

v32qi __builtin_ia32_paddb256 (v32qi,v32qi)

v16hi __builtin_ia32_paddw256 (v16hi,v16hi)

v8si __builtin_ia32_paddd256 (v8si,v8si)

v4di __builtin_ia32_paddq256 (v4di,v4di)

v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)

v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)

v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)

v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)

v4di __builtin_ia32_palignr256 (v4di,v4di,int)

v4di __builtin_ia32_andsi256 (v4di,v4di)

v4di __builtin_ia32_andnotsi256 (v4di,v4di)

v32qi __builtin_ia32_pavgb256 (v32qi,v32qi)

v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)

v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)

v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)

Chapter 6: Extensions to the C Language Family 615

v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)

v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)

v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)

v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)

v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)

v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)

v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)

v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)

v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)

v8si __builtin_ia32_phaddd256 (v8si,v8si)

v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)

v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)

v8si __builtin_ia32_phsubd256 (v8si,v8si)

v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)

v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)

v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)

v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)

v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)

v8si __builtin_ia32_pmaxsd256 (v8si,v8si)

v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)

v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)

v8si __builtin_ia32_pmaxud256 (v8si,v8si)

v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)

v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)

v8si __builtin_ia32_pminsd256 (v8si,v8si)

v32qi __builtin_ia32_pminub256 (v32qi,v32qi)

v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)

v8si __builtin_ia32_pminud256 (v8si,v8si)

int __builtin_ia32_pmovmskb256 (v32qi)

v16hi __builtin_ia32_pmovsxbw256 (v16qi)

v8si __builtin_ia32_pmovsxbd256 (v16qi)

v4di __builtin_ia32_pmovsxbq256 (v16qi)

v8si __builtin_ia32_pmovsxwd256 (v8hi)

v4di __builtin_ia32_pmovsxwq256 (v8hi)

v4di __builtin_ia32_pmovsxdq256 (v4si)

v16hi __builtin_ia32_pmovzxbw256 (v16qi)

v8si __builtin_ia32_pmovzxbd256 (v16qi)

v4di __builtin_ia32_pmovzxbq256 (v16qi)

v8si __builtin_ia32_pmovzxwd256 (v8hi)

v4di __builtin_ia32_pmovzxwq256 (v8hi)

v4di __builtin_ia32_pmovzxdq256 (v4si)

v4di __builtin_ia32_pmuldq256 (v8si,v8si)

v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)

v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)

v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)

v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)

v8si __builtin_ia32_pmulld256 (v8si,v8si)

v4di __builtin_ia32_pmuludq256 (v8si,v8si)

v4di __builtin_ia32_por256 (v4di,v4di)

v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)

v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)

v8si __builtin_ia32_pshufd256 (v8si,int)

v16hi __builtin_ia32_pshufhw256 (v16hi,int)

v16hi __builtin_ia32_pshuflw256 (v16hi,int)

v32qi __builtin_ia32_psignb256 (v32qi,v32qi)

v16hi __builtin_ia32_psignw256 (v16hi,v16hi)

v8si __builtin_ia32_psignd256 (v8si,v8si)

v4di __builtin_ia32_pslldqi256 (v4di,int)

616 Using the GNU Compiler Collection (GCC)

v16hi __builtin_ia32_psllwi256 (16hi,int)

v16hi __builtin_ia32_psllw256(v16hi,v8hi)

v8si __builtin_ia32_pslldi256 (v8si,int)

v8si __builtin_ia32_pslld256(v8si,v4si)

v4di __builtin_ia32_psllqi256 (v4di,int)

v4di __builtin_ia32_psllq256(v4di,v2di)

v16hi __builtin_ia32_psrawi256 (v16hi,int)

v16hi __builtin_ia32_psraw256 (v16hi,v8hi)

v8si __builtin_ia32_psradi256 (v8si,int)

v8si __builtin_ia32_psrad256 (v8si,v4si)

v4di __builtin_ia32_psrldqi256 (v4di, int)

v16hi __builtin_ia32_psrlwi256 (v16hi,int)

v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)

v8si __builtin_ia32_psrldi256 (v8si,int)

v8si __builtin_ia32_psrld256 (v8si,v4si)

v4di __builtin_ia32_psrlqi256 (v4di,int)

v4di __builtin_ia32_psrlq256(v4di,v2di)

v32qi __builtin_ia32_psubb256 (v32qi,v32qi)

v32hi __builtin_ia32_psubw256 (v16hi,v16hi)

v8si __builtin_ia32_psubd256 (v8si,v8si)

v4di __builtin_ia32_psubq256 (v4di,v4di)

v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)

v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)

v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)

v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)

v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)

v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)

v8si __builtin_ia32_punpckhdq256 (v8si,v8si)

v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)

v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)

v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)

v8si __builtin_ia32_punpckldq256 (v8si,v8si)

v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)

v4di __builtin_ia32_pxor256 (v4di,v4di)

v4di __builtin_ia32_movntdqa256 (pv4di)

v4sf __builtin_ia32_vbroadcastss_ps (v4sf)

v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)

v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)

v4di __builtin_ia32_vbroadcastsi256 (v2di)

v4si __builtin_ia32_pblendd128 (v4si,v4si)

v8si __builtin_ia32_pblendd256 (v8si,v8si)

v32qi __builtin_ia32_pbroadcastb256 (v16qi)

v16hi __builtin_ia32_pbroadcastw256 (v8hi)

v8si __builtin_ia32_pbroadcastd256 (v4si)

v4di __builtin_ia32_pbroadcastq256 (v2di)

v16qi __builtin_ia32_pbroadcastb128 (v16qi)

v8hi __builtin_ia32_pbroadcastw128 (v8hi)

v4si __builtin_ia32_pbroadcastd128 (v4si)

v2di __builtin_ia32_pbroadcastq128 (v2di)

v8si __builtin_ia32_permvarsi256 (v8si,v8si)

v4df __builtin_ia32_permdf256 (v4df,int)

v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)

v4di __builtin_ia32_permdi256 (v4di,int)

v4di __builtin_ia32_permti256 (v4di,v4di,int)

v4di __builtin_ia32_extract128i256 (v4di,int)

v4di __builtin_ia32_insert128i256 (v4di,v2di,int)

v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)

v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)

Chapter 6: Extensions to the C Language Family 617

v4si __builtin_ia32_maskloadd (pcv4si,v4si)

v2di __builtin_ia32_maskloadq (pcv2di,v2di)

void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)

void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)

void __builtin_ia32_maskstored (pv4si,v4si,v4si)

void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)

v8si __builtin_ia32_psllv8si (v8si,v8si)

v4si __builtin_ia32_psllv4si (v4si,v4si)

v4di __builtin_ia32_psllv4di (v4di,v4di)

v2di __builtin_ia32_psllv2di (v2di,v2di)

v8si __builtin_ia32_psrav8si (v8si,v8si)

v4si __builtin_ia32_psrav4si (v4si,v4si)

v8si __builtin_ia32_psrlv8si (v8si,v8si)

v4si __builtin_ia32_psrlv4si (v4si,v4si)

v4di __builtin_ia32_psrlv4di (v4di,v4di)

v2di __builtin_ia32_psrlv2di (v2di,v2di)

v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)

v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)

v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)

v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)

v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)

v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)

v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)

v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)

v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)

v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)

v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)

v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)

v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)

v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)

v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)

v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)

The following built-in functions are available when ‘-maes’ is used. All of them generate
the machine instruction that is part of the name.

v2di __builtin_ia32_aesenc128 (v2di, v2di)

v2di __builtin_ia32_aesenclast128 (v2di, v2di)

v2di __builtin_ia32_aesdec128 (v2di, v2di)

v2di __builtin_ia32_aesdeclast128 (v2di, v2di)

v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)

v2di __builtin_ia32_aesimc128 (v2di)

The following built-in function is available when ‘-mpclmul’ is used.

v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
Generates the pclmulqdq machine instruction.

The following built-in function is available when ‘-mfsgsbase’ is used. All of them
generate the machine instruction that is part of the name.

unsigned int __builtin_ia32_rdfsbase32 (void)

unsigned long long __builtin_ia32_rdfsbase64 (void)

unsigned int __builtin_ia32_rdgsbase32 (void)

unsigned long long __builtin_ia32_rdgsbase64 (void)

void _writefsbase_u32 (unsigned int)

void _writefsbase_u64 (unsigned long long)

void _writegsbase_u32 (unsigned int)

void _writegsbase_u64 (unsigned long long)

618 Using the GNU Compiler Collection (GCC)

The following built-in function is available when ‘-mrdrnd’ is used. All of them generate
the machine instruction that is part of the name.

unsigned int __builtin_ia32_rdrand16_step (unsigned short *)

unsigned int __builtin_ia32_rdrand32_step (unsigned int *)

unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)

The following built-in functions are available when ‘-msse4a’ is used. All of them generate
the machine instruction that is part of the name.

void __builtin_ia32_movntsd (double *, v2df)

void __builtin_ia32_movntss (float *, v4sf)

v2di __builtin_ia32_extrq (v2di, v16qi)

v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)

v2di __builtin_ia32_insertq (v2di, v2di)

v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)

The following built-in functions are available when ‘-mxop’ is used.
v2df __builtin_ia32_vfrczpd (v2df)

v4sf __builtin_ia32_vfrczps (v4sf)

v2df __builtin_ia32_vfrczsd (v2df, v2df)

v4sf __builtin_ia32_vfrczss (v4sf, v4sf)

v4df __builtin_ia32_vfrczpd256 (v4df)

v8sf __builtin_ia32_vfrczps256 (v8sf)

v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)

v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)

v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)

v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)

v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)

v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)

v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)

v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)

v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)

v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)

v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)

v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)

v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)

v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)

v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)

v4si __builtin_ia32_vpcomeqd (v4si, v4si)

v2di __builtin_ia32_vpcomeqq (v2di, v2di)

v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)

v4si __builtin_ia32_vpcomequd (v4si, v4si)

v2di __builtin_ia32_vpcomequq (v2di, v2di)

v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)

v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)

v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)

v4si __builtin_ia32_vpcomfalsed (v4si, v4si)

v2di __builtin_ia32_vpcomfalseq (v2di, v2di)

v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)

v4si __builtin_ia32_vpcomfalseud (v4si, v4si)

v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)

v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)

v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)

v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)

v4si __builtin_ia32_vpcomged (v4si, v4si)

v2di __builtin_ia32_vpcomgeq (v2di, v2di)

v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)

v4si __builtin_ia32_vpcomgeud (v4si, v4si)

v2di __builtin_ia32_vpcomgeuq (v2di, v2di)

Chapter 6: Extensions to the C Language Family 619

v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)

v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)

v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)

v4si __builtin_ia32_vpcomgtd (v4si, v4si)

v2di __builtin_ia32_vpcomgtq (v2di, v2di)

v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)

v4si __builtin_ia32_vpcomgtud (v4si, v4si)

v2di __builtin_ia32_vpcomgtuq (v2di, v2di)

v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)

v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)

v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)

v4si __builtin_ia32_vpcomled (v4si, v4si)

v2di __builtin_ia32_vpcomleq (v2di, v2di)

v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)

v4si __builtin_ia32_vpcomleud (v4si, v4si)

v2di __builtin_ia32_vpcomleuq (v2di, v2di)

v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)

v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)

v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)

v4si __builtin_ia32_vpcomltd (v4si, v4si)

v2di __builtin_ia32_vpcomltq (v2di, v2di)

v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)

v4si __builtin_ia32_vpcomltud (v4si, v4si)

v2di __builtin_ia32_vpcomltuq (v2di, v2di)

v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)

v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)

v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)

v4si __builtin_ia32_vpcomned (v4si, v4si)

v2di __builtin_ia32_vpcomneq (v2di, v2di)

v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)

v4si __builtin_ia32_vpcomneud (v4si, v4si)

v2di __builtin_ia32_vpcomneuq (v2di, v2di)

v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)

v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)

v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)

v4si __builtin_ia32_vpcomtrued (v4si, v4si)

v2di __builtin_ia32_vpcomtrueq (v2di, v2di)

v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)

v4si __builtin_ia32_vpcomtrueud (v4si, v4si)

v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)

v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)

v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)

v4si __builtin_ia32_vphaddbd (v16qi)

v2di __builtin_ia32_vphaddbq (v16qi)

v8hi __builtin_ia32_vphaddbw (v16qi)

v2di __builtin_ia32_vphadddq (v4si)

v4si __builtin_ia32_vphaddubd (v16qi)

v2di __builtin_ia32_vphaddubq (v16qi)

v8hi __builtin_ia32_vphaddubw (v16qi)

v2di __builtin_ia32_vphaddudq (v4si)

v4si __builtin_ia32_vphadduwd (v8hi)

v2di __builtin_ia32_vphadduwq (v8hi)

v4si __builtin_ia32_vphaddwd (v8hi)

v2di __builtin_ia32_vphaddwq (v8hi)

v8hi __builtin_ia32_vphsubbw (v16qi)

v2di __builtin_ia32_vphsubdq (v4si)

v4si __builtin_ia32_vphsubwd (v8hi)

v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)

620 Using the GNU Compiler Collection (GCC)

v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)

v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)

v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)

v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)

v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)

v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)

v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)

v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)

v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)

v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)

v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)

v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)

v16qi __builtin_ia32_vprotb (v16qi, v16qi)

v4si __builtin_ia32_vprotd (v4si, v4si)

v2di __builtin_ia32_vprotq (v2di, v2di)

v8hi __builtin_ia32_vprotw (v8hi, v8hi)

v16qi __builtin_ia32_vpshab (v16qi, v16qi)

v4si __builtin_ia32_vpshad (v4si, v4si)

v2di __builtin_ia32_vpshaq (v2di, v2di)

v8hi __builtin_ia32_vpshaw (v8hi, v8hi)

v16qi __builtin_ia32_vpshlb (v16qi, v16qi)

v4si __builtin_ia32_vpshld (v4si, v4si)

v2di __builtin_ia32_vpshlq (v2di, v2di)

v8hi __builtin_ia32_vpshlw (v8hi, v8hi)

The following built-in functions are available when ‘-mfma4’ is used. All of them generate
the machine instruction that is part of the name.

v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df)

v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf)

v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df)

v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf)

v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df)

v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf)

v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df)

v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf)

v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df)

v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf)

v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df)

v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf)

v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df)

v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf)

v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df)

v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf)

v2df __builtin_ia32_vfmaddsubpd (v2df, v2df, v2df)

v4sf __builtin_ia32_vfmaddsubps (v4sf, v4sf, v4sf)

v2df __builtin_ia32_vfmsubaddpd (v2df, v2df, v2df)

v4sf __builtin_ia32_vfmsubaddps (v4sf, v4sf, v4sf)

v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df)

v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf)

v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df)

v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf)

v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df)

v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf)

v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df)

v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf)

v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df)

v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf)

v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df)

Chapter 6: Extensions to the C Language Family 621

v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf)

The following built-in functions are available when ‘-mlwp’ is used.
void __builtin_ia32_llwpcb16 (void *);

void __builtin_ia32_llwpcb32 (void *);

void __builtin_ia32_llwpcb64 (void *);

void * __builtin_ia32_llwpcb16 (void);

void * __builtin_ia32_llwpcb32 (void);

void * __builtin_ia32_llwpcb64 (void);

void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)

void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)

void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)

unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)

unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)

unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)

The following built-in functions are available when ‘-mbmi’ is used. All of them generate
the machine instruction that is part of the name.

unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);

unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);

The following built-in functions are available when ‘-mbmi2’ is used. All of them generate
the machine instruction that is part of the name.

unsigned int _bzhi_u32 (unsigned int, unsigned int)

unsigned int _pdep_u32 (unsigned int, unsigned int)

unsigned int _pext_u32 (unsigned int, unsigned int)

unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)

unsigned long long _pdep_u64 (unsigned long long, unsigned long long)

unsigned long long _pext_u64 (unsigned long long, unsigned long long)

The following built-in functions are available when ‘-mlzcnt’ is used. All of them generate
the machine instruction that is part of the name.

unsigned short __builtin_ia32_lzcnt_16(unsigned short);

unsigned int __builtin_ia32_lzcnt_u32(unsigned int);

unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);

The following built-in functions are available when ‘-mfxsr’ is used. All of them generate
the machine instruction that is part of the name.

void __builtin_ia32_fxsave (void *)

void __builtin_ia32_fxrstor (void *)

void __builtin_ia32_fxsave64 (void *)

void __builtin_ia32_fxrstor64 (void *)

The following built-in functions are available when ‘-mxsave’ is used. All of them generate
the machine instruction that is part of the name.

void __builtin_ia32_xsave (void *, long long)

void __builtin_ia32_xrstor (void *, long long)

void __builtin_ia32_xsave64 (void *, long long)

void __builtin_ia32_xrstor64 (void *, long long)

The following built-in functions are available when ‘-mxsaveopt’ is used. All of them
generate the machine instruction that is part of the name.

void __builtin_ia32_xsaveopt (void *, long long)

void __builtin_ia32_xsaveopt64 (void *, long long)

The following built-in functions are available when ‘-mtbm’ is used. Both of them generate
the immediate form of the bextr machine instruction.

622 Using the GNU Compiler Collection (GCC)

unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int);

unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long);

The following built-in functions are available when ‘-m3dnow’ is used. All of them generate
the machine instruction that is part of the name.

void __builtin_ia32_femms (void)

v8qi __builtin_ia32_pavgusb (v8qi, v8qi)

v2si __builtin_ia32_pf2id (v2sf)

v2sf __builtin_ia32_pfacc (v2sf, v2sf)

v2sf __builtin_ia32_pfadd (v2sf, v2sf)

v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)

v2si __builtin_ia32_pfcmpge (v2sf, v2sf)

v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)

v2sf __builtin_ia32_pfmax (v2sf, v2sf)

v2sf __builtin_ia32_pfmin (v2sf, v2sf)

v2sf __builtin_ia32_pfmul (v2sf, v2sf)

v2sf __builtin_ia32_pfrcp (v2sf)

v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)

v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)

v2sf __builtin_ia32_pfrsqrt (v2sf)

v2sf __builtin_ia32_pfsub (v2sf, v2sf)

v2sf __builtin_ia32_pfsubr (v2sf, v2sf)

v2sf __builtin_ia32_pi2fd (v2si)

v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)

The following built-in functions are available when both ‘-m3dnow’ and ‘-march=athlon’
are used. All of them generate the machine instruction that is part of the name.

v2si __builtin_ia32_pf2iw (v2sf)

v2sf __builtin_ia32_pfnacc (v2sf, v2sf)

v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)

v2sf __builtin_ia32_pi2fw (v2si)

v2sf __builtin_ia32_pswapdsf (v2sf)

v2si __builtin_ia32_pswapdsi (v2si)

The following built-in functions are available when ‘-mrtm’ is used They are used for
restricted transactional memory. These are the internal low level functions. Normally the
functions in Section 6.57.12 [X86 transactional memory intrinsics], page 622 should be used
instead.

int __builtin_ia32_xbegin ()

void __builtin_ia32_xend ()

void __builtin_ia32_xabort (status)

int __builtin_ia32_xtest ()

6.57.12 X86 transaction memory intrinsics

Hardware transactional memory intrinsics for i386. These allow to use memory transactions
with RTM (Restricted Transactional Memory). For using HLE (Hardware Lock Elision)
see Section 6.53 [x86 specific memory model extensions for transactional memory], page 480
instead. This support is enabled with the ‘-mrtm’ option.

A memory transaction commits all changes to memory in an atomic way, as visible to
other threads. If the transaction fails it is rolled back and all side effects discarded.

Generally there is no guarantee that a memory transaction ever succeeds and suitable
fallback code always needs to be supplied.

Chapter 6: Extensions to the C Language Family 623

[RTM Function]unsigned _xbegin ()
Start a RTM (Restricted Transactional Memory) transaction. Returns
XBEGIN STARTED when the transaction started successfully (note this is not

0, so the constant has to be explicitely tested). When the transaction aborts all
side effects are undone and an abort code is returned. There is no guarantee any
transaction ever succeeds, so there always needs to be a valid tested fallback path.

#include <immintrin.h>

if ((status = _xbegin ()) == _XBEGIN_STARTED) {

... transaction code...

_xend ();

} else {

... non transactional fallback path...

}

Valid abort status bits (when the value is not _XBEGIN_STARTED) are:

_XABORT_EXPLICIT
Transaction explicitely aborted with _xabort. The parameter passed to _
xabort is available with _XABORT_CODE(status)

_XABORT_RETRY
Transaction retry is possible.

_XABORT_CONFLICT
Transaction abort due to a memory conflict with another thread

_XABORT_CAPACITY
Transaction abort due to the transaction using too much memory

_XABORT_DEBUG
Transaction abort due to a debug trap

_XABORT_NESTED
Transaction abort in a inner nested transaction

[RTM Function]void _xend ()
Commit the current transaction. When no transaction is active this will fault. All
memory side effects of the transactions will become visible to other threads in an
atomic matter.

[RTM Function]int _xtest ()
Return a value not zero when a transaction is currently active, otherwise 0.

[RTM Function]void _xabort (status)
Abort the current transaction. When no transaction is active this is a no-op. status
must be a 8bit constant, that is included in the status code returned by _xbegin

6.57.13 MIPS DSP Built-in Functions

The MIPS DSP Application-Specific Extension (ASE) includes new instructions that are de-
signed to improve the performance of DSP and media applications. It provides instructions
that operate on packed 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.

624 Using the GNU Compiler Collection (GCC)

GCC supports MIPS DSP operations using both the generic vector extensions (see
Section 6.49 [Vector Extensions], page 471) and a collection of MIPS-specific built-in func-
tions. Both kinds of support are enabled by the ‘-mdsp’ command-line option.

Revision 2 of the ASE was introduced in the second half of 2006. This revision adds extra
instructions to the original ASE, but is otherwise backwards-compatible with it. You can
select revision 2 using the command-line option ‘-mdspr2’; this option implies ‘-mdsp’.

The SCOUNT and POS bits of the DSP control register are global. The WRDSP,
EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and POS bits. Dur-
ing optimization, the compiler does not delete these instructions and it does not delete calls
to functions containing these instructions.

At present, GCC only provides support for operations on 32-bit vectors. The vector type
associated with 8-bit integer data is usually called v4i8, the vector type associated with
Q7 is usually called v4q7, the vector type associated with 16-bit integer data is usually
called v2i16, and the vector type associated with Q15 is usually called v2q15. They can
be defined in C as follows:

typedef signed char v4i8 __attribute__ ((vector_size(4)));

typedef signed char v4q7 __attribute__ ((vector_size(4)));

typedef short v2i16 __attribute__ ((vector_size(4)));

typedef short v2q15 __attribute__ ((vector_size(4)));

v4i8, v4q7, v2i16 and v2q15 values are initialized in the same way as aggregates. For
example:

v4i8 a = {1, 2, 3, 4};

v4i8 b;

b = (v4i8) {5, 6, 7, 8};

v2q15 c = {0x0fcb, 0x3a75};

v2q15 d;

d = (v2q15) {0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15};

Note: The CPU’s endianness determines the order in which values are packed. On
little-endian targets, the first value is the least significant and the last value is the most
significant. The opposite order applies to big-endian targets. For example, the code above
sets the lowest byte of a to 1 on little-endian targets and 4 on big-endian targets.

Note: Q7, Q15 and Q31 values must be initialized with their integer representation.
As shown in this example, the integer representation of a Q7 value can be obtained by
multiplying the fractional value by 0x1.0p7. The equivalent for Q15 values is to multiply
by 0x1.0p15. The equivalent for Q31 values is to multiply by 0x1.0p31.

The table below lists the v4i8 and v2q15 operations for which hardware support exists.
a and b are v4i8 values, and c and d are v2q15 values.

C code MIPS instruction
a + b addu.qb
c + d addq.ph
a - b subu.qb
c - d subq.ph

The table below lists the v2i16 operation for which hardware support exists for the DSP
ASE REV 2. e and f are v2i16 values.

C code MIPS instruction

Chapter 6: Extensions to the C Language Family 625

e * f mul.ph

It is easier to describe the DSP built-in functions if we first define the following types:
typedef int q31;

typedef int i32;

typedef unsigned int ui32;

typedef long long a64;

q31 and i32 are actually the same as int, but we use q31 to indicate a Q31 fractional
value and i32 to indicate a 32-bit integer value. Similarly, a64 is the same as long long,
but we use a64 to indicate values that are placed in one of the four DSP accumulators
($ac0, $ac1, $ac2 or $ac3).

Also, some built-in functions prefer or require immediate numbers as parameters, because
the corresponding DSP instructions accept both immediate numbers and register operands,
or accept immediate numbers only. The immediate parameters are listed as follows.

imm0_3: 0 to 3.

imm0_7: 0 to 7.

imm0_15: 0 to 15.

imm0_31: 0 to 31.

imm0_63: 0 to 63.

imm0_255: 0 to 255.

imm_n32_31: -32 to 31.

imm_n512_511: -512 to 511.

The following built-in functions map directly to a particular MIPS DSP instruction.
Please refer to the architecture specification for details on what each instruction does.

v2q15 __builtin_mips_addq_ph (v2q15, v2q15)

v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)

q31 __builtin_mips_addq_s_w (q31, q31)

v4i8 __builtin_mips_addu_qb (v4i8, v4i8)

v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)

v2q15 __builtin_mips_subq_ph (v2q15, v2q15)

v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)

q31 __builtin_mips_subq_s_w (q31, q31)

v4i8 __builtin_mips_subu_qb (v4i8, v4i8)

v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)

i32 __builtin_mips_addsc (i32, i32)

i32 __builtin_mips_addwc (i32, i32)

i32 __builtin_mips_modsub (i32, i32)

i32 __builtin_mips_raddu_w_qb (v4i8)

v2q15 __builtin_mips_absq_s_ph (v2q15)

q31 __builtin_mips_absq_s_w (q31)

v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)

v2q15 __builtin_mips_precrq_ph_w (q31, q31)

v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)

v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)

q31 __builtin_mips_preceq_w_phl (v2q15)

q31 __builtin_mips_preceq_w_phr (v2q15)

v2q15 __builtin_mips_precequ_ph_qbl (v4i8)

v2q15 __builtin_mips_precequ_ph_qbr (v4i8)

v2q15 __builtin_mips_precequ_ph_qbla (v4i8)

v2q15 __builtin_mips_precequ_ph_qbra (v4i8)

v2q15 __builtin_mips_preceu_ph_qbl (v4i8)

v2q15 __builtin_mips_preceu_ph_qbr (v4i8)

v2q15 __builtin_mips_preceu_ph_qbla (v4i8)

v2q15 __builtin_mips_preceu_ph_qbra (v4i8)

v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)

626 Using the GNU Compiler Collection (GCC)

v4i8 __builtin_mips_shll_qb (v4i8, i32)

v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)

v2q15 __builtin_mips_shll_ph (v2q15, i32)

v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)

v2q15 __builtin_mips_shll_s_ph (v2q15, i32)

q31 __builtin_mips_shll_s_w (q31, imm0_31)

q31 __builtin_mips_shll_s_w (q31, i32)

v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)

v4i8 __builtin_mips_shrl_qb (v4i8, i32)

v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)

v2q15 __builtin_mips_shra_ph (v2q15, i32)

v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)

v2q15 __builtin_mips_shra_r_ph (v2q15, i32)

q31 __builtin_mips_shra_r_w (q31, imm0_31)

q31 __builtin_mips_shra_r_w (q31, i32)

v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)

v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)

v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)

q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)

q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)

a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)

a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)

a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)

a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)

a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)

a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)

a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)

a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)

a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)

a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)

a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)

a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)

a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)

i32 __builtin_mips_bitrev (i32)

i32 __builtin_mips_insv (i32, i32)

v4i8 __builtin_mips_repl_qb (imm0_255)

v4i8 __builtin_mips_repl_qb (i32)

v2q15 __builtin_mips_repl_ph (imm_n512_511)

v2q15 __builtin_mips_repl_ph (i32)

void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)

void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)

void __builtin_mips_cmpu_le_qb (v4i8, v4i8)

i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)

i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)

i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)

void __builtin_mips_cmp_eq_ph (v2q15, v2q15)

void __builtin_mips_cmp_lt_ph (v2q15, v2q15)

void __builtin_mips_cmp_le_ph (v2q15, v2q15)

v4i8 __builtin_mips_pick_qb (v4i8, v4i8)

v2q15 __builtin_mips_pick_ph (v2q15, v2q15)

v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)

i32 __builtin_mips_extr_w (a64, imm0_31)

i32 __builtin_mips_extr_w (a64, i32)

i32 __builtin_mips_extr_r_w (a64, imm0_31)

i32 __builtin_mips_extr_s_h (a64, i32)

i32 __builtin_mips_extr_rs_w (a64, imm0_31)

i32 __builtin_mips_extr_rs_w (a64, i32)

i32 __builtin_mips_extr_s_h (a64, imm0_31)

Chapter 6: Extensions to the C Language Family 627

i32 __builtin_mips_extr_r_w (a64, i32)

i32 __builtin_mips_extp (a64, imm0_31)

i32 __builtin_mips_extp (a64, i32)

i32 __builtin_mips_extpdp (a64, imm0_31)

i32 __builtin_mips_extpdp (a64, i32)

a64 __builtin_mips_shilo (a64, imm_n32_31)

a64 __builtin_mips_shilo (a64, i32)

a64 __builtin_mips_mthlip (a64, i32)

void __builtin_mips_wrdsp (i32, imm0_63)

i32 __builtin_mips_rddsp (imm0_63)

i32 __builtin_mips_lbux (void *, i32)

i32 __builtin_mips_lhx (void *, i32)

i32 __builtin_mips_lwx (void *, i32)

a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]

i32 __builtin_mips_bposge32 (void)

a64 __builtin_mips_madd (a64, i32, i32);

a64 __builtin_mips_maddu (a64, ui32, ui32);

a64 __builtin_mips_msub (a64, i32, i32);

a64 __builtin_mips_msubu (a64, ui32, ui32);

a64 __builtin_mips_mult (i32, i32);

a64 __builtin_mips_multu (ui32, ui32);

The following built-in functions map directly to a particular MIPS DSP REV 2 instruc-
tion. Please refer to the architecture specification for details on what each instruction does.

v4q7 __builtin_mips_absq_s_qb (v4q7);

v2i16 __builtin_mips_addu_ph (v2i16, v2i16);

v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);

v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);

v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);

i32 __builtin_mips_append (i32, i32, imm0_31);

i32 __builtin_mips_balign (i32, i32, imm0_3);

i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);

i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);

i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);

a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);

a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);

v2i16 __builtin_mips_mul_ph (v2i16, v2i16);

v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);

q31 __builtin_mips_mulq_rs_w (q31, q31);

v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);

q31 __builtin_mips_mulq_s_w (q31, q31);

a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);

v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);

v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);

v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);

i32 __builtin_mips_prepend (i32, i32, imm0_31);

v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);

v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);

v4i8 __builtin_mips_shra_qb (v4i8, i32);

v4i8 __builtin_mips_shra_r_qb (v4i8, i32);

v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);

v2i16 __builtin_mips_shrl_ph (v2i16, i32);

v2i16 __builtin_mips_subu_ph (v2i16, v2i16);

v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);

v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);

v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);

v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);

v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);

628 Using the GNU Compiler Collection (GCC)

q31 __builtin_mips_addqh_w (q31, q31);

q31 __builtin_mips_addqh_r_w (q31, q31);

v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);

v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);

q31 __builtin_mips_subqh_w (q31, q31);

q31 __builtin_mips_subqh_r_w (q31, q31);

a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);

a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);

a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);

a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);

a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);

a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);

6.57.14 MIPS Paired-Single Support

The MIPS64 architecture includes a number of instructions that operate on pairs of single-
precision floating-point values. Each pair is packed into a 64-bit floating-point register, with
one element being designated the “upper half” and the other being designated the “lower
half”.

GCC supports paired-single operations using both the generic vector extensions (see
Section 6.49 [Vector Extensions], page 471) and a collection of MIPS-specific built-in func-
tions. Both kinds of support are enabled by the ‘-mpaired-single’ command-line option.

The vector type associated with paired-single values is usually called v2sf. It can be
defined in C as follows:

typedef float v2sf __attribute__ ((vector_size (8)));

v2sf values are initialized in the same way as aggregates. For example:
v2sf a = {1.5, 9.1};

v2sf b;

float e, f;

b = (v2sf) {e, f};

Note: The CPU’s endianness determines which value is stored in the upper half of a
register and which value is stored in the lower half. On little-endian targets, the first value
is the lower one and the second value is the upper one. The opposite order applies to big-
endian targets. For example, the code above sets the lower half of a to 1.5 on little-endian
targets and 9.1 on big-endian targets.

6.57.15 MIPS Loongson Built-in Functions

GCC provides intrinsics to access the SIMD instructions provided by the ST Microelec-
tronics Loongson-2E and -2F processors. These intrinsics, available after inclusion of the
loongson.h header file, operate on the following 64-bit vector types:
• uint8x8_t, a vector of eight unsigned 8-bit integers;
• uint16x4_t, a vector of four unsigned 16-bit integers;
• uint32x2_t, a vector of two unsigned 32-bit integers;
• int8x8_t, a vector of eight signed 8-bit integers;
• int16x4_t, a vector of four signed 16-bit integers;
• int32x2_t, a vector of two signed 32-bit integers.

The intrinsics provided are listed below; each is named after the machine instruction
to which it corresponds, with suffixes added as appropriate to distinguish intrinsics that

Chapter 6: Extensions to the C Language Family 629

expand to the same machine instruction yet have different argument types. Refer to the
architecture documentation for a description of the functionality of each instruction.

int16x4_t packsswh (int32x2_t s, int32x2_t t);

int8x8_t packsshb (int16x4_t s, int16x4_t t);

uint8x8_t packushb (uint16x4_t s, uint16x4_t t);

uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);

uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);

uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);

int32x2_t paddw_s (int32x2_t s, int32x2_t t);

int16x4_t paddh_s (int16x4_t s, int16x4_t t);

int8x8_t paddb_s (int8x8_t s, int8x8_t t);

uint64_t paddd_u (uint64_t s, uint64_t t);

int64_t paddd_s (int64_t s, int64_t t);

int16x4_t paddsh (int16x4_t s, int16x4_t t);

int8x8_t paddsb (int8x8_t s, int8x8_t t);

uint16x4_t paddush (uint16x4_t s, uint16x4_t t);

uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);

uint64_t pandn_ud (uint64_t s, uint64_t t);

uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);

uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);

uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);

int64_t pandn_sd (int64_t s, int64_t t);

int32x2_t pandn_sw (int32x2_t s, int32x2_t t);

int16x4_t pandn_sh (int16x4_t s, int16x4_t t);

int8x8_t pandn_sb (int8x8_t s, int8x8_t t);

uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);

uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);

uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);

uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);

uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);

int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);

int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);

int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);

uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);

uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);

uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);

int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);

int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);

int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);

uint16x4_t pextrh_u (uint16x4_t s, int field);

int16x4_t pextrh_s (int16x4_t s, int field);

uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);

uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);

uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);

uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);

int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);

int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);

int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);

int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);

int32x2_t pmaddhw (int16x4_t s, int16x4_t t);

int16x4_t pmaxsh (int16x4_t s, int16x4_t t);

uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);

int16x4_t pminsh (int16x4_t s, int16x4_t t);

uint8x8_t pminub (uint8x8_t s, uint8x8_t t);

uint8x8_t pmovmskb_u (uint8x8_t s);

int8x8_t pmovmskb_s (int8x8_t s);

uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);

int16x4_t pmulhh (int16x4_t s, int16x4_t t);

630 Using the GNU Compiler Collection (GCC)

int16x4_t pmullh (int16x4_t s, int16x4_t t);

int64_t pmuluw (uint32x2_t s, uint32x2_t t);

uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);

uint16x4_t biadd (uint8x8_t s);

uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);

uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);

int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);

uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);

int16x4_t psllh_s (int16x4_t s, uint8_t amount);

uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);

int32x2_t psllw_s (int32x2_t s, uint8_t amount);

uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);

int16x4_t psrlh_s (int16x4_t s, uint8_t amount);

uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);

int32x2_t psrlw_s (int32x2_t s, uint8_t amount);

uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);

int16x4_t psrah_s (int16x4_t s, uint8_t amount);

uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);

int32x2_t psraw_s (int32x2_t s, uint8_t amount);

uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);

uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);

uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);

int32x2_t psubw_s (int32x2_t s, int32x2_t t);

int16x4_t psubh_s (int16x4_t s, int16x4_t t);

int8x8_t psubb_s (int8x8_t s, int8x8_t t);

uint64_t psubd_u (uint64_t s, uint64_t t);

int64_t psubd_s (int64_t s, int64_t t);

int16x4_t psubsh (int16x4_t s, int16x4_t t);

int8x8_t psubsb (int8x8_t s, int8x8_t t);

uint16x4_t psubush (uint16x4_t s, uint16x4_t t);

uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);

uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);

uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);

uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);

int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);

int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);

int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);

uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);

uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);

uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);

int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);

int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);

int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);

6.57.15.1 Paired-Single Arithmetic

The table below lists the v2sf operations for which hardware support exists. a, b and c are
v2sf values and x is an integral value.

C code MIPS instruction
a + b add.ps
a - b sub.ps
-a neg.ps
a * b mul.ps
a * b + c madd.ps
a * b - c msub.ps
-(a * b + c) nmadd.ps

Chapter 6: Extensions to the C Language Family 631

-(a * b - c) nmsub.ps
x ? a : b movn.ps/movz.ps

Note that the multiply-accumulate instructions can be disabled using the command-line
option -mno-fused-madd.

6.57.15.2 Paired-Single Built-in Functions

The following paired-single functions map directly to a particular MIPS instruction. Please
refer to the architecture specification for details on what each instruction does.

v2sf __builtin_mips_pll_ps (v2sf, v2sf)
Pair lower lower (pll.ps).

v2sf __builtin_mips_pul_ps (v2sf, v2sf)
Pair upper lower (pul.ps).

v2sf __builtin_mips_plu_ps (v2sf, v2sf)
Pair lower upper (plu.ps).

v2sf __builtin_mips_puu_ps (v2sf, v2sf)
Pair upper upper (puu.ps).

v2sf __builtin_mips_cvt_ps_s (float, float)
Convert pair to paired single (cvt.ps.s).

float __builtin_mips_cvt_s_pl (v2sf)
Convert pair lower to single (cvt.s.pl).

float __builtin_mips_cvt_s_pu (v2sf)
Convert pair upper to single (cvt.s.pu).

v2sf __builtin_mips_abs_ps (v2sf)
Absolute value (abs.ps).

v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
Align variable (alnv.ps).

Note: The value of the third parameter must be 0 or 4 modulo 8, otherwise the
result is unpredictable. Please read the instruction description for details.

The following multi-instruction functions are also available. In each case, cond can be
any of the 16 floating-point conditions: f, un, eq, ueq, olt, ult, ole, ule, sf, ngle, seq,
ngl, lt, nge, le or ngt.

v2sf __builtin_mips_movt_c_cond_ps (v2sf a, v2sf b, v2sf c, v2sf d)
v2sf __builtin_mips_movf_c_cond_ps (v2sf a, v2sf b, v2sf c, v2sf d)

Conditional move based on floating-point comparison (c.cond.ps,
movt.ps/movf.ps).

The movt functions return the value x computed by:
c.cond.ps cc,a,b

mov.ps x,c

movt.ps x,d,cc

The movf functions are similar but use movf.ps instead of movt.ps.

632 Using the GNU Compiler Collection (GCC)

int __builtin_mips_upper_c_cond_ps (v2sf a, v2sf b)
int __builtin_mips_lower_c_cond_ps (v2sf a, v2sf b)

Comparison of two paired-single values (c.cond.ps, bc1t/bc1f).
These functions compare a and b using c.cond.ps and return either the upper
or lower half of the result. For example:

v2sf a, b;

if (__builtin_mips_upper_c_eq_ps (a, b))

upper_halves_are_equal ();

else

upper_halves_are_unequal ();

if (__builtin_mips_lower_c_eq_ps (a, b))

lower_halves_are_equal ();

else

lower_halves_are_unequal ();

6.57.15.3 MIPS-3D Built-in Functions

The MIPS-3D Application-Specific Extension (ASE) includes additional paired-single in-
structions that are designed to improve the performance of 3D graphics operations. Support
for these instructions is controlled by the ‘-mips3d’ command-line option.

The functions listed below map directly to a particular MIPS-3D instruction. Please refer
to the architecture specification for more details on what each instruction does.

v2sf __builtin_mips_addr_ps (v2sf, v2sf)
Reduction add (addr.ps).

v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
Reduction multiply (mulr.ps).

v2sf __builtin_mips_cvt_pw_ps (v2sf)
Convert paired single to paired word (cvt.pw.ps).

v2sf __builtin_mips_cvt_ps_pw (v2sf)
Convert paired word to paired single (cvt.ps.pw).

float __builtin_mips_recip1_s (float)
double __builtin_mips_recip1_d (double)
v2sf __builtin_mips_recip1_ps (v2sf)

Reduced-precision reciprocal (sequence step 1) (recip1.fmt).

float __builtin_mips_recip2_s (float, float)
double __builtin_mips_recip2_d (double, double)
v2sf __builtin_mips_recip2_ps (v2sf, v2sf)

Reduced-precision reciprocal (sequence step 2) (recip2.fmt).

float __builtin_mips_rsqrt1_s (float)
double __builtin_mips_rsqrt1_d (double)
v2sf __builtin_mips_rsqrt1_ps (v2sf)

Reduced-precision reciprocal square root (sequence step 1) (rsqrt1.fmt).

float __builtin_mips_rsqrt2_s (float, float)
double __builtin_mips_rsqrt2_d (double, double)
v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)

Reduced-precision reciprocal square root (sequence step 2) (rsqrt2.fmt).

Chapter 6: Extensions to the C Language Family 633

The following multi-instruction functions are also available. In each case, cond can be
any of the 16 floating-point conditions: f, un, eq, ueq, olt, ult, ole, ule, sf, ngle, seq,
ngl, lt, nge, le or ngt.

int __builtin_mips_cabs_cond_s (float a, float b)
int __builtin_mips_cabs_cond_d (double a, double b)

Absolute comparison of two scalar values (cabs.cond.fmt, bc1t/bc1f).
These functions compare a and b using cabs.cond.s or cabs.cond.d and re-
turn the result as a boolean value. For example:

float a, b;

if (__builtin_mips_cabs_eq_s (a, b))

true ();

else

false ();

int __builtin_mips_upper_cabs_cond_ps (v2sf a, v2sf b)
int __builtin_mips_lower_cabs_cond_ps (v2sf a, v2sf b)

Absolute comparison of two paired-single values (cabs.cond.ps, bc1t/bc1f).
These functions compare a and b using cabs.cond.ps and return either the
upper or lower half of the result. For example:

v2sf a, b;

if (__builtin_mips_upper_cabs_eq_ps (a, b))

upper_halves_are_equal ();

else

upper_halves_are_unequal ();

if (__builtin_mips_lower_cabs_eq_ps (a, b))

lower_halves_are_equal ();

else

lower_halves_are_unequal ();

v2sf __builtin_mips_movt_cabs_cond_ps (v2sf a, v2sf b, v2sf c, v2sf d)
v2sf __builtin_mips_movf_cabs_cond_ps (v2sf a, v2sf b, v2sf c, v2sf d)

Conditional move based on absolute comparison (cabs.cond.ps,
movt.ps/movf.ps).
The movt functions return the value x computed by:

cabs.cond.ps cc,a,b

mov.ps x,c

movt.ps x,d,cc

The movf functions are similar but use movf.ps instead of movt.ps.

int __builtin_mips_any_c_cond_ps (v2sf a, v2sf b)
int __builtin_mips_all_c_cond_ps (v2sf a, v2sf b)
int __builtin_mips_any_cabs_cond_ps (v2sf a, v2sf b)
int __builtin_mips_all_cabs_cond_ps (v2sf a, v2sf b)

Comparison of two paired-single values (c.cond.ps/cabs.cond.ps,
bc1any2t/bc1any2f).
These functions compare a and b using c.cond.ps or cabs.cond.ps. The any
forms return true if either result is true and the all forms return true if both
results are true. For example:

v2sf a, b;

634 Using the GNU Compiler Collection (GCC)

if (__builtin_mips_any_c_eq_ps (a, b))

one_is_true ();

else

both_are_false ();

if (__builtin_mips_all_c_eq_ps (a, b))

both_are_true ();

else

one_is_false ();

int __builtin_mips_any_c_cond_4s (v2sf a, v2sf b, v2sf c, v2sf d)
int __builtin_mips_all_c_cond_4s (v2sf a, v2sf b, v2sf c, v2sf d)
int __builtin_mips_any_cabs_cond_4s (v2sf a, v2sf b, v2sf c, v2sf d)
int __builtin_mips_all_cabs_cond_4s (v2sf a, v2sf b, v2sf c, v2sf d)

Comparison of four paired-single values (c.cond.ps/cabs.cond.ps,
bc1any4t/bc1any4f).

These functions use c.cond.ps or cabs.cond.ps to compare a with b and to
compare c with d. The any forms return true if any of the four results are true
and the all forms return true if all four results are true. For example:

v2sf a, b, c, d;

if (__builtin_mips_any_c_eq_4s (a, b, c, d))

some_are_true ();

else

all_are_false ();

if (__builtin_mips_all_c_eq_4s (a, b, c, d))

all_are_true ();

else

some_are_false ();

6.57.16 Other MIPS Built-in Functions

GCC provides other MIPS-specific built-in functions:

void __builtin_mips_cache (int op, const volatile void *addr)
Insert a ‘cache’ instruction with operands op and addr. GCC defines the
preprocessor macro ___GCC_HAVE_BUILTIN_MIPS_CACHE when this function is
available.

unsigned int __builtin_mips_get_fcsr (void)
void __builtin_mips_set_fcsr (unsigned int value)

Get and set the contents of the floating-point control and status register (FPU
control register 31). These functions are only available in hard-float code but
can be called in both MIPS16 and non-MIPS16 contexts.

__builtin_mips_set_fcsr can be used to change any bit of the register except
the condition codes, which GCC assumes are preserved.

6.57.17 MSP430 Built-in Functions

GCC provides a couple of special builtin functions to aid in the writing of interrupt handlers
in C.

Chapter 6: Extensions to the C Language Family 635

__bic_SR_register_on_exit (int mask)
This clears the indicated bits in the saved copy of the status register currently
residing on the stack. This only works inside interrupt handlers and the changes
to the status register will only take affect once the handler returns.

__bis_SR_register_on_exit (int mask)
This sets the indicated bits in the saved copy of the status register currently
residing on the stack. This only works inside interrupt handlers and the changes
to the status register will only take affect once the handler returns.

6.57.18 NDS32 Built-in Functions

These built-in functions are available for the NDS32 target:

[Built-in Function]void __builtin_nds32_isync (int *addr)
Insert an ISYNC instruction into the instruction stream where addr is an instruction
address for serialization.

[Built-in Function]void __builtin_nds32_isb (void)
Insert an ISB instruction into the instruction stream.

[Built-in Function]int __builtin_nds32_mfsr (int sr)
Return the content of a system register which is mapped by sr.

[Built-in Function]int __builtin_nds32_mfusr (int usr)
Return the content of a user space register which is mapped by usr.

[Built-in Function]void __builtin_nds32_mtsr (int value, int sr)
Move the value to a system register which is mapped by sr.

[Built-in Function]void __builtin_nds32_mtusr (int value, int usr)
Move the value to a user space register which is mapped by usr.

[Built-in Function]void __builtin_nds32_setgie_en (void)
Enable global interrupt.

[Built-in Function]void __builtin_nds32_setgie_dis (void)
Disable global interrupt.

6.57.19 picoChip Built-in Functions

GCC provides an interface to selected machine instructions from the picoChip instruction
set.

int __builtin_sbc (int value)
Sign bit count. Return the number of consecutive bits in value that have the
same value as the sign bit. The result is the number of leading sign bits minus
one, giving the number of redundant sign bits in value.

int __builtin_byteswap (int value)
Byte swap. Return the result of swapping the upper and lower bytes of value.

636 Using the GNU Compiler Collection (GCC)

int __builtin_brev (int value)
Bit reversal. Return the result of reversing the bits in value. Bit 15 is swapped
with bit 0, bit 14 is swapped with bit 1, and so on.

int __builtin_adds (int x, int y)
Saturating addition. Return the result of adding x and y, storing the value
32767 if the result overflows.

int __builtin_subs (int x, int y)
Saturating subtraction. Return the result of subtracting y from x, storing the
value −32768 if the result overflows.

void __builtin_halt (void)
Halt. The processor stops execution. This built-in is useful for implementing
assertions.

6.57.20 PowerPC Built-in Functions

These built-in functions are available for the PowerPC family of processors:
float __builtin_recipdivf (float, float);

float __builtin_rsqrtf (float);

double __builtin_recipdiv (double, double);

double __builtin_rsqrt (double);

long __builtin_bpermd (long, long);

uint64_t __builtin_ppc_get_timebase ();

unsigned long __builtin_ppc_mftb ();

The vec_rsqrt, __builtin_rsqrt, and __builtin_rsqrtf functions generate multiple
instructions to implement the reciprocal sqrt functionality using reciprocal sqrt estimate
instructions.

The __builtin_recipdiv, and __builtin_recipdivf functions generate multiple in-
structions to implement division using the reciprocal estimate instructions.

The __builtin_ppc_get_timebase and __builtin_ppc_mftb functions generate
instructions to read the Time Base Register. The __builtin_ppc_get_timebase function
may generate multiple instructions and always returns the 64 bits of the Time Base
Register. The __builtin_ppc_mftb function always generates one instruction and returns
the Time Base Register value as an unsigned long, throwing away the most significant
word on 32-bit environments.

6.57.21 PowerPC AltiVec Built-in Functions

GCC provides an interface for the PowerPC family of processors to access the AltiVec
operations described in Motorola’s AltiVec Programming Interface Manual. The interface
is made available by including <altivec.h> and using ‘-maltivec’ and ‘-mabi=altivec’.
The interface supports the following vector types.

vector unsigned char

vector signed char

vector bool char

vector unsigned short

vector signed short

vector bool short

vector pixel

Chapter 6: Extensions to the C Language Family 637

vector unsigned int

vector signed int

vector bool int

vector float

If ‘-mvsx’ is used the following additional vector types are implemented.
vector unsigned long

vector signed long

vector double

The long types are only implemented for 64-bit code generation, and the long type is only
used in the floating point/integer conversion instructions.

GCC’s implementation of the high-level language interface available from C and C++ code
differs from Motorola’s documentation in several ways.
• A vector constant is a list of constant expressions within curly braces.
• A vector initializer requires no cast if the vector constant is of the same type as the

variable it is initializing.
• If signed or unsigned is omitted, the signedness of the vector type is the default

signedness of the base type. The default varies depending on the operating system, so
a portable program should always specify the signedness.

• Compiling with ‘-maltivec’ adds keywords __vector, vector, __pixel, pixel, __
bool and bool. When compiling ISO C, the context-sensitive substitution of the key-
words vector, pixel and bool is disabled. To use them, you must include <altivec.h>
instead.

• GCC allows using a typedef name as the type specifier for a vector type.
• For C, overloaded functions are implemented with macros so the following does not

work:
vec_add ((vector signed int){1, 2, 3, 4}, foo);

Since vec_add is a macro, the vector constant in the example is treated as four separate
arguments. Wrap the entire argument in parentheses for this to work.

Note: Only the <altivec.h> interface is supported. Internally, GCC uses built-in func-
tions to achieve the functionality in the aforementioned header file, but they are not sup-
ported and are subject to change without notice.

The following interfaces are supported for the generic and specific AltiVec operations
and the AltiVec predicates. In cases where there is a direct mapping between generic and
specific operations, only the generic names are shown here, although the specific operations
can also be used.

Arguments that are documented as const int require literal integral values within the
range required for that operation.

vector signed char vec_abs (vector signed char);

vector signed short vec_abs (vector signed short);

vector signed int vec_abs (vector signed int);

vector float vec_abs (vector float);

vector signed char vec_abss (vector signed char);

vector signed short vec_abss (vector signed short);

vector signed int vec_abss (vector signed int);

638 Using the GNU Compiler Collection (GCC)

vector signed char vec_add (vector bool char, vector signed char);

vector signed char vec_add (vector signed char, vector bool char);

vector signed char vec_add (vector signed char, vector signed char);

vector unsigned char vec_add (vector bool char, vector unsigned char);

vector unsigned char vec_add (vector unsigned char, vector bool char);

vector unsigned char vec_add (vector unsigned char,

vector unsigned char);

vector signed short vec_add (vector bool short, vector signed short);

vector signed short vec_add (vector signed short, vector bool short);

vector signed short vec_add (vector signed short, vector signed short);

vector unsigned short vec_add (vector bool short,

vector unsigned short);

vector unsigned short vec_add (vector unsigned short,

vector bool short);

vector unsigned short vec_add (vector unsigned short,

vector unsigned short);

vector signed int vec_add (vector bool int, vector signed int);

vector signed int vec_add (vector signed int, vector bool int);

vector signed int vec_add (vector signed int, vector signed int);

vector unsigned int vec_add (vector bool int, vector unsigned int);

vector unsigned int vec_add (vector unsigned int, vector bool int);

vector unsigned int vec_add (vector unsigned int, vector unsigned int);

vector float vec_add (vector float, vector float);

vector float vec_vaddfp (vector float, vector float);

vector signed int vec_vadduwm (vector bool int, vector signed int);

vector signed int vec_vadduwm (vector signed int, vector bool int);

vector signed int vec_vadduwm (vector signed int, vector signed int);

vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);

vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);

vector unsigned int vec_vadduwm (vector unsigned int,

vector unsigned int);

vector signed short vec_vadduhm (vector bool short,

vector signed short);

vector signed short vec_vadduhm (vector signed short,

vector bool short);

vector signed short vec_vadduhm (vector signed short,

vector signed short);

vector unsigned short vec_vadduhm (vector bool short,

vector unsigned short);

vector unsigned short vec_vadduhm (vector unsigned short,

vector bool short);

vector unsigned short vec_vadduhm (vector unsigned short,

vector unsigned short);

vector signed char vec_vaddubm (vector bool char, vector signed char);

vector signed char vec_vaddubm (vector signed char, vector bool char);

vector signed char vec_vaddubm (vector signed char, vector signed char);

vector unsigned char vec_vaddubm (vector bool char,

vector unsigned char);

vector unsigned char vec_vaddubm (vector unsigned char,

vector bool char);

vector unsigned char vec_vaddubm (vector unsigned char,

vector unsigned char);

Chapter 6: Extensions to the C Language Family 639

vector unsigned int vec_addc (vector unsigned int, vector unsigned int);

vector unsigned char vec_adds (vector bool char, vector unsigned char);

vector unsigned char vec_adds (vector unsigned char, vector bool char);

vector unsigned char vec_adds (vector unsigned char,

vector unsigned char);

vector signed char vec_adds (vector bool char, vector signed char);

vector signed char vec_adds (vector signed char, vector bool char);

vector signed char vec_adds (vector signed char, vector signed char);

vector unsigned short vec_adds (vector bool short,

vector unsigned short);

vector unsigned short vec_adds (vector unsigned short,

vector bool short);

vector unsigned short vec_adds (vector unsigned short,

vector unsigned short);

vector signed short vec_adds (vector bool short, vector signed short);

vector signed short vec_adds (vector signed short, vector bool short);

vector signed short vec_adds (vector signed short, vector signed short);

vector unsigned int vec_adds (vector bool int, vector unsigned int);

vector unsigned int vec_adds (vector unsigned int, vector bool int);

vector unsigned int vec_adds (vector unsigned int, vector unsigned int);

vector signed int vec_adds (vector bool int, vector signed int);

vector signed int vec_adds (vector signed int, vector bool int);

vector signed int vec_adds (vector signed int, vector signed int);

vector signed int vec_vaddsws (vector bool int, vector signed int);

vector signed int vec_vaddsws (vector signed int, vector bool int);

vector signed int vec_vaddsws (vector signed int, vector signed int);

vector unsigned int vec_vadduws (vector bool int, vector unsigned int);

vector unsigned int vec_vadduws (vector unsigned int, vector bool int);

vector unsigned int vec_vadduws (vector unsigned int,

vector unsigned int);

vector signed short vec_vaddshs (vector bool short,

vector signed short);

vector signed short vec_vaddshs (vector signed short,

vector bool short);

vector signed short vec_vaddshs (vector signed short,

vector signed short);

vector unsigned short vec_vadduhs (vector bool short,

vector unsigned short);

vector unsigned short vec_vadduhs (vector unsigned short,

vector bool short);

vector unsigned short vec_vadduhs (vector unsigned short,

vector unsigned short);

vector signed char vec_vaddsbs (vector bool char, vector signed char);

vector signed char vec_vaddsbs (vector signed char, vector bool char);

vector signed char vec_vaddsbs (vector signed char, vector signed char);

vector unsigned char vec_vaddubs (vector bool char,

vector unsigned char);

vector unsigned char vec_vaddubs (vector unsigned char,

vector bool char);

vector unsigned char vec_vaddubs (vector unsigned char,

vector unsigned char);

640 Using the GNU Compiler Collection (GCC)

vector float vec_and (vector float, vector float);

vector float vec_and (vector float, vector bool int);

vector float vec_and (vector bool int, vector float);

vector bool int vec_and (vector bool int, vector bool int);

vector signed int vec_and (vector bool int, vector signed int);

vector signed int vec_and (vector signed int, vector bool int);

vector signed int vec_and (vector signed int, vector signed int);

vector unsigned int vec_and (vector bool int, vector unsigned int);

vector unsigned int vec_and (vector unsigned int, vector bool int);

vector unsigned int vec_and (vector unsigned int, vector unsigned int);

vector bool short vec_and (vector bool short, vector bool short);

vector signed short vec_and (vector bool short, vector signed short);

vector signed short vec_and (vector signed short, vector bool short);

vector signed short vec_and (vector signed short, vector signed short);

vector unsigned short vec_and (vector bool short,

vector unsigned short);

vector unsigned short vec_and (vector unsigned short,

vector bool short);

vector unsigned short vec_and (vector unsigned short,

vector unsigned short);

vector signed char vec_and (vector bool char, vector signed char);

vector bool char vec_and (vector bool char, vector bool char);

vector signed char vec_and (vector signed char, vector bool char);

vector signed char vec_and (vector signed char, vector signed char);

vector unsigned char vec_and (vector bool char, vector unsigned char);

vector unsigned char vec_and (vector unsigned char, vector bool char);

vector unsigned char vec_and (vector unsigned char,

vector unsigned char);

vector float vec_andc (vector float, vector float);

vector float vec_andc (vector float, vector bool int);

vector float vec_andc (vector bool int, vector float);

vector bool int vec_andc (vector bool int, vector bool int);

vector signed int vec_andc (vector bool int, vector signed int);

vector signed int vec_andc (vector signed int, vector bool int);

vector signed int vec_andc (vector signed int, vector signed int);

vector unsigned int vec_andc (vector bool int, vector unsigned int);

vector unsigned int vec_andc (vector unsigned int, vector bool int);

vector unsigned int vec_andc (vector unsigned int, vector unsigned int);

vector bool short vec_andc (vector bool short, vector bool short);

vector signed short vec_andc (vector bool short, vector signed short);

vector signed short vec_andc (vector signed short, vector bool short);

vector signed short vec_andc (vector signed short, vector signed short);

vector unsigned short vec_andc (vector bool short,

vector unsigned short);

vector unsigned short vec_andc (vector unsigned short,

vector bool short);

vector unsigned short vec_andc (vector unsigned short,

vector unsigned short);

vector signed char vec_andc (vector bool char, vector signed char);

vector bool char vec_andc (vector bool char, vector bool char);

vector signed char vec_andc (vector signed char, vector bool char);

vector signed char vec_andc (vector signed char, vector signed char);

vector unsigned char vec_andc (vector bool char, vector unsigned char);

vector unsigned char vec_andc (vector unsigned char, vector bool char);

vector unsigned char vec_andc (vector unsigned char,

vector unsigned char);

Chapter 6: Extensions to the C Language Family 641

vector unsigned char vec_avg (vector unsigned char,

vector unsigned char);

vector signed char vec_avg (vector signed char, vector signed char);

vector unsigned short vec_avg (vector unsigned short,

vector unsigned short);

vector signed short vec_avg (vector signed short, vector signed short);

vector unsigned int vec_avg (vector unsigned int, vector unsigned int);

vector signed int vec_avg (vector signed int, vector signed int);

vector signed int vec_vavgsw (vector signed int, vector signed int);

vector unsigned int vec_vavguw (vector unsigned int,

vector unsigned int);

vector signed short vec_vavgsh (vector signed short,

vector signed short);

vector unsigned short vec_vavguh (vector unsigned short,

vector unsigned short);

vector signed char vec_vavgsb (vector signed char, vector signed char);

vector unsigned char vec_vavgub (vector unsigned char,

vector unsigned char);

vector float vec_copysign (vector float);

vector float vec_ceil (vector float);

vector signed int vec_cmpb (vector float, vector float);

vector bool char vec_cmpeq (vector signed char, vector signed char);

vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);

vector bool short vec_cmpeq (vector signed short, vector signed short);

vector bool short vec_cmpeq (vector unsigned short,

vector unsigned short);

vector bool int vec_cmpeq (vector signed int, vector signed int);

vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);

vector bool int vec_cmpeq (vector float, vector float);

vector bool int vec_vcmpeqfp (vector float, vector float);

vector bool int vec_vcmpequw (vector signed int, vector signed int);

vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);

vector bool short vec_vcmpequh (vector signed short,

vector signed short);

vector bool short vec_vcmpequh (vector unsigned short,

vector unsigned short);

vector bool char vec_vcmpequb (vector signed char, vector signed char);

vector bool char vec_vcmpequb (vector unsigned char,

vector unsigned char);

vector bool int vec_cmpge (vector float, vector float);

vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);

642 Using the GNU Compiler Collection (GCC)

vector bool char vec_cmpgt (vector signed char, vector signed char);

vector bool short vec_cmpgt (vector unsigned short,

vector unsigned short);

vector bool short vec_cmpgt (vector signed short, vector signed short);

vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);

vector bool int vec_cmpgt (vector signed int, vector signed int);

vector bool int vec_cmpgt (vector float, vector float);

vector bool int vec_vcmpgtfp (vector float, vector float);

vector bool int vec_vcmpgtsw (vector signed int, vector signed int);

vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);

vector bool short vec_vcmpgtsh (vector signed short,

vector signed short);

vector bool short vec_vcmpgtuh (vector unsigned short,

vector unsigned short);

vector bool char vec_vcmpgtsb (vector signed char, vector signed char);

vector bool char vec_vcmpgtub (vector unsigned char,

vector unsigned char);

vector bool int vec_cmple (vector float, vector float);

vector bool char vec_cmplt (vector unsigned char, vector unsigned char);

vector bool char vec_cmplt (vector signed char, vector signed char);

vector bool short vec_cmplt (vector unsigned short,

vector unsigned short);

vector bool short vec_cmplt (vector signed short, vector signed short);

vector bool int vec_cmplt (vector unsigned int, vector unsigned int);

vector bool int vec_cmplt (vector signed int, vector signed int);

vector bool int vec_cmplt (vector float, vector float);

vector float vec_ctf (vector unsigned int, const int);

vector float vec_ctf (vector signed int, const int);

vector float vec_vcfsx (vector signed int, const int);

vector float vec_vcfux (vector unsigned int, const int);

vector signed int vec_cts (vector float, const int);

vector unsigned int vec_ctu (vector float, const int);

void vec_dss (const int);

void vec_dssall (void);

void vec_dst (const vector unsigned char *, int, const int);

void vec_dst (const vector signed char *, int, const int);

void vec_dst (const vector bool char *, int, const int);

void vec_dst (const vector unsigned short *, int, const int);

void vec_dst (const vector signed short *, int, const int);

void vec_dst (const vector bool short *, int, const int);

void vec_dst (const vector pixel *, int, const int);

Chapter 6: Extensions to the C Language Family 643

void vec_dst (const vector unsigned int *, int, const int);

void vec_dst (const vector signed int *, int, const int);

void vec_dst (const vector bool int *, int, const int);

void vec_dst (const vector float *, int, const int);

void vec_dst (const unsigned char *, int, const int);

void vec_dst (const signed char *, int, const int);

void vec_dst (const unsigned short *, int, const int);

void vec_dst (const short *, int, const int);

void vec_dst (const unsigned int *, int, const int);

void vec_dst (const int *, int, const int);

void vec_dst (const unsigned long *, int, const int);

void vec_dst (const long *, int, const int);

void vec_dst (const float *, int, const int);

void vec_dstst (const vector unsigned char *, int, const int);

void vec_dstst (const vector signed char *, int, const int);

void vec_dstst (const vector bool char *, int, const int);

void vec_dstst (const vector unsigned short *, int, const int);

void vec_dstst (const vector signed short *, int, const int);

void vec_dstst (const vector bool short *, int, const int);

void vec_dstst (const vector pixel *, int, const int);

void vec_dstst (const vector unsigned int *, int, const int);

void vec_dstst (const vector signed int *, int, const int);

void vec_dstst (const vector bool int *, int, const int);

void vec_dstst (const vector float *, int, const int);

void vec_dstst (const unsigned char *, int, const int);

void vec_dstst (const signed char *, int, const int);

void vec_dstst (const unsigned short *, int, const int);

void vec_dstst (const short *, int, const int);

void vec_dstst (const unsigned int *, int, const int);

void vec_dstst (const int *, int, const int);

void vec_dstst (const unsigned long *, int, const int);

void vec_dstst (const long *, int, const int);

void vec_dstst (const float *, int, const int);

void vec_dststt (const vector unsigned char *, int, const int);

void vec_dststt (const vector signed char *, int, const int);

void vec_dststt (const vector bool char *, int, const int);

void vec_dststt (const vector unsigned short *, int, const int);

void vec_dststt (const vector signed short *, int, const int);

void vec_dststt (const vector bool short *, int, const int);

void vec_dststt (const vector pixel *, int, const int);

void vec_dststt (const vector unsigned int *, int, const int);

void vec_dststt (const vector signed int *, int, const int);

void vec_dststt (const vector bool int *, int, const int);

void vec_dststt (const vector float *, int, const int);

void vec_dststt (const unsigned char *, int, const int);

void vec_dststt (const signed char *, int, const int);

void vec_dststt (const unsigned short *, int, const int);

void vec_dststt (const short *, int, const int);

void vec_dststt (const unsigned int *, int, const int);

void vec_dststt (const int *, int, const int);

void vec_dststt (const unsigned long *, int, const int);

void vec_dststt (const long *, int, const int);

void vec_dststt (const float *, int, const int);

void vec_dstt (const vector unsigned char *, int, const int);

void vec_dstt (const vector signed char *, int, const int);

644 Using the GNU Compiler Collection (GCC)

void vec_dstt (const vector bool char *, int, const int);

void vec_dstt (const vector unsigned short *, int, const int);

void vec_dstt (const vector signed short *, int, const int);

void vec_dstt (const vector bool short *, int, const int);

void vec_dstt (const vector pixel *, int, const int);

void vec_dstt (const vector unsigned int *, int, const int);

void vec_dstt (const vector signed int *, int, const int);

void vec_dstt (const vector bool int *, int, const int);

void vec_dstt (const vector float *, int, const int);

void vec_dstt (const unsigned char *, int, const int);

void vec_dstt (const signed char *, int, const int);

void vec_dstt (const unsigned short *, int, const int);

void vec_dstt (const short *, int, const int);

void vec_dstt (const unsigned int *, int, const int);

void vec_dstt (const int *, int, const int);

void vec_dstt (const unsigned long *, int, const int);

void vec_dstt (const long *, int, const int);

void vec_dstt (const float *, int, const int);

vector float vec_expte (vector float);

vector float vec_floor (vector float);

vector float vec_ld (int, const vector float *);

vector float vec_ld (int, const float *);

vector bool int vec_ld (int, const vector bool int *);

vector signed int vec_ld (int, const vector signed int *);

vector signed int vec_ld (int, const int *);

vector signed int vec_ld (int, const long *);

vector unsigned int vec_ld (int, const vector unsigned int *);

vector unsigned int vec_ld (int, const unsigned int *);

vector unsigned int vec_ld (int, const unsigned long *);

vector bool short vec_ld (int, const vector bool short *);

vector pixel vec_ld (int, const vector pixel *);

vector signed short vec_ld (int, const vector signed short *);

vector signed short vec_ld (int, const short *);

vector unsigned short vec_ld (int, const vector unsigned short *);

vector unsigned short vec_ld (int, const unsigned short *);

vector bool char vec_ld (int, const vector bool char *);

vector signed char vec_ld (int, const vector signed char *);

vector signed char vec_ld (int, const signed char *);

vector unsigned char vec_ld (int, const vector unsigned char *);

vector unsigned char vec_ld (int, const unsigned char *);

vector signed char vec_lde (int, const signed char *);

vector unsigned char vec_lde (int, const unsigned char *);

vector signed short vec_lde (int, const short *);

vector unsigned short vec_lde (int, const unsigned short *);

vector float vec_lde (int, const float *);

vector signed int vec_lde (int, const int *);

vector unsigned int vec_lde (int, const unsigned int *);

vector signed int vec_lde (int, const long *);

vector unsigned int vec_lde (int, const unsigned long *);

vector float vec_lvewx (int, float *);

vector signed int vec_lvewx (int, int *);

vector unsigned int vec_lvewx (int, unsigned int *);

vector signed int vec_lvewx (int, long *);

Chapter 6: Extensions to the C Language Family 645

vector unsigned int vec_lvewx (int, unsigned long *);

vector signed short vec_lvehx (int, short *);

vector unsigned short vec_lvehx (int, unsigned short *);

vector signed char vec_lvebx (int, char *);

vector unsigned char vec_lvebx (int, unsigned char *);

vector float vec_ldl (int, const vector float *);

vector float vec_ldl (int, const float *);

vector bool int vec_ldl (int, const vector bool int *);

vector signed int vec_ldl (int, const vector signed int *);

vector signed int vec_ldl (int, const int *);

vector signed int vec_ldl (int, const long *);

vector unsigned int vec_ldl (int, const vector unsigned int *);

vector unsigned int vec_ldl (int, const unsigned int *);

vector unsigned int vec_ldl (int, const unsigned long *);

vector bool short vec_ldl (int, const vector bool short *);

vector pixel vec_ldl (int, const vector pixel *);

vector signed short vec_ldl (int, const vector signed short *);

vector signed short vec_ldl (int, const short *);

vector unsigned short vec_ldl (int, const vector unsigned short *);

vector unsigned short vec_ldl (int, const unsigned short *);

vector bool char vec_ldl (int, const vector bool char *);

vector signed char vec_ldl (int, const vector signed char *);

vector signed char vec_ldl (int, const signed char *);

vector unsigned char vec_ldl (int, const vector unsigned char *);

vector unsigned char vec_ldl (int, const unsigned char *);

vector float vec_loge (vector float);

vector unsigned char vec_lvsl (int, const volatile unsigned char *);

vector unsigned char vec_lvsl (int, const volatile signed char *);

vector unsigned char vec_lvsl (int, const volatile unsigned short *);

vector unsigned char vec_lvsl (int, const volatile short *);

vector unsigned char vec_lvsl (int, const volatile unsigned int *);

vector unsigned char vec_lvsl (int, const volatile int *);

vector unsigned char vec_lvsl (int, const volatile unsigned long *);

vector unsigned char vec_lvsl (int, const volatile long *);

vector unsigned char vec_lvsl (int, const volatile float *);

vector unsigned char vec_lvsr (int, const volatile unsigned char *);

vector unsigned char vec_lvsr (int, const volatile signed char *);

vector unsigned char vec_lvsr (int, const volatile unsigned short *);

vector unsigned char vec_lvsr (int, const volatile short *);

vector unsigned char vec_lvsr (int, const volatile unsigned int *);

vector unsigned char vec_lvsr (int, const volatile int *);

vector unsigned char vec_lvsr (int, const volatile unsigned long *);

vector unsigned char vec_lvsr (int, const volatile long *);

vector unsigned char vec_lvsr (int, const volatile float *);

vector float vec_madd (vector float, vector float, vector float);

vector signed short vec_madds (vector signed short,

vector signed short,

vector signed short);

vector unsigned char vec_max (vector bool char, vector unsigned char);

646 Using the GNU Compiler Collection (GCC)

vector unsigned char vec_max (vector unsigned char, vector bool char);

vector unsigned char vec_max (vector unsigned char,

vector unsigned char);

vector signed char vec_max (vector bool char, vector signed char);

vector signed char vec_max (vector signed char, vector bool char);

vector signed char vec_max (vector signed char, vector signed char);

vector unsigned short vec_max (vector bool short,

vector unsigned short);

vector unsigned short vec_max (vector unsigned short,

vector bool short);

vector unsigned short vec_max (vector unsigned short,

vector unsigned short);

vector signed short vec_max (vector bool short, vector signed short);

vector signed short vec_max (vector signed short, vector bool short);

vector signed short vec_max (vector signed short, vector signed short);

vector unsigned int vec_max (vector bool int, vector unsigned int);

vector unsigned int vec_max (vector unsigned int, vector bool int);

vector unsigned int vec_max (vector unsigned int, vector unsigned int);

vector signed int vec_max (vector bool int, vector signed int);

vector signed int vec_max (vector signed int, vector bool int);

vector signed int vec_max (vector signed int, vector signed int);

vector float vec_max (vector float, vector float);

vector float vec_vmaxfp (vector float, vector float);

vector signed int vec_vmaxsw (vector bool int, vector signed int);

vector signed int vec_vmaxsw (vector signed int, vector bool int);

vector signed int vec_vmaxsw (vector signed int, vector signed int);

vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);

vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);

vector unsigned int vec_vmaxuw (vector unsigned int,

vector unsigned int);

vector signed short vec_vmaxsh (vector bool short, vector signed short);

vector signed short vec_vmaxsh (vector signed short, vector bool short);

vector signed short vec_vmaxsh (vector signed short,

vector signed short);

vector unsigned short vec_vmaxuh (vector bool short,

vector unsigned short);

vector unsigned short vec_vmaxuh (vector unsigned short,

vector bool short);

vector unsigned short vec_vmaxuh (vector unsigned short,

vector unsigned short);

vector signed char vec_vmaxsb (vector bool char, vector signed char);

vector signed char vec_vmaxsb (vector signed char, vector bool char);

vector signed char vec_vmaxsb (vector signed char, vector signed char);

vector unsigned char vec_vmaxub (vector bool char,

vector unsigned char);

vector unsigned char vec_vmaxub (vector unsigned char,

vector bool char);

vector unsigned char vec_vmaxub (vector unsigned char,

vector unsigned char);

vector bool char vec_mergeh (vector bool char, vector bool char);

Chapter 6: Extensions to the C Language Family 647

vector signed char vec_mergeh (vector signed char, vector signed char);

vector unsigned char vec_mergeh (vector unsigned char,

vector unsigned char);

vector bool short vec_mergeh (vector bool short, vector bool short);

vector pixel vec_mergeh (vector pixel, vector pixel);

vector signed short vec_mergeh (vector signed short,

vector signed short);

vector unsigned short vec_mergeh (vector unsigned short,

vector unsigned short);

vector float vec_mergeh (vector float, vector float);

vector bool int vec_mergeh (vector bool int, vector bool int);

vector signed int vec_mergeh (vector signed int, vector signed int);

vector unsigned int vec_mergeh (vector unsigned int,

vector unsigned int);

vector float vec_vmrghw (vector float, vector float);

vector bool int vec_vmrghw (vector bool int, vector bool int);

vector signed int vec_vmrghw (vector signed int, vector signed int);

vector unsigned int vec_vmrghw (vector unsigned int,

vector unsigned int);

vector bool short vec_vmrghh (vector bool short, vector bool short);

vector signed short vec_vmrghh (vector signed short,

vector signed short);

vector unsigned short vec_vmrghh (vector unsigned short,

vector unsigned short);

vector pixel vec_vmrghh (vector pixel, vector pixel);

vector bool char vec_vmrghb (vector bool char, vector bool char);

vector signed char vec_vmrghb (vector signed char, vector signed char);

vector unsigned char vec_vmrghb (vector unsigned char,

vector unsigned char);

vector bool char vec_mergel (vector bool char, vector bool char);

vector signed char vec_mergel (vector signed char, vector signed char);

vector unsigned char vec_mergel (vector unsigned char,

vector unsigned char);

vector bool short vec_mergel (vector bool short, vector bool short);

vector pixel vec_mergel (vector pixel, vector pixel);

vector signed short vec_mergel (vector signed short,

vector signed short);

vector unsigned short vec_mergel (vector unsigned short,

vector unsigned short);

vector float vec_mergel (vector float, vector float);

vector bool int vec_mergel (vector bool int, vector bool int);

vector signed int vec_mergel (vector signed int, vector signed int);

vector unsigned int vec_mergel (vector unsigned int,

vector unsigned int);

vector float vec_vmrglw (vector float, vector float);

vector signed int vec_vmrglw (vector signed int, vector signed int);

vector unsigned int vec_vmrglw (vector unsigned int,

vector unsigned int);

vector bool int vec_vmrglw (vector bool int, vector bool int);

vector bool short vec_vmrglh (vector bool short, vector bool short);

vector signed short vec_vmrglh (vector signed short,

vector signed short);

648 Using the GNU Compiler Collection (GCC)

vector unsigned short vec_vmrglh (vector unsigned short,

vector unsigned short);

vector pixel vec_vmrglh (vector pixel, vector pixel);

vector bool char vec_vmrglb (vector bool char, vector bool char);

vector signed char vec_vmrglb (vector signed char, vector signed char);

vector unsigned char vec_vmrglb (vector unsigned char,

vector unsigned char);

vector unsigned short vec_mfvscr (void);

vector unsigned char vec_min (vector bool char, vector unsigned char);

vector unsigned char vec_min (vector unsigned char, vector bool char);

vector unsigned char vec_min (vector unsigned char,

vector unsigned char);

vector signed char vec_min (vector bool char, vector signed char);

vector signed char vec_min (vector signed char, vector bool char);

vector signed char vec_min (vector signed char, vector signed char);

vector unsigned short vec_min (vector bool short,

vector unsigned short);

vector unsigned short vec_min (vector unsigned short,

vector bool short);

vector unsigned short vec_min (vector unsigned short,

vector unsigned short);

vector signed short vec_min (vector bool short, vector signed short);

vector signed short vec_min (vector signed short, vector bool short);

vector signed short vec_min (vector signed short, vector signed short);

vector unsigned int vec_min (vector bool int, vector unsigned int);

vector unsigned int vec_min (vector unsigned int, vector bool int);

vector unsigned int vec_min (vector unsigned int, vector unsigned int);

vector signed int vec_min (vector bool int, vector signed int);

vector signed int vec_min (vector signed int, vector bool int);

vector signed int vec_min (vector signed int, vector signed int);

vector float vec_min (vector float, vector float);

vector float vec_vminfp (vector float, vector float);

vector signed int vec_vminsw (vector bool int, vector signed int);

vector signed int vec_vminsw (vector signed int, vector bool int);

vector signed int vec_vminsw (vector signed int, vector signed int);

vector unsigned int vec_vminuw (vector bool int, vector unsigned int);

vector unsigned int vec_vminuw (vector unsigned int, vector bool int);

vector unsigned int vec_vminuw (vector unsigned int,

vector unsigned int);

vector signed short vec_vminsh (vector bool short, vector signed short);

vector signed short vec_vminsh (vector signed short, vector bool short);

vector signed short vec_vminsh (vector signed short,

vector signed short);

vector unsigned short vec_vminuh (vector bool short,

vector unsigned short);

vector unsigned short vec_vminuh (vector unsigned short,

vector bool short);

vector unsigned short vec_vminuh (vector unsigned short,

vector unsigned short);

Chapter 6: Extensions to the C Language Family 649

vector signed char vec_vminsb (vector bool char, vector signed char);

vector signed char vec_vminsb (vector signed char, vector bool char);

vector signed char vec_vminsb (vector signed char, vector signed char);

vector unsigned char vec_vminub (vector bool char,

vector unsigned char);

vector unsigned char vec_vminub (vector unsigned char,

vector bool char);

vector unsigned char vec_vminub (vector unsigned char,

vector unsigned char);

vector signed short vec_mladd (vector signed short,

vector signed short,

vector signed short);

vector signed short vec_mladd (vector signed short,

vector unsigned short,

vector unsigned short);

vector signed short vec_mladd (vector unsigned short,

vector signed short,

vector signed short);

vector unsigned short vec_mladd (vector unsigned short,

vector unsigned short,

vector unsigned short);

vector signed short vec_mradds (vector signed short,

vector signed short,

vector signed short);

vector unsigned int vec_msum (vector unsigned char,

vector unsigned char,

vector unsigned int);

vector signed int vec_msum (vector signed char,

vector unsigned char,

vector signed int);

vector unsigned int vec_msum (vector unsigned short,

vector unsigned short,

vector unsigned int);

vector signed int vec_msum (vector signed short,

vector signed short,

vector signed int);

vector signed int vec_vmsumshm (vector signed short,

vector signed short,

vector signed int);

vector unsigned int vec_vmsumuhm (vector unsigned short,

vector unsigned short,

vector unsigned int);

vector signed int vec_vmsummbm (vector signed char,

vector unsigned char,

vector signed int);

vector unsigned int vec_vmsumubm (vector unsigned char,

vector unsigned char,

vector unsigned int);

vector unsigned int vec_msums (vector unsigned short,

650 Using the GNU Compiler Collection (GCC)

vector unsigned short,

vector unsigned int);

vector signed int vec_msums (vector signed short,

vector signed short,

vector signed int);

vector signed int vec_vmsumshs (vector signed short,

vector signed short,

vector signed int);

vector unsigned int vec_vmsumuhs (vector unsigned short,

vector unsigned short,

vector unsigned int);

void vec_mtvscr (vector signed int);

void vec_mtvscr (vector unsigned int);

void vec_mtvscr (vector bool int);

void vec_mtvscr (vector signed short);

void vec_mtvscr (vector unsigned short);

void vec_mtvscr (vector bool short);

void vec_mtvscr (vector pixel);

void vec_mtvscr (vector signed char);

void vec_mtvscr (vector unsigned char);

void vec_mtvscr (vector bool char);

vector unsigned short vec_mule (vector unsigned char,

vector unsigned char);

vector signed short vec_mule (vector signed char,

vector signed char);

vector unsigned int vec_mule (vector unsigned short,

vector unsigned short);

vector signed int vec_mule (vector signed short, vector signed short);

vector signed int vec_vmulesh (vector signed short,

vector signed short);

vector unsigned int vec_vmuleuh (vector unsigned short,

vector unsigned short);

vector signed short vec_vmulesb (vector signed char,

vector signed char);

vector unsigned short vec_vmuleub (vector unsigned char,

vector unsigned char);

vector unsigned short vec_mulo (vector unsigned char,

vector unsigned char);

vector signed short vec_mulo (vector signed char, vector signed char);

vector unsigned int vec_mulo (vector unsigned short,

vector unsigned short);

vector signed int vec_mulo (vector signed short, vector signed short);

vector signed int vec_vmulosh (vector signed short,

vector signed short);

vector unsigned int vec_vmulouh (vector unsigned short,

vector unsigned short);

Chapter 6: Extensions to the C Language Family 651

vector signed short vec_vmulosb (vector signed char,

vector signed char);

vector unsigned short vec_vmuloub (vector unsigned char,

vector unsigned char);

vector float vec_nmsub (vector float, vector float, vector float);

vector float vec_nor (vector float, vector float);

vector signed int vec_nor (vector signed int, vector signed int);

vector unsigned int vec_nor (vector unsigned int, vector unsigned int);

vector bool int vec_nor (vector bool int, vector bool int);

vector signed short vec_nor (vector signed short, vector signed short);

vector unsigned short vec_nor (vector unsigned short,

vector unsigned short);

vector bool short vec_nor (vector bool short, vector bool short);

vector signed char vec_nor (vector signed char, vector signed char);

vector unsigned char vec_nor (vector unsigned char,

vector unsigned char);

vector bool char vec_nor (vector bool char, vector bool char);

vector float vec_or (vector float, vector float);

vector float vec_or (vector float, vector bool int);

vector float vec_or (vector bool int, vector float);

vector bool int vec_or (vector bool int, vector bool int);

vector signed int vec_or (vector bool int, vector signed int);

vector signed int vec_or (vector signed int, vector bool int);

vector signed int vec_or (vector signed int, vector signed int);

vector unsigned int vec_or (vector bool int, vector unsigned int);

vector unsigned int vec_or (vector unsigned int, vector bool int);

vector unsigned int vec_or (vector unsigned int, vector unsigned int);

vector bool short vec_or (vector bool short, vector bool short);

vector signed short vec_or (vector bool short, vector signed short);

vector signed short vec_or (vector signed short, vector bool short);

vector signed short vec_or (vector signed short, vector signed short);

vector unsigned short vec_or (vector bool short, vector unsigned short);

vector unsigned short vec_or (vector unsigned short, vector bool short);

vector unsigned short vec_or (vector unsigned short,

vector unsigned short);

vector signed char vec_or (vector bool char, vector signed char);

vector bool char vec_or (vector bool char, vector bool char);

vector signed char vec_or (vector signed char, vector bool char);

vector signed char vec_or (vector signed char, vector signed char);

vector unsigned char vec_or (vector bool char, vector unsigned char);

vector unsigned char vec_or (vector unsigned char, vector bool char);

vector unsigned char vec_or (vector unsigned char,

vector unsigned char);

vector signed char vec_pack (vector signed short, vector signed short);

vector unsigned char vec_pack (vector unsigned short,

vector unsigned short);

vector bool char vec_pack (vector bool short, vector bool short);

vector signed short vec_pack (vector signed int, vector signed int);

vector unsigned short vec_pack (vector unsigned int,

vector unsigned int);

vector bool short vec_pack (vector bool int, vector bool int);

vector bool short vec_vpkuwum (vector bool int, vector bool int);

652 Using the GNU Compiler Collection (GCC)

vector signed short vec_vpkuwum (vector signed int, vector signed int);

vector unsigned short vec_vpkuwum (vector unsigned int,

vector unsigned int);

vector bool char vec_vpkuhum (vector bool short, vector bool short);

vector signed char vec_vpkuhum (vector signed short,

vector signed short);

vector unsigned char vec_vpkuhum (vector unsigned short,

vector unsigned short);

vector pixel vec_packpx (vector unsigned int, vector unsigned int);

vector unsigned char vec_packs (vector unsigned short,

vector unsigned short);

vector signed char vec_packs (vector signed short, vector signed short);

vector unsigned short vec_packs (vector unsigned int,

vector unsigned int);

vector signed short vec_packs (vector signed int, vector signed int);

vector signed short vec_vpkswss (vector signed int, vector signed int);

vector unsigned short vec_vpkuwus (vector unsigned int,

vector unsigned int);

vector signed char vec_vpkshss (vector signed short,

vector signed short);

vector unsigned char vec_vpkuhus (vector unsigned short,

vector unsigned short);

vector unsigned char vec_packsu (vector unsigned short,

vector unsigned short);

vector unsigned char vec_packsu (vector signed short,

vector signed short);

vector unsigned short vec_packsu (vector unsigned int,

vector unsigned int);

vector unsigned short vec_packsu (vector signed int, vector signed int);

vector unsigned short vec_vpkswus (vector signed int,

vector signed int);

vector unsigned char vec_vpkshus (vector signed short,

vector signed short);

vector float vec_perm (vector float,

vector float,

vector unsigned char);

vector signed int vec_perm (vector signed int,

vector signed int,

vector unsigned char);

vector unsigned int vec_perm (vector unsigned int,

vector unsigned int,

vector unsigned char);

vector bool int vec_perm (vector bool int,

vector bool int,

vector unsigned char);

vector signed short vec_perm (vector signed short,

vector signed short,

Chapter 6: Extensions to the C Language Family 653

vector unsigned char);

vector unsigned short vec_perm (vector unsigned short,

vector unsigned short,

vector unsigned char);

vector bool short vec_perm (vector bool short,

vector bool short,

vector unsigned char);

vector pixel vec_perm (vector pixel,

vector pixel,

vector unsigned char);

vector signed char vec_perm (vector signed char,

vector signed char,

vector unsigned char);

vector unsigned char vec_perm (vector unsigned char,

vector unsigned char,

vector unsigned char);

vector bool char vec_perm (vector bool char,

vector bool char,

vector unsigned char);

vector float vec_re (vector float);

vector signed char vec_rl (vector signed char,

vector unsigned char);

vector unsigned char vec_rl (vector unsigned char,

vector unsigned char);

vector signed short vec_rl (vector signed short, vector unsigned short);

vector unsigned short vec_rl (vector unsigned short,

vector unsigned short);

vector signed int vec_rl (vector signed int, vector unsigned int);

vector unsigned int vec_rl (vector unsigned int, vector unsigned int);

vector signed int vec_vrlw (vector signed int, vector unsigned int);

vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);

vector signed short vec_vrlh (vector signed short,

vector unsigned short);

vector unsigned short vec_vrlh (vector unsigned short,

vector unsigned short);

vector signed char vec_vrlb (vector signed char, vector unsigned char);

vector unsigned char vec_vrlb (vector unsigned char,

vector unsigned char);

vector float vec_round (vector float);

vector float vec_recip (vector float, vector float);

vector float vec_rsqrt (vector float);

vector float vec_rsqrte (vector float);

vector float vec_sel (vector float, vector float, vector bool int);

vector float vec_sel (vector float, vector float, vector unsigned int);

vector signed int vec_sel (vector signed int,

vector signed int,

vector bool int);

vector signed int vec_sel (vector signed int,

654 Using the GNU Compiler Collection (GCC)

vector signed int,

vector unsigned int);

vector unsigned int vec_sel (vector unsigned int,

vector unsigned int,

vector bool int);

vector unsigned int vec_sel (vector unsigned int,

vector unsigned int,

vector unsigned int);

vector bool int vec_sel (vector bool int,

vector bool int,

vector bool int);

vector bool int vec_sel (vector bool int,

vector bool int,

vector unsigned int);

vector signed short vec_sel (vector signed short,

vector signed short,

vector bool short);

vector signed short vec_sel (vector signed short,

vector signed short,

vector unsigned short);

vector unsigned short vec_sel (vector unsigned short,

vector unsigned short,

vector bool short);

vector unsigned short vec_sel (vector unsigned short,

vector unsigned short,

vector unsigned short);

vector bool short vec_sel (vector bool short,

vector bool short,

vector bool short);

vector bool short vec_sel (vector bool short,

vector bool short,

vector unsigned short);

vector signed char vec_sel (vector signed char,

vector signed char,

vector bool char);

vector signed char vec_sel (vector signed char,

vector signed char,

vector unsigned char);

vector unsigned char vec_sel (vector unsigned char,

vector unsigned char,

vector bool char);

vector unsigned char vec_sel (vector unsigned char,

vector unsigned char,

vector unsigned char);

vector bool char vec_sel (vector bool char,

vector bool char,

vector bool char);

vector bool char vec_sel (vector bool char,

vector bool char,

vector unsigned char);

vector signed char vec_sl (vector signed char,

vector unsigned char);

vector unsigned char vec_sl (vector unsigned char,

vector unsigned char);

vector signed short vec_sl (vector signed short, vector unsigned short);

vector unsigned short vec_sl (vector unsigned short,

vector unsigned short);

Chapter 6: Extensions to the C Language Family 655

vector signed int vec_sl (vector signed int, vector unsigned int);

vector unsigned int vec_sl (vector unsigned int, vector unsigned int);

vector signed int vec_vslw (vector signed int, vector unsigned int);

vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);

vector signed short vec_vslh (vector signed short,

vector unsigned short);

vector unsigned short vec_vslh (vector unsigned short,

vector unsigned short);

vector signed char vec_vslb (vector signed char, vector unsigned char);

vector unsigned char vec_vslb (vector unsigned char,

vector unsigned char);

vector float vec_sld (vector float, vector float, const int);

vector signed int vec_sld (vector signed int,

vector signed int,

const int);

vector unsigned int vec_sld (vector unsigned int,

vector unsigned int,

const int);

vector bool int vec_sld (vector bool int,

vector bool int,

const int);

vector signed short vec_sld (vector signed short,

vector signed short,

const int);

vector unsigned short vec_sld (vector unsigned short,

vector unsigned short,

const int);

vector bool short vec_sld (vector bool short,

vector bool short,

const int);

vector pixel vec_sld (vector pixel,

vector pixel,

const int);

vector signed char vec_sld (vector signed char,

vector signed char,

const int);

vector unsigned char vec_sld (vector unsigned char,

vector unsigned char,

const int);

vector bool char vec_sld (vector bool char,

vector bool char,

const int);

vector signed int vec_sll (vector signed int,

vector unsigned int);

vector signed int vec_sll (vector signed int,

vector unsigned short);

vector signed int vec_sll (vector signed int,

vector unsigned char);

vector unsigned int vec_sll (vector unsigned int,

vector unsigned int);

vector unsigned int vec_sll (vector unsigned int,

vector unsigned short);

vector unsigned int vec_sll (vector unsigned int,

656 Using the GNU Compiler Collection (GCC)

vector unsigned char);

vector bool int vec_sll (vector bool int,

vector unsigned int);

vector bool int vec_sll (vector bool int,

vector unsigned short);

vector bool int vec_sll (vector bool int,

vector unsigned char);

vector signed short vec_sll (vector signed short,

vector unsigned int);

vector signed short vec_sll (vector signed short,

vector unsigned short);

vector signed short vec_sll (vector signed short,

vector unsigned char);

vector unsigned short vec_sll (vector unsigned short,

vector unsigned int);

vector unsigned short vec_sll (vector unsigned short,

vector unsigned short);

vector unsigned short vec_sll (vector unsigned short,

vector unsigned char);

vector bool short vec_sll (vector bool short, vector unsigned int);

vector bool short vec_sll (vector bool short, vector unsigned short);

vector bool short vec_sll (vector bool short, vector unsigned char);

vector pixel vec_sll (vector pixel, vector unsigned int);

vector pixel vec_sll (vector pixel, vector unsigned short);

vector pixel vec_sll (vector pixel, vector unsigned char);

vector signed char vec_sll (vector signed char, vector unsigned int);

vector signed char vec_sll (vector signed char, vector unsigned short);

vector signed char vec_sll (vector signed char, vector unsigned char);

vector unsigned char vec_sll (vector unsigned char,

vector unsigned int);

vector unsigned char vec_sll (vector unsigned char,

vector unsigned short);

vector unsigned char vec_sll (vector unsigned char,

vector unsigned char);

vector bool char vec_sll (vector bool char, vector unsigned int);

vector bool char vec_sll (vector bool char, vector unsigned short);

vector bool char vec_sll (vector bool char, vector unsigned char);

vector float vec_slo (vector float, vector signed char);

vector float vec_slo (vector float, vector unsigned char);

vector signed int vec_slo (vector signed int, vector signed char);

vector signed int vec_slo (vector signed int, vector unsigned char);

vector unsigned int vec_slo (vector unsigned int, vector signed char);

vector unsigned int vec_slo (vector unsigned int, vector unsigned char);

vector signed short vec_slo (vector signed short, vector signed char);

vector signed short vec_slo (vector signed short, vector unsigned char);

vector unsigned short vec_slo (vector unsigned short,

vector signed char);

vector unsigned short vec_slo (vector unsigned short,

vector unsigned char);

vector pixel vec_slo (vector pixel, vector signed char);

vector pixel vec_slo (vector pixel, vector unsigned char);

vector signed char vec_slo (vector signed char, vector signed char);

vector signed char vec_slo (vector signed char, vector unsigned char);

vector unsigned char vec_slo (vector unsigned char, vector signed char);

vector unsigned char vec_slo (vector unsigned char,

vector unsigned char);

Chapter 6: Extensions to the C Language Family 657

vector signed char vec_splat (vector signed char, const int);

vector unsigned char vec_splat (vector unsigned char, const int);

vector bool char vec_splat (vector bool char, const int);

vector signed short vec_splat (vector signed short, const int);

vector unsigned short vec_splat (vector unsigned short, const int);

vector bool short vec_splat (vector bool short, const int);

vector pixel vec_splat (vector pixel, const int);

vector float vec_splat (vector float, const int);

vector signed int vec_splat (vector signed int, const int);

vector unsigned int vec_splat (vector unsigned int, const int);

vector bool int vec_splat (vector bool int, const int);

vector float vec_vspltw (vector float, const int);

vector signed int vec_vspltw (vector signed int, const int);

vector unsigned int vec_vspltw (vector unsigned int, const int);

vector bool int vec_vspltw (vector bool int, const int);

vector bool short vec_vsplth (vector bool short, const int);

vector signed short vec_vsplth (vector signed short, const int);

vector unsigned short vec_vsplth (vector unsigned short, const int);

vector pixel vec_vsplth (vector pixel, const int);

vector signed char vec_vspltb (vector signed char, const int);

vector unsigned char vec_vspltb (vector unsigned char, const int);

vector bool char vec_vspltb (vector bool char, const int);

vector signed char vec_splat_s8 (const int);

vector signed short vec_splat_s16 (const int);

vector signed int vec_splat_s32 (const int);

vector unsigned char vec_splat_u8 (const int);

vector unsigned short vec_splat_u16 (const int);

vector unsigned int vec_splat_u32 (const int);

vector signed char vec_sr (vector signed char, vector unsigned char);

vector unsigned char vec_sr (vector unsigned char,

vector unsigned char);

vector signed short vec_sr (vector signed short,

vector unsigned short);

vector unsigned short vec_sr (vector unsigned short,

vector unsigned short);

vector signed int vec_sr (vector signed int, vector unsigned int);

vector unsigned int vec_sr (vector unsigned int, vector unsigned int);

vector signed int vec_vsrw (vector signed int, vector unsigned int);

vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);

vector signed short vec_vsrh (vector signed short,

vector unsigned short);

vector unsigned short vec_vsrh (vector unsigned short,

vector unsigned short);

vector signed char vec_vsrb (vector signed char, vector unsigned char);

vector unsigned char vec_vsrb (vector unsigned char,

658 Using the GNU Compiler Collection (GCC)

vector unsigned char);

vector signed char vec_sra (vector signed char, vector unsigned char);

vector unsigned char vec_sra (vector unsigned char,

vector unsigned char);

vector signed short vec_sra (vector signed short,

vector unsigned short);

vector unsigned short vec_sra (vector unsigned short,

vector unsigned short);

vector signed int vec_sra (vector signed int, vector unsigned int);

vector unsigned int vec_sra (vector unsigned int, vector unsigned int);

vector signed int vec_vsraw (vector signed int, vector unsigned int);

vector unsigned int vec_vsraw (vector unsigned int,

vector unsigned int);

vector signed short vec_vsrah (vector signed short,

vector unsigned short);

vector unsigned short vec_vsrah (vector unsigned short,

vector unsigned short);

vector signed char vec_vsrab (vector signed char, vector unsigned char);

vector unsigned char vec_vsrab (vector unsigned char,

vector unsigned char);

vector signed int vec_srl (vector signed int, vector unsigned int);

vector signed int vec_srl (vector signed int, vector unsigned short);

vector signed int vec_srl (vector signed int, vector unsigned char);

vector unsigned int vec_srl (vector unsigned int, vector unsigned int);

vector unsigned int vec_srl (vector unsigned int,

vector unsigned short);

vector unsigned int vec_srl (vector unsigned int, vector unsigned char);

vector bool int vec_srl (vector bool int, vector unsigned int);

vector bool int vec_srl (vector bool int, vector unsigned short);

vector bool int vec_srl (vector bool int, vector unsigned char);

vector signed short vec_srl (vector signed short, vector unsigned int);

vector signed short vec_srl (vector signed short,

vector unsigned short);

vector signed short vec_srl (vector signed short, vector unsigned char);

vector unsigned short vec_srl (vector unsigned short,

vector unsigned int);

vector unsigned short vec_srl (vector unsigned short,

vector unsigned short);

vector unsigned short vec_srl (vector unsigned short,

vector unsigned char);

vector bool short vec_srl (vector bool short, vector unsigned int);

vector bool short vec_srl (vector bool short, vector unsigned short);

vector bool short vec_srl (vector bool short, vector unsigned char);

vector pixel vec_srl (vector pixel, vector unsigned int);

vector pixel vec_srl (vector pixel, vector unsigned short);

vector pixel vec_srl (vector pixel, vector unsigned char);

vector signed char vec_srl (vector signed char, vector unsigned int);

vector signed char vec_srl (vector signed char, vector unsigned short);

vector signed char vec_srl (vector signed char, vector unsigned char);

vector unsigned char vec_srl (vector unsigned char,

vector unsigned int);

vector unsigned char vec_srl (vector unsigned char,

vector unsigned short);

Chapter 6: Extensions to the C Language Family 659

vector unsigned char vec_srl (vector unsigned char,

vector unsigned char);

vector bool char vec_srl (vector bool char, vector unsigned int);

vector bool char vec_srl (vector bool char, vector unsigned short);

vector bool char vec_srl (vector bool char, vector unsigned char);

vector float vec_sro (vector float, vector signed char);

vector float vec_sro (vector float, vector unsigned char);

vector signed int vec_sro (vector signed int, vector signed char);

vector signed int vec_sro (vector signed int, vector unsigned char);

vector unsigned int vec_sro (vector unsigned int, vector signed char);

vector unsigned int vec_sro (vector unsigned int, vector unsigned char);

vector signed short vec_sro (vector signed short, vector signed char);

vector signed short vec_sro (vector signed short, vector unsigned char);

vector unsigned short vec_sro (vector unsigned short,

vector signed char);

vector unsigned short vec_sro (vector unsigned short,

vector unsigned char);

vector pixel vec_sro (vector pixel, vector signed char);

vector pixel vec_sro (vector pixel, vector unsigned char);

vector signed char vec_sro (vector signed char, vector signed char);

vector signed char vec_sro (vector signed char, vector unsigned char);

vector unsigned char vec_sro (vector unsigned char, vector signed char);

vector unsigned char vec_sro (vector unsigned char,

vector unsigned char);

void vec_st (vector float, int, vector float *);

void vec_st (vector float, int, float *);

void vec_st (vector signed int, int, vector signed int *);

void vec_st (vector signed int, int, int *);

void vec_st (vector unsigned int, int, vector unsigned int *);

void vec_st (vector unsigned int, int, unsigned int *);

void vec_st (vector bool int, int, vector bool int *);

void vec_st (vector bool int, int, unsigned int *);

void vec_st (vector bool int, int, int *);

void vec_st (vector signed short, int, vector signed short *);

void vec_st (vector signed short, int, short *);

void vec_st (vector unsigned short, int, vector unsigned short *);

void vec_st (vector unsigned short, int, unsigned short *);

void vec_st (vector bool short, int, vector bool short *);

void vec_st (vector bool short, int, unsigned short *);

void vec_st (vector pixel, int, vector pixel *);

void vec_st (vector pixel, int, unsigned short *);

void vec_st (vector pixel, int, short *);

void vec_st (vector bool short, int, short *);

void vec_st (vector signed char, int, vector signed char *);

void vec_st (vector signed char, int, signed char *);

void vec_st (vector unsigned char, int, vector unsigned char *);

void vec_st (vector unsigned char, int, unsigned char *);

void vec_st (vector bool char, int, vector bool char *);

void vec_st (vector bool char, int, unsigned char *);

void vec_st (vector bool char, int, signed char *);

void vec_ste (vector signed char, int, signed char *);

void vec_ste (vector unsigned char, int, unsigned char *);

void vec_ste (vector bool char, int, signed char *);

void vec_ste (vector bool char, int, unsigned char *);

void vec_ste (vector signed short, int, short *);

660 Using the GNU Compiler Collection (GCC)

void vec_ste (vector unsigned short, int, unsigned short *);

void vec_ste (vector bool short, int, short *);

void vec_ste (vector bool short, int, unsigned short *);

void vec_ste (vector pixel, int, short *);

void vec_ste (vector pixel, int, unsigned short *);

void vec_ste (vector float, int, float *);

void vec_ste (vector signed int, int, int *);

void vec_ste (vector unsigned int, int, unsigned int *);

void vec_ste (vector bool int, int, int *);

void vec_ste (vector bool int, int, unsigned int *);

void vec_stvewx (vector float, int, float *);

void vec_stvewx (vector signed int, int, int *);

void vec_stvewx (vector unsigned int, int, unsigned int *);

void vec_stvewx (vector bool int, int, int *);

void vec_stvewx (vector bool int, int, unsigned int *);

void vec_stvehx (vector signed short, int, short *);

void vec_stvehx (vector unsigned short, int, unsigned short *);

void vec_stvehx (vector bool short, int, short *);

void vec_stvehx (vector bool short, int, unsigned short *);

void vec_stvehx (vector pixel, int, short *);

void vec_stvehx (vector pixel, int, unsigned short *);

void vec_stvebx (vector signed char, int, signed char *);

void vec_stvebx (vector unsigned char, int, unsigned char *);

void vec_stvebx (vector bool char, int, signed char *);

void vec_stvebx (vector bool char, int, unsigned char *);

void vec_stl (vector float, int, vector float *);

void vec_stl (vector float, int, float *);

void vec_stl (vector signed int, int, vector signed int *);

void vec_stl (vector signed int, int, int *);

void vec_stl (vector unsigned int, int, vector unsigned int *);

void vec_stl (vector unsigned int, int, unsigned int *);

void vec_stl (vector bool int, int, vector bool int *);

void vec_stl (vector bool int, int, unsigned int *);

void vec_stl (vector bool int, int, int *);

void vec_stl (vector signed short, int, vector signed short *);

void vec_stl (vector signed short, int, short *);

void vec_stl (vector unsigned short, int, vector unsigned short *);

void vec_stl (vector unsigned short, int, unsigned short *);

void vec_stl (vector bool short, int, vector bool short *);

void vec_stl (vector bool short, int, unsigned short *);

void vec_stl (vector bool short, int, short *);

void vec_stl (vector pixel, int, vector pixel *);

void vec_stl (vector pixel, int, unsigned short *);

void vec_stl (vector pixel, int, short *);

void vec_stl (vector signed char, int, vector signed char *);

void vec_stl (vector signed char, int, signed char *);

void vec_stl (vector unsigned char, int, vector unsigned char *);

void vec_stl (vector unsigned char, int, unsigned char *);

void vec_stl (vector bool char, int, vector bool char *);

void vec_stl (vector bool char, int, unsigned char *);

void vec_stl (vector bool char, int, signed char *);

vector signed char vec_sub (vector bool char, vector signed char);

vector signed char vec_sub (vector signed char, vector bool char);

Chapter 6: Extensions to the C Language Family 661

vector signed char vec_sub (vector signed char, vector signed char);

vector unsigned char vec_sub (vector bool char, vector unsigned char);

vector unsigned char vec_sub (vector unsigned char, vector bool char);

vector unsigned char vec_sub (vector unsigned char,

vector unsigned char);

vector signed short vec_sub (vector bool short, vector signed short);

vector signed short vec_sub (vector signed short, vector bool short);

vector signed short vec_sub (vector signed short, vector signed short);

vector unsigned short vec_sub (vector bool short,

vector unsigned short);

vector unsigned short vec_sub (vector unsigned short,

vector bool short);

vector unsigned short vec_sub (vector unsigned short,

vector unsigned short);

vector signed int vec_sub (vector bool int, vector signed int);

vector signed int vec_sub (vector signed int, vector bool int);

vector signed int vec_sub (vector signed int, vector signed int);

vector unsigned int vec_sub (vector bool int, vector unsigned int);

vector unsigned int vec_sub (vector unsigned int, vector bool int);

vector unsigned int vec_sub (vector unsigned int, vector unsigned int);

vector float vec_sub (vector float, vector float);

vector float vec_vsubfp (vector float, vector float);

vector signed int vec_vsubuwm (vector bool int, vector signed int);

vector signed int vec_vsubuwm (vector signed int, vector bool int);

vector signed int vec_vsubuwm (vector signed int, vector signed int);

vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);

vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);

vector unsigned int vec_vsubuwm (vector unsigned int,

vector unsigned int);

vector signed short vec_vsubuhm (vector bool short,

vector signed short);

vector signed short vec_vsubuhm (vector signed short,

vector bool short);

vector signed short vec_vsubuhm (vector signed short,

vector signed short);

vector unsigned short vec_vsubuhm (vector bool short,

vector unsigned short);

vector unsigned short vec_vsubuhm (vector unsigned short,

vector bool short);

vector unsigned short vec_vsubuhm (vector unsigned short,

vector unsigned short);

vector signed char vec_vsububm (vector bool char, vector signed char);

vector signed char vec_vsububm (vector signed char, vector bool char);

vector signed char vec_vsububm (vector signed char, vector signed char);

vector unsigned char vec_vsububm (vector bool char,

vector unsigned char);

vector unsigned char vec_vsububm (vector unsigned char,

vector bool char);

vector unsigned char vec_vsububm (vector unsigned char,

vector unsigned char);

vector unsigned int vec_subc (vector unsigned int, vector unsigned int);

vector unsigned char vec_subs (vector bool char, vector unsigned char);

662 Using the GNU Compiler Collection (GCC)

vector unsigned char vec_subs (vector unsigned char, vector bool char);

vector unsigned char vec_subs (vector unsigned char,

vector unsigned char);

vector signed char vec_subs (vector bool char, vector signed char);

vector signed char vec_subs (vector signed char, vector bool char);

vector signed char vec_subs (vector signed char, vector signed char);

vector unsigned short vec_subs (vector bool short,

vector unsigned short);

vector unsigned short vec_subs (vector unsigned short,

vector bool short);

vector unsigned short vec_subs (vector unsigned short,

vector unsigned short);

vector signed short vec_subs (vector bool short, vector signed short);

vector signed short vec_subs (vector signed short, vector bool short);

vector signed short vec_subs (vector signed short, vector signed short);

vector unsigned int vec_subs (vector bool int, vector unsigned int);

vector unsigned int vec_subs (vector unsigned int, vector bool int);

vector unsigned int vec_subs (vector unsigned int, vector unsigned int);

vector signed int vec_subs (vector bool int, vector signed int);

vector signed int vec_subs (vector signed int, vector bool int);

vector signed int vec_subs (vector signed int, vector signed int);

vector signed int vec_vsubsws (vector bool int, vector signed int);

vector signed int vec_vsubsws (vector signed int, vector bool int);

vector signed int vec_vsubsws (vector signed int, vector signed int);

vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);

vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);

vector unsigned int vec_vsubuws (vector unsigned int,

vector unsigned int);

vector signed short vec_vsubshs (vector bool short,

vector signed short);

vector signed short vec_vsubshs (vector signed short,

vector bool short);

vector signed short vec_vsubshs (vector signed short,

vector signed short);

vector unsigned short vec_vsubuhs (vector bool short,

vector unsigned short);

vector unsigned short vec_vsubuhs (vector unsigned short,

vector bool short);

vector unsigned short vec_vsubuhs (vector unsigned short,

vector unsigned short);

vector signed char vec_vsubsbs (vector bool char, vector signed char);

vector signed char vec_vsubsbs (vector signed char, vector bool char);

vector signed char vec_vsubsbs (vector signed char, vector signed char);

vector unsigned char vec_vsububs (vector bool char,

vector unsigned char);

vector unsigned char vec_vsububs (vector unsigned char,

vector bool char);

vector unsigned char vec_vsububs (vector unsigned char,

vector unsigned char);

vector unsigned int vec_sum4s (vector unsigned char,

vector unsigned int);

Chapter 6: Extensions to the C Language Family 663

vector signed int vec_sum4s (vector signed char, vector signed int);

vector signed int vec_sum4s (vector signed short, vector signed int);

vector signed int vec_vsum4shs (vector signed short, vector signed int);

vector signed int vec_vsum4sbs (vector signed char, vector signed int);

vector unsigned int vec_vsum4ubs (vector unsigned char,

vector unsigned int);

vector signed int vec_sum2s (vector signed int, vector signed int);

vector signed int vec_sums (vector signed int, vector signed int);

vector float vec_trunc (vector float);

vector signed short vec_unpackh (vector signed char);

vector bool short vec_unpackh (vector bool char);

vector signed int vec_unpackh (vector signed short);

vector bool int vec_unpackh (vector bool short);

vector unsigned int vec_unpackh (vector pixel);

vector bool int vec_vupkhsh (vector bool short);

vector signed int vec_vupkhsh (vector signed short);

vector unsigned int vec_vupkhpx (vector pixel);

vector bool short vec_vupkhsb (vector bool char);

vector signed short vec_vupkhsb (vector signed char);

vector signed short vec_unpackl (vector signed char);

vector bool short vec_unpackl (vector bool char);

vector unsigned int vec_unpackl (vector pixel);

vector signed int vec_unpackl (vector signed short);

vector bool int vec_unpackl (vector bool short);

vector unsigned int vec_vupklpx (vector pixel);

vector bool int vec_vupklsh (vector bool short);

vector signed int vec_vupklsh (vector signed short);

vector bool short vec_vupklsb (vector bool char);

vector signed short vec_vupklsb (vector signed char);

vector float vec_xor (vector float, vector float);

vector float vec_xor (vector float, vector bool int);

vector float vec_xor (vector bool int, vector float);

vector bool int vec_xor (vector bool int, vector bool int);

vector signed int vec_xor (vector bool int, vector signed int);

vector signed int vec_xor (vector signed int, vector bool int);

vector signed int vec_xor (vector signed int, vector signed int);

vector unsigned int vec_xor (vector bool int, vector unsigned int);

vector unsigned int vec_xor (vector unsigned int, vector bool int);

vector unsigned int vec_xor (vector unsigned int, vector unsigned int);

vector bool short vec_xor (vector bool short, vector bool short);

vector signed short vec_xor (vector bool short, vector signed short);

vector signed short vec_xor (vector signed short, vector bool short);

vector signed short vec_xor (vector signed short, vector signed short);

664 Using the GNU Compiler Collection (GCC)

vector unsigned short vec_xor (vector bool short,

vector unsigned short);

vector unsigned short vec_xor (vector unsigned short,

vector bool short);

vector unsigned short vec_xor (vector unsigned short,

vector unsigned short);

vector signed char vec_xor (vector bool char, vector signed char);

vector bool char vec_xor (vector bool char, vector bool char);

vector signed char vec_xor (vector signed char, vector bool char);

vector signed char vec_xor (vector signed char, vector signed char);

vector unsigned char vec_xor (vector bool char, vector unsigned char);

vector unsigned char vec_xor (vector unsigned char, vector bool char);

vector unsigned char vec_xor (vector unsigned char,

vector unsigned char);

int vec_all_eq (vector signed char, vector bool char);

int vec_all_eq (vector signed char, vector signed char);

int vec_all_eq (vector unsigned char, vector bool char);

int vec_all_eq (vector unsigned char, vector unsigned char);

int vec_all_eq (vector bool char, vector bool char);

int vec_all_eq (vector bool char, vector unsigned char);

int vec_all_eq (vector bool char, vector signed char);

int vec_all_eq (vector signed short, vector bool short);

int vec_all_eq (vector signed short, vector signed short);

int vec_all_eq (vector unsigned short, vector bool short);

int vec_all_eq (vector unsigned short, vector unsigned short);

int vec_all_eq (vector bool short, vector bool short);

int vec_all_eq (vector bool short, vector unsigned short);

int vec_all_eq (vector bool short, vector signed short);

int vec_all_eq (vector pixel, vector pixel);

int vec_all_eq (vector signed int, vector bool int);

int vec_all_eq (vector signed int, vector signed int);

int vec_all_eq (vector unsigned int, vector bool int);

int vec_all_eq (vector unsigned int, vector unsigned int);

int vec_all_eq (vector bool int, vector bool int);

int vec_all_eq (vector bool int, vector unsigned int);

int vec_all_eq (vector bool int, vector signed int);

int vec_all_eq (vector float, vector float);

int vec_all_ge (vector bool char, vector unsigned char);

int vec_all_ge (vector unsigned char, vector bool char);

int vec_all_ge (vector unsigned char, vector unsigned char);

int vec_all_ge (vector bool char, vector signed char);

int vec_all_ge (vector signed char, vector bool char);

int vec_all_ge (vector signed char, vector signed char);

int vec_all_ge (vector bool short, vector unsigned short);

int vec_all_ge (vector unsigned short, vector bool short);

int vec_all_ge (vector unsigned short, vector unsigned short);

int vec_all_ge (vector signed short, vector signed short);

int vec_all_ge (vector bool short, vector signed short);

int vec_all_ge (vector signed short, vector bool short);

int vec_all_ge (vector bool int, vector unsigned int);

int vec_all_ge (vector unsigned int, vector bool int);

int vec_all_ge (vector unsigned int, vector unsigned int);

int vec_all_ge (vector bool int, vector signed int);

int vec_all_ge (vector signed int, vector bool int);

int vec_all_ge (vector signed int, vector signed int);

int vec_all_ge (vector float, vector float);

Chapter 6: Extensions to the C Language Family 665

int vec_all_gt (vector bool char, vector unsigned char);

int vec_all_gt (vector unsigned char, vector bool char);

int vec_all_gt (vector unsigned char, vector unsigned char);

int vec_all_gt (vector bool char, vector signed char);

int vec_all_gt (vector signed char, vector bool char);

int vec_all_gt (vector signed char, vector signed char);

int vec_all_gt (vector bool short, vector unsigned short);

int vec_all_gt (vector unsigned short, vector bool short);

int vec_all_gt (vector unsigned short, vector unsigned short);

int vec_all_gt (vector bool short, vector signed short);

int vec_all_gt (vector signed short, vector bool short);

int vec_all_gt (vector signed short, vector signed short);

int vec_all_gt (vector bool int, vector unsigned int);

int vec_all_gt (vector unsigned int, vector bool int);

int vec_all_gt (vector unsigned int, vector unsigned int);

int vec_all_gt (vector bool int, vector signed int);

int vec_all_gt (vector signed int, vector bool int);

int vec_all_gt (vector signed int, vector signed int);

int vec_all_gt (vector float, vector float);

int vec_all_in (vector float, vector float);

int vec_all_le (vector bool char, vector unsigned char);

int vec_all_le (vector unsigned char, vector bool char);

int vec_all_le (vector unsigned char, vector unsigned char);

int vec_all_le (vector bool char, vector signed char);

int vec_all_le (vector signed char, vector bool char);

int vec_all_le (vector signed char, vector signed char);

int vec_all_le (vector bool short, vector unsigned short);

int vec_all_le (vector unsigned short, vector bool short);

int vec_all_le (vector unsigned short, vector unsigned short);

int vec_all_le (vector bool short, vector signed short);

int vec_all_le (vector signed short, vector bool short);

int vec_all_le (vector signed short, vector signed short);

int vec_all_le (vector bool int, vector unsigned int);

int vec_all_le (vector unsigned int, vector bool int);

int vec_all_le (vector unsigned int, vector unsigned int);

int vec_all_le (vector bool int, vector signed int);

int vec_all_le (vector signed int, vector bool int);

int vec_all_le (vector signed int, vector signed int);

int vec_all_le (vector float, vector float);

int vec_all_lt (vector bool char, vector unsigned char);

int vec_all_lt (vector unsigned char, vector bool char);

int vec_all_lt (vector unsigned char, vector unsigned char);

int vec_all_lt (vector bool char, vector signed char);

int vec_all_lt (vector signed char, vector bool char);

int vec_all_lt (vector signed char, vector signed char);

int vec_all_lt (vector bool short, vector unsigned short);

int vec_all_lt (vector unsigned short, vector bool short);

int vec_all_lt (vector unsigned short, vector unsigned short);

int vec_all_lt (vector bool short, vector signed short);

int vec_all_lt (vector signed short, vector bool short);

int vec_all_lt (vector signed short, vector signed short);

int vec_all_lt (vector bool int, vector unsigned int);

int vec_all_lt (vector unsigned int, vector bool int);

int vec_all_lt (vector unsigned int, vector unsigned int);

666 Using the GNU Compiler Collection (GCC)

int vec_all_lt (vector bool int, vector signed int);

int vec_all_lt (vector signed int, vector bool int);

int vec_all_lt (vector signed int, vector signed int);

int vec_all_lt (vector float, vector float);

int vec_all_nan (vector float);

int vec_all_ne (vector signed char, vector bool char);

int vec_all_ne (vector signed char, vector signed char);

int vec_all_ne (vector unsigned char, vector bool char);

int vec_all_ne (vector unsigned char, vector unsigned char);

int vec_all_ne (vector bool char, vector bool char);

int vec_all_ne (vector bool char, vector unsigned char);

int vec_all_ne (vector bool char, vector signed char);

int vec_all_ne (vector signed short, vector bool short);

int vec_all_ne (vector signed short, vector signed short);

int vec_all_ne (vector unsigned short, vector bool short);

int vec_all_ne (vector unsigned short, vector unsigned short);

int vec_all_ne (vector bool short, vector bool short);

int vec_all_ne (vector bool short, vector unsigned short);

int vec_all_ne (vector bool short, vector signed short);

int vec_all_ne (vector pixel, vector pixel);

int vec_all_ne (vector signed int, vector bool int);

int vec_all_ne (vector signed int, vector signed int);

int vec_all_ne (vector unsigned int, vector bool int);

int vec_all_ne (vector unsigned int, vector unsigned int);

int vec_all_ne (vector bool int, vector bool int);

int vec_all_ne (vector bool int, vector unsigned int);

int vec_all_ne (vector bool int, vector signed int);

int vec_all_ne (vector float, vector float);

int vec_all_nge (vector float, vector float);

int vec_all_ngt (vector float, vector float);

int vec_all_nle (vector float, vector float);

int vec_all_nlt (vector float, vector float);

int vec_all_numeric (vector float);

int vec_any_eq (vector signed char, vector bool char);

int vec_any_eq (vector signed char, vector signed char);

int vec_any_eq (vector unsigned char, vector bool char);

int vec_any_eq (vector unsigned char, vector unsigned char);

int vec_any_eq (vector bool char, vector bool char);

int vec_any_eq (vector bool char, vector unsigned char);

int vec_any_eq (vector bool char, vector signed char);

int vec_any_eq (vector signed short, vector bool short);

int vec_any_eq (vector signed short, vector signed short);

int vec_any_eq (vector unsigned short, vector bool short);

int vec_any_eq (vector unsigned short, vector unsigned short);

int vec_any_eq (vector bool short, vector bool short);

int vec_any_eq (vector bool short, vector unsigned short);

int vec_any_eq (vector bool short, vector signed short);

int vec_any_eq (vector pixel, vector pixel);

int vec_any_eq (vector signed int, vector bool int);

int vec_any_eq (vector signed int, vector signed int);

Chapter 6: Extensions to the C Language Family 667

int vec_any_eq (vector unsigned int, vector bool int);

int vec_any_eq (vector unsigned int, vector unsigned int);

int vec_any_eq (vector bool int, vector bool int);

int vec_any_eq (vector bool int, vector unsigned int);

int vec_any_eq (vector bool int, vector signed int);

int vec_any_eq (vector float, vector float);

int vec_any_ge (vector signed char, vector bool char);

int vec_any_ge (vector unsigned char, vector bool char);

int vec_any_ge (vector unsigned char, vector unsigned char);

int vec_any_ge (vector signed char, vector signed char);

int vec_any_ge (vector bool char, vector unsigned char);

int vec_any_ge (vector bool char, vector signed char);

int vec_any_ge (vector unsigned short, vector bool short);

int vec_any_ge (vector unsigned short, vector unsigned short);

int vec_any_ge (vector signed short, vector signed short);

int vec_any_ge (vector signed short, vector bool short);

int vec_any_ge (vector bool short, vector unsigned short);

int vec_any_ge (vector bool short, vector signed short);

int vec_any_ge (vector signed int, vector bool int);

int vec_any_ge (vector unsigned int, vector bool int);

int vec_any_ge (vector unsigned int, vector unsigned int);

int vec_any_ge (vector signed int, vector signed int);

int vec_any_ge (vector bool int, vector unsigned int);

int vec_any_ge (vector bool int, vector signed int);

int vec_any_ge (vector float, vector float);

int vec_any_gt (vector bool char, vector unsigned char);

int vec_any_gt (vector unsigned char, vector bool char);

int vec_any_gt (vector unsigned char, vector unsigned char);

int vec_any_gt (vector bool char, vector signed char);

int vec_any_gt (vector signed char, vector bool char);

int vec_any_gt (vector signed char, vector signed char);

int vec_any_gt (vector bool short, vector unsigned short);

int vec_any_gt (vector unsigned short, vector bool short);

int vec_any_gt (vector unsigned short, vector unsigned short);

int vec_any_gt (vector bool short, vector signed short);

int vec_any_gt (vector signed short, vector bool short);

int vec_any_gt (vector signed short, vector signed short);

int vec_any_gt (vector bool int, vector unsigned int);

int vec_any_gt (vector unsigned int, vector bool int);

int vec_any_gt (vector unsigned int, vector unsigned int);

int vec_any_gt (vector bool int, vector signed int);

int vec_any_gt (vector signed int, vector bool int);

int vec_any_gt (vector signed int, vector signed int);

int vec_any_gt (vector float, vector float);

int vec_any_le (vector bool char, vector unsigned char);

int vec_any_le (vector unsigned char, vector bool char);

int vec_any_le (vector unsigned char, vector unsigned char);

int vec_any_le (vector bool char, vector signed char);

int vec_any_le (vector signed char, vector bool char);

int vec_any_le (vector signed char, vector signed char);

int vec_any_le (vector bool short, vector unsigned short);

int vec_any_le (vector unsigned short, vector bool short);

int vec_any_le (vector unsigned short, vector unsigned short);

int vec_any_le (vector bool short, vector signed short);

int vec_any_le (vector signed short, vector bool short);

668 Using the GNU Compiler Collection (GCC)

int vec_any_le (vector signed short, vector signed short);

int vec_any_le (vector bool int, vector unsigned int);

int vec_any_le (vector unsigned int, vector bool int);

int vec_any_le (vector unsigned int, vector unsigned int);

int vec_any_le (vector bool int, vector signed int);

int vec_any_le (vector signed int, vector bool int);

int vec_any_le (vector signed int, vector signed int);

int vec_any_le (vector float, vector float);

int vec_any_lt (vector bool char, vector unsigned char);

int vec_any_lt (vector unsigned char, vector bool char);

int vec_any_lt (vector unsigned char, vector unsigned char);

int vec_any_lt (vector bool char, vector signed char);

int vec_any_lt (vector signed char, vector bool char);

int vec_any_lt (vector signed char, vector signed char);

int vec_any_lt (vector bool short, vector unsigned short);

int vec_any_lt (vector unsigned short, vector bool short);

int vec_any_lt (vector unsigned short, vector unsigned short);

int vec_any_lt (vector bool short, vector signed short);

int vec_any_lt (vector signed short, vector bool short);

int vec_any_lt (vector signed short, vector signed short);

int vec_any_lt (vector bool int, vector unsigned int);

int vec_any_lt (vector unsigned int, vector bool int);

int vec_any_lt (vector unsigned int, vector unsigned int);

int vec_any_lt (vector bool int, vector signed int);

int vec_any_lt (vector signed int, vector bool int);

int vec_any_lt (vector signed int, vector signed int);

int vec_any_lt (vector float, vector float);

int vec_any_nan (vector float);

int vec_any_ne (vector signed char, vector bool char);

int vec_any_ne (vector signed char, vector signed char);

int vec_any_ne (vector unsigned char, vector bool char);

int vec_any_ne (vector unsigned char, vector unsigned char);

int vec_any_ne (vector bool char, vector bool char);

int vec_any_ne (vector bool char, vector unsigned char);

int vec_any_ne (vector bool char, vector signed char);

int vec_any_ne (vector signed short, vector bool short);

int vec_any_ne (vector signed short, vector signed short);

int vec_any_ne (vector unsigned short, vector bool short);

int vec_any_ne (vector unsigned short, vector unsigned short);

int vec_any_ne (vector bool short, vector bool short);

int vec_any_ne (vector bool short, vector unsigned short);

int vec_any_ne (vector bool short, vector signed short);

int vec_any_ne (vector pixel, vector pixel);

int vec_any_ne (vector signed int, vector bool int);

int vec_any_ne (vector signed int, vector signed int);

int vec_any_ne (vector unsigned int, vector bool int);

int vec_any_ne (vector unsigned int, vector unsigned int);

int vec_any_ne (vector bool int, vector bool int);

int vec_any_ne (vector bool int, vector unsigned int);

int vec_any_ne (vector bool int, vector signed int);

int vec_any_ne (vector float, vector float);

int vec_any_nge (vector float, vector float);

int vec_any_ngt (vector float, vector float);

Chapter 6: Extensions to the C Language Family 669

int vec_any_nle (vector float, vector float);

int vec_any_nlt (vector float, vector float);

int vec_any_numeric (vector float);

int vec_any_out (vector float, vector float);

If the vector/scalar (VSX) instruction set is available, the following additional functions
are available:

vector double vec_abs (vector double);

vector double vec_add (vector double, vector double);

vector double vec_and (vector double, vector double);

vector double vec_and (vector double, vector bool long);

vector double vec_and (vector bool long, vector double);

vector double vec_andc (vector double, vector double);

vector double vec_andc (vector double, vector bool long);

vector double vec_andc (vector bool long, vector double);

vector double vec_ceil (vector double);

vector bool long vec_cmpeq (vector double, vector double);

vector bool long vec_cmpge (vector double, vector double);

vector bool long vec_cmpgt (vector double, vector double);

vector bool long vec_cmple (vector double, vector double);

vector bool long vec_cmplt (vector double, vector double);

vector float vec_div (vector float, vector float);

vector double vec_div (vector double, vector double);

vector double vec_floor (vector double);

vector double vec_ld (int, const vector double *);

vector double vec_ld (int, const double *);

vector double vec_ldl (int, const vector double *);

vector double vec_ldl (int, const double *);

vector unsigned char vec_lvsl (int, const volatile double *);

vector unsigned char vec_lvsr (int, const volatile double *);

vector double vec_madd (vector double, vector double, vector double);

vector double vec_max (vector double, vector double);

vector double vec_min (vector double, vector double);

vector float vec_msub (vector float, vector float, vector float);

vector double vec_msub (vector double, vector double, vector double);

vector float vec_mul (vector float, vector float);

vector double vec_mul (vector double, vector double);

vector float vec_nearbyint (vector float);

vector double vec_nearbyint (vector double);

vector float vec_nmadd (vector float, vector float, vector float);

vector double vec_nmadd (vector double, vector double, vector double);

vector double vec_nmsub (vector double, vector double, vector double);

vector double vec_nor (vector double, vector double);

vector double vec_or (vector double, vector double);

vector double vec_or (vector double, vector bool long);

vector double vec_or (vector bool long, vector double);

vector double vec_perm (vector double,

vector double,

vector unsigned char);

vector double vec_rint (vector double);

vector double vec_recip (vector double, vector double);

vector double vec_rsqrt (vector double);

vector double vec_rsqrte (vector double);

vector double vec_sel (vector double, vector double, vector bool long);

670 Using the GNU Compiler Collection (GCC)

vector double vec_sel (vector double, vector double, vector unsigned long);

vector double vec_sub (vector double, vector double);

vector float vec_sqrt (vector float);

vector double vec_sqrt (vector double);

void vec_st (vector double, int, vector double *);

void vec_st (vector double, int, double *);

vector double vec_trunc (vector double);

vector double vec_xor (vector double, vector double);

vector double vec_xor (vector double, vector bool long);

vector double vec_xor (vector bool long, vector double);

int vec_all_eq (vector double, vector double);

int vec_all_ge (vector double, vector double);

int vec_all_gt (vector double, vector double);

int vec_all_le (vector double, vector double);

int vec_all_lt (vector double, vector double);

int vec_all_nan (vector double);

int vec_all_ne (vector double, vector double);

int vec_all_nge (vector double, vector double);

int vec_all_ngt (vector double, vector double);

int vec_all_nle (vector double, vector double);

int vec_all_nlt (vector double, vector double);

int vec_all_numeric (vector double);

int vec_any_eq (vector double, vector double);

int vec_any_ge (vector double, vector double);

int vec_any_gt (vector double, vector double);

int vec_any_le (vector double, vector double);

int vec_any_lt (vector double, vector double);

int vec_any_nan (vector double);

int vec_any_ne (vector double, vector double);

int vec_any_nge (vector double, vector double);

int vec_any_ngt (vector double, vector double);

int vec_any_nle (vector double, vector double);

int vec_any_nlt (vector double, vector double);

int vec_any_numeric (vector double);

vector double vec_vsx_ld (int, const vector double *);

vector double vec_vsx_ld (int, const double *);

vector float vec_vsx_ld (int, const vector float *);

vector float vec_vsx_ld (int, const float *);

vector bool int vec_vsx_ld (int, const vector bool int *);

vector signed int vec_vsx_ld (int, const vector signed int *);

vector signed int vec_vsx_ld (int, const int *);

vector signed int vec_vsx_ld (int, const long *);

vector unsigned int vec_vsx_ld (int, const vector unsigned int *);

vector unsigned int vec_vsx_ld (int, const unsigned int *);

vector unsigned int vec_vsx_ld (int, const unsigned long *);

vector bool short vec_vsx_ld (int, const vector bool short *);

vector pixel vec_vsx_ld (int, const vector pixel *);

vector signed short vec_vsx_ld (int, const vector signed short *);

vector signed short vec_vsx_ld (int, const short *);

vector unsigned short vec_vsx_ld (int, const vector unsigned short *);

vector unsigned short vec_vsx_ld (int, const unsigned short *);

vector bool char vec_vsx_ld (int, const vector bool char *);

vector signed char vec_vsx_ld (int, const vector signed char *);

vector signed char vec_vsx_ld (int, const signed char *);

vector unsigned char vec_vsx_ld (int, const vector unsigned char *);

vector unsigned char vec_vsx_ld (int, const unsigned char *);

Chapter 6: Extensions to the C Language Family 671

void vec_vsx_st (vector double, int, vector double *);

void vec_vsx_st (vector double, int, double *);

void vec_vsx_st (vector float, int, vector float *);

void vec_vsx_st (vector float, int, float *);

void vec_vsx_st (vector signed int, int, vector signed int *);

void vec_vsx_st (vector signed int, int, int *);

void vec_vsx_st (vector unsigned int, int, vector unsigned int *);

void vec_vsx_st (vector unsigned int, int, unsigned int *);

void vec_vsx_st (vector bool int, int, vector bool int *);

void vec_vsx_st (vector bool int, int, unsigned int *);

void vec_vsx_st (vector bool int, int, int *);

void vec_vsx_st (vector signed short, int, vector signed short *);

void vec_vsx_st (vector signed short, int, short *);

void vec_vsx_st (vector unsigned short, int, vector unsigned short *);

void vec_vsx_st (vector unsigned short, int, unsigned short *);

void vec_vsx_st (vector bool short, int, vector bool short *);

void vec_vsx_st (vector bool short, int, unsigned short *);

void vec_vsx_st (vector pixel, int, vector pixel *);

void vec_vsx_st (vector pixel, int, unsigned short *);

void vec_vsx_st (vector pixel, int, short *);

void vec_vsx_st (vector bool short, int, short *);

void vec_vsx_st (vector signed char, int, vector signed char *);

void vec_vsx_st (vector signed char, int, signed char *);

void vec_vsx_st (vector unsigned char, int, vector unsigned char *);

void vec_vsx_st (vector unsigned char, int, unsigned char *);

void vec_vsx_st (vector bool char, int, vector bool char *);

void vec_vsx_st (vector bool char, int, unsigned char *);

void vec_vsx_st (vector bool char, int, signed char *);

vector double vec_xxpermdi (vector double, vector double, int);

vector float vec_xxpermdi (vector float, vector float, int);

vector long long vec_xxpermdi (vector long long, vector long long, int);

vector unsigned long long vec_xxpermdi (vector unsigned long long,

vector unsigned long long, int);

vector int vec_xxpermdi (vector int, vector int, int);

vector unsigned int vec_xxpermdi (vector unsigned int,

vector unsigned int, int);

vector short vec_xxpermdi (vector short, vector short, int);

vector unsigned short vec_xxpermdi (vector unsigned short,

vector unsigned short, int);

vector signed char vec_xxpermdi (vector signed char, vector signed char, int);

vector unsigned char vec_xxpermdi (vector unsigned char,

vector unsigned char, int);

vector double vec_xxsldi (vector double, vector double, int);

vector float vec_xxsldi (vector float, vector float, int);

vector long long vec_xxsldi (vector long long, vector long long, int);

vector unsigned long long vec_xxsldi (vector unsigned long long,

vector unsigned long long, int);

vector int vec_xxsldi (vector int, vector int, int);

vector unsigned int vec_xxsldi (vector unsigned int, vector unsigned int, int);

vector short vec_xxsldi (vector short, vector short, int);

vector unsigned short vec_xxsldi (vector unsigned short,

vector unsigned short, int);

vector signed char vec_xxsldi (vector signed char, vector signed char, int);

vector unsigned char vec_xxsldi (vector unsigned char,

vector unsigned char, int);

672 Using the GNU Compiler Collection (GCC)

Note that the ‘vec_ld’ and ‘vec_st’ built-in functions always generate the AltiVec ‘LVX’
and ‘STVX’ instructions even if the VSX instruction set is available. The ‘vec_vsx_ld’ and
‘vec_vsx_st’ built-in functions always generate the VSX ‘LXVD2X’, ‘LXVW4X’, ‘STXVD2X’,
and ‘STXVW4X’ instructions.

If the ISA 2.07 additions to the vector/scalar (power8-vector) instruction set is available,
the following additional functions are available for both 32-bit and 64-bit targets. For 64-
bit targets, you can use vector long instead of vector long long, vector bool long instead of
vector bool long long, and vector unsigned long instead of vector unsigned long long.

vector long long vec_abs (vector long long);

vector long long vec_add (vector long long, vector long long);

vector unsigned long long vec_add (vector unsigned long long,

vector unsigned long long);

int vec_all_eq (vector long long, vector long long);

int vec_all_ge (vector long long, vector long long);

int vec_all_gt (vector long long, vector long long);

int vec_all_le (vector long long, vector long long);

int vec_all_lt (vector long long, vector long long);

int vec_all_ne (vector long long, vector long long);

int vec_any_eq (vector long long, vector long long);

int vec_any_ge (vector long long, vector long long);

int vec_any_gt (vector long long, vector long long);

int vec_any_le (vector long long, vector long long);

int vec_any_lt (vector long long, vector long long);

int vec_any_ne (vector long long, vector long long);

vector long long vec_eqv (vector long long, vector long long);

vector long long vec_eqv (vector bool long long, vector long long);

vector long long vec_eqv (vector long long, vector bool long long);

vector unsigned long long vec_eqv (vector unsigned long long,

vector unsigned long long);

vector unsigned long long vec_eqv (vector bool long long,

vector unsigned long long);

vector unsigned long long vec_eqv (vector unsigned long long,

vector bool long long);

vector int vec_eqv (vector int, vector int);

vector int vec_eqv (vector bool int, vector int);

vector int vec_eqv (vector int, vector bool int);

vector unsigned int vec_eqv (vector unsigned int, vector unsigned int);

vector unsigned int vec_eqv (vector bool unsigned int,

vector unsigned int);

vector unsigned int vec_eqv (vector unsigned int,

vector bool unsigned int);

vector short vec_eqv (vector short, vector short);

vector short vec_eqv (vector bool short, vector short);

vector short vec_eqv (vector short, vector bool short);

vector unsigned short vec_eqv (vector unsigned short, vector unsigned short);

vector unsigned short vec_eqv (vector bool unsigned short,

vector unsigned short);

vector unsigned short vec_eqv (vector unsigned short,

vector bool unsigned short);

vector signed char vec_eqv (vector signed char, vector signed char);

vector signed char vec_eqv (vector bool signed char, vector signed char);

vector signed char vec_eqv (vector signed char, vector bool signed char);

vector unsigned char vec_eqv (vector unsigned char, vector unsigned char);

Chapter 6: Extensions to the C Language Family 673

vector unsigned char vec_eqv (vector bool unsigned char, vector unsigned char);

vector unsigned char vec_eqv (vector unsigned char, vector bool unsigned char);

vector long long vec_max (vector long long, vector long long);

vector unsigned long long vec_max (vector unsigned long long,

vector unsigned long long);

vector long long vec_min (vector long long, vector long long);

vector unsigned long long vec_min (vector unsigned long long,

vector unsigned long long);

vector long long vec_nand (vector long long, vector long long);

vector long long vec_nand (vector bool long long, vector long long);

vector long long vec_nand (vector long long, vector bool long long);

vector unsigned long long vec_nand (vector unsigned long long,

vector unsigned long long);

vector unsigned long long vec_nand (vector bool long long,

vector unsigned long long);

vector unsigned long long vec_nand (vector unsigned long long,

vector bool long long);

vector int vec_nand (vector int, vector int);

vector int vec_nand (vector bool int, vector int);

vector int vec_nand (vector int, vector bool int);

vector unsigned int vec_nand (vector unsigned int, vector unsigned int);

vector unsigned int vec_nand (vector bool unsigned int,

vector unsigned int);

vector unsigned int vec_nand (vector unsigned int,

vector bool unsigned int);

vector short vec_nand (vector short, vector short);

vector short vec_nand (vector bool short, vector short);

vector short vec_nand (vector short, vector bool short);

vector unsigned short vec_nand (vector unsigned short, vector unsigned short);

vector unsigned short vec_nand (vector bool unsigned short,

vector unsigned short);

vector unsigned short vec_nand (vector unsigned short,

vector bool unsigned short);

vector signed char vec_nand (vector signed char, vector signed char);

vector signed char vec_nand (vector bool signed char, vector signed char);

vector signed char vec_nand (vector signed char, vector bool signed char);

vector unsigned char vec_nand (vector unsigned char, vector unsigned char);

vector unsigned char vec_nand (vector bool unsigned char, vector unsigned char);

vector unsigned char vec_nand (vector unsigned char, vector bool unsigned char);

vector long long vec_orc (vector long long, vector long long);

vector long long vec_orc (vector bool long long, vector long long);

vector long long vec_orc (vector long long, vector bool long long);

vector unsigned long long vec_orc (vector unsigned long long,

vector unsigned long long);

vector unsigned long long vec_orc (vector bool long long,

vector unsigned long long);

vector unsigned long long vec_orc (vector unsigned long long,

vector bool long long);

vector int vec_orc (vector int, vector int);

vector int vec_orc (vector bool int, vector int);

vector int vec_orc (vector int, vector bool int);

vector unsigned int vec_orc (vector unsigned int, vector unsigned int);

vector unsigned int vec_orc (vector bool unsigned int,

vector unsigned int);

674 Using the GNU Compiler Collection (GCC)

vector unsigned int vec_orc (vector unsigned int,

vector bool unsigned int);

vector short vec_orc (vector short, vector short);

vector short vec_orc (vector bool short, vector short);

vector short vec_orc (vector short, vector bool short);

vector unsigned short vec_orc (vector unsigned short, vector unsigned short);

vector unsigned short vec_orc (vector bool unsigned short,

vector unsigned short);

vector unsigned short vec_orc (vector unsigned short,

vector bool unsigned short);

vector signed char vec_orc (vector signed char, vector signed char);

vector signed char vec_orc (vector bool signed char, vector signed char);

vector signed char vec_orc (vector signed char, vector bool signed char);

vector unsigned char vec_orc (vector unsigned char, vector unsigned char);

vector unsigned char vec_orc (vector bool unsigned char, vector unsigned char);

vector unsigned char vec_orc (vector unsigned char, vector bool unsigned char);

vector int vec_pack (vector long long, vector long long);

vector unsigned int vec_pack (vector unsigned long long,

vector unsigned long long);

vector bool int vec_pack (vector bool long long, vector bool long long);

vector int vec_packs (vector long long, vector long long);

vector unsigned int vec_packs (vector unsigned long long,

vector unsigned long long);

vector unsigned int vec_packsu (vector long long, vector long long);

vector long long vec_rl (vector long long,

vector unsigned long long);

vector long long vec_rl (vector unsigned long long,

vector unsigned long long);

vector long long vec_sl (vector long long, vector unsigned long long);

vector long long vec_sl (vector unsigned long long,

vector unsigned long long);

vector long long vec_sr (vector long long, vector unsigned long long);

vector unsigned long long char vec_sr (vector unsigned long long,

vector unsigned long long);

vector long long vec_sra (vector long long, vector unsigned long long);

vector unsigned long long vec_sra (vector unsigned long long,

vector unsigned long long);

vector long long vec_sub (vector long long, vector long long);

vector unsigned long long vec_sub (vector unsigned long long,

vector unsigned long long);

vector long long vec_unpackh (vector int);

vector unsigned long long vec_unpackh (vector unsigned int);

vector long long vec_unpackl (vector int);

vector unsigned long long vec_unpackl (vector unsigned int);

vector long long vec_vaddudm (vector long long, vector long long);

vector long long vec_vaddudm (vector bool long long, vector long long);

vector long long vec_vaddudm (vector long long, vector bool long long);

Chapter 6: Extensions to the C Language Family 675

vector unsigned long long vec_vaddudm (vector unsigned long long,

vector unsigned long long);

vector unsigned long long vec_vaddudm (vector bool unsigned long long,

vector unsigned long long);

vector unsigned long long vec_vaddudm (vector unsigned long long,

vector bool unsigned long long);

vector long long vec_vbpermq (vector signed char, vector signed char);

vector long long vec_vbpermq (vector unsigned char, vector unsigned char);

vector long long vec_vclz (vector long long);

vector unsigned long long vec_vclz (vector unsigned long long);

vector int vec_vclz (vector int);

vector unsigned int vec_vclz (vector int);

vector short vec_vclz (vector short);

vector unsigned short vec_vclz (vector unsigned short);

vector signed char vec_vclz (vector signed char);

vector unsigned char vec_vclz (vector unsigned char);

vector signed char vec_vclzb (vector signed char);

vector unsigned char vec_vclzb (vector unsigned char);

vector long long vec_vclzd (vector long long);

vector unsigned long long vec_vclzd (vector unsigned long long);

vector short vec_vclzh (vector short);

vector unsigned short vec_vclzh (vector unsigned short);

vector int vec_vclzw (vector int);

vector unsigned int vec_vclzw (vector int);

vector signed char vec_vgbbd (vector signed char);

vector unsigned char vec_vgbbd (vector unsigned char);

vector long long vec_vmaxsd (vector long long, vector long long);

vector unsigned long long vec_vmaxud (vector unsigned long long,

unsigned vector long long);

vector long long vec_vminsd (vector long long, vector long long);

vector unsigned long long vec_vminud (vector long long,

vector long long);

vector int vec_vpksdss (vector long long, vector long long);

vector unsigned int vec_vpksdss (vector long long, vector long long);

vector unsigned int vec_vpkudus (vector unsigned long long,

vector unsigned long long);

vector int vec_vpkudum (vector long long, vector long long);

vector unsigned int vec_vpkudum (vector unsigned long long,

vector unsigned long long);

vector bool int vec_vpkudum (vector bool long long, vector bool long long);

vector long long vec_vpopcnt (vector long long);

vector unsigned long long vec_vpopcnt (vector unsigned long long);

vector int vec_vpopcnt (vector int);

676 Using the GNU Compiler Collection (GCC)

vector unsigned int vec_vpopcnt (vector int);

vector short vec_vpopcnt (vector short);

vector unsigned short vec_vpopcnt (vector unsigned short);

vector signed char vec_vpopcnt (vector signed char);

vector unsigned char vec_vpopcnt (vector unsigned char);

vector signed char vec_vpopcntb (vector signed char);

vector unsigned char vec_vpopcntb (vector unsigned char);

vector long long vec_vpopcntd (vector long long);

vector unsigned long long vec_vpopcntd (vector unsigned long long);

vector short vec_vpopcnth (vector short);

vector unsigned short vec_vpopcnth (vector unsigned short);

vector int vec_vpopcntw (vector int);

vector unsigned int vec_vpopcntw (vector int);

vector long long vec_vrld (vector long long, vector unsigned long long);

vector unsigned long long vec_vrld (vector unsigned long long,

vector unsigned long long);

vector long long vec_vsld (vector long long, vector unsigned long long);

vector long long vec_vsld (vector unsigned long long,

vector unsigned long long);

vector long long vec_vsrad (vector long long, vector unsigned long long);

vector unsigned long long vec_vsrad (vector unsigned long long,

vector unsigned long long);

vector long long vec_vsrd (vector long long, vector unsigned long long);

vector unsigned long long char vec_vsrd (vector unsigned long long,

vector unsigned long long);

vector long long vec_vsubudm (vector long long, vector long long);

vector long long vec_vsubudm (vector bool long long, vector long long);

vector long long vec_vsubudm (vector long long, vector bool long long);

vector unsigned long long vec_vsubudm (vector unsigned long long,

vector unsigned long long);

vector unsigned long long vec_vsubudm (vector bool long long,

vector unsigned long long);

vector unsigned long long vec_vsubudm (vector unsigned long long,

vector bool long long);

vector long long vec_vupkhsw (vector int);

vector unsigned long long vec_vupkhsw (vector unsigned int);

vector long long vec_vupklsw (vector int);

vector unsigned long long vec_vupklsw (vector int);

If the ISA 2.07 additions to the vector/scalar (power8-vector) instruction set is available,
the following additional functions are available for 64-bit targets. New vector types (vector

int128 t and vector uint128 t) are available to hold the int128 t and uint128 t types
to use these builtins.

The normal vector extract, and set operations work on vector int128 t and vector
uint128 t types, but the index value must be 0.

vector __int128_t vec_vaddcuq (vector __int128_t, vector __int128_t);

Chapter 6: Extensions to the C Language Family 677

vector __uint128_t vec_vaddcuq (vector __uint128_t, vector __uint128_t);

vector __int128_t vec_vadduqm (vector __int128_t, vector __int128_t);

vector __uint128_t vec_vadduqm (vector __uint128_t, vector __uint128_t);

vector __int128_t vec_vaddecuq (vector __int128_t, vector __int128_t,

vector __int128_t);

vector __uint128_t vec_vaddecuq (vector __uint128_t, vector __uint128_t,

vector __uint128_t);

vector __int128_t vec_vaddeuqm (vector __int128_t, vector __int128_t,

vector __int128_t);

vector __uint128_t vec_vaddeuqm (vector __uint128_t, vector __uint128_t,

vector __uint128_t);

vector __int128_t vec_vsubecuq (vector __int128_t, vector __int128_t,

vector __int128_t);

vector __uint128_t vec_vsubecuq (vector __uint128_t, vector __uint128_t,

vector __uint128_t);

vector __int128_t vec_vsubeuqm (vector __int128_t, vector __int128_t,

vector __int128_t);

vector __uint128_t vec_vsubeuqm (vector __uint128_t, vector __uint128_t,

vector __uint128_t);

vector __int128_t vec_vsubcuq (vector __int128_t, vector __int128_t);

vector __uint128_t vec_vsubcuq (vector __uint128_t, vector __uint128_t);

__int128_t vec_vsubuqm (__int128_t, __int128_t);

__uint128_t vec_vsubuqm (__uint128_t, __uint128_t);

If the cryptographic instructions are enabled (‘-mcrypto’ or ‘-mcpu=power8’), the follow-
ing builtins are enabled.

vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);

vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,

vector unsigned long long);

vector unsigned long long __builtin_crypto_vcipherlast

(vector unsigned long long,

vector unsigned long long);

vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,

vector unsigned long long);

vector unsigned long long __builtin_crypto_vncipherlast

(vector unsigned long long,

vector unsigned long long);

vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,

vector unsigned char,

vector unsigned char);

vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,

vector unsigned short,

vector unsigned short);

vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,

678 Using the GNU Compiler Collection (GCC)

vector unsigned int,

vector unsigned int);

vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,

vector unsigned long long,

vector unsigned long long);

vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,

vector unsigned char);

vector unsigned short __builtin_crypto_vpmsumb (vector unsigned short,

vector unsigned short);

vector unsigned int __builtin_crypto_vpmsumb (vector unsigned int,

vector unsigned int);

vector unsigned long long __builtin_crypto_vpmsumb (vector unsigned long long,

vector unsigned long long);

vector unsigned long long __builtin_crypto_vshasigmad

(vector unsigned long long, int, int);

vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int,

int, int);

The second argument to the builtin crypto vshasigmad and builtin crypto vshasigmaw
builtin functions must be a constant integer that is 0 or 1. The third argument to these
builtin functions must be a constant integer in the range of 0 to 15.

6.57.22 PowerPC Hardware Transactional Memory Built-in
Functions

GCC provides two interfaces for accessing the Hardware Transactional Memory (HTM)
instructions available on some of the PowerPC family of prcoessors (eg, POWER8). The two
interfaces come in a low level interface, consisting of built-in functions specific to PowerPC
and a higher level interface consisting of inline functions that are common between PowerPC
and S/390.

6.57.22.1 PowerPC HTM Low Level Built-in Functions

The following low level built-in functions are available with ‘-mhtm’ or ‘-mcpu=CPU’ where
CPU is ‘power8’ or later. They all generate the machine instruction that is part of the
name.

The HTM built-ins return true or false depending on their success and their arguments
match exactly the type and order of the associated hardware instruction’s operands. Refer
to the ISA manual for a description of each instruction’s operands.

unsigned int __builtin_tbegin (unsigned int)

unsigned int __builtin_tend (unsigned int)

unsigned int __builtin_tabort (unsigned int)

unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int)

unsigned int __builtin_tabortdci (unsigned int, unsigned int, int)

unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int)

unsigned int __builtin_tabortwci (unsigned int, unsigned int, int)

unsigned int __builtin_tcheck (unsigned int)

Chapter 6: Extensions to the C Language Family 679

unsigned int __builtin_treclaim (unsigned int)

unsigned int __builtin_trechkpt (void)

unsigned int __builtin_tsr (unsigned int)

In addition to the above HTM built-ins, we have added built-ins for some common ex-
tended mnemonics of the HTM instructions:

unsigned int __builtin_tendall (void)

unsigned int __builtin_tresume (void)

unsigned int __builtin_tsuspend (void)

The following set of built-in functions are available to gain access to the HTM specific
special purpose registers.

unsigned long __builtin_get_texasr (void)

unsigned long __builtin_get_texasru (void)

unsigned long __builtin_get_tfhar (void)

unsigned long __builtin_get_tfiar (void)

void __builtin_set_texasr (unsigned long);

void __builtin_set_texasru (unsigned long);

void __builtin_set_tfhar (unsigned long);

void __builtin_set_tfiar (unsigned long);

Example usage of these low level built-in functions may look like:
#include <htmintrin.h>

int num_retries = 10;

while (1)

{

if (__builtin_tbegin (0))

{

/* Transaction State Initiated. */

if (is_locked (lock))

__builtin_tabort (0);

... transaction code...

__builtin_tend (0);

break;

}

else

{

/* Transaction State Failed. Use locks if the transaction

failure is "persistent" or we’ve tried too many times. */

if (num_retries-- <= 0

|| _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))

{

acquire_lock (lock);

... non transactional fallback path...

release_lock (lock);

break;

}

}

}

One final built-in function has been added that returns the value of the 2-bit Transaction
State field of the Machine Status Register (MSR) as stored in CR0.

unsigned long __builtin_ttest (void)

This built-in can be used to determine the current transaction state using the following
code example:

680 Using the GNU Compiler Collection (GCC)

#include <htmintrin.h>

unsigned char tx_state = _HTM_STATE (__builtin_ttest ());

if (tx_state == _HTM_TRANSACTIONAL)

{

/* Code to use in transactional state. */

}

else if (tx_state == _HTM_NONTRANSACTIONAL)

{

/* Code to use in non-transactional state. */

}

else if (tx_state == _HTM_SUSPENDED)

{

/* Code to use in transaction suspended state. */

}

6.57.22.2 PowerPC HTM High Level Inline Functions

The following high level HTM interface is made available by including <htmxlintrin.h>
and using ‘-mhtm’ or ‘-mcpu=CPU’ where CPU is ‘power8’ or later. This interface is common
between PowerPC and S/390, allowing users to write one HTM source implementation that
can be compiled and executed on either system.

long __TM_simple_begin (void)

long __TM_begin (void* const TM_buff)

long __TM_end (void)

void __TM_abort (void)

void __TM_named_abort (unsigned char const code)

void __TM_resume (void)

void __TM_suspend (void)

long __TM_is_user_abort (void* const TM_buff)

long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code)

long __TM_is_illegal (void* const TM_buff)

long __TM_is_footprint_exceeded (void* const TM_buff)

long __TM_nesting_depth (void* const TM_buff)

long __TM_is_nested_too_deep(void* const TM_buff)

long __TM_is_conflict(void* const TM_buff)

long __TM_is_failure_persistent(void* const TM_buff)

long __TM_failure_address(void* const TM_buff)

long long __TM_failure_code(void* const TM_buff)

Using these common set of HTM inline functions, we can create a more portable version
of the HTM example in the previous section that will work on either PowerPC or S/390:

#include <htmxlintrin.h>

int num_retries = 10;

TM_buff_type TM_buff;

while (1)

{

if (__TM_begin (TM_buff))

{

/* Transaction State Initiated. */

if (is_locked (lock))

__TM_abort ();

... transaction code...

__TM_end ();

Chapter 6: Extensions to the C Language Family 681

break;

}

else

{

/* Transaction State Failed. Use locks if the transaction

failure is "persistent" or we’ve tried too many times. */

if (num_retries-- <= 0

|| __TM_is_failure_persistent (TM_buff))

{

acquire_lock (lock);

... non transactional fallback path...

release_lock (lock);

break;

}

}

}

6.57.23 RX Built-in Functions

GCC supports some of the RX instructions which cannot be expressed in the C programming
language via the use of built-in functions. The following functions are supported:

[Built-in Function]void __builtin_rx_brk (void)
Generates the brk machine instruction.

[Built-in Function]void __builtin_rx_clrpsw (int)
Generates the clrpsw machine instruction to clear the specified bit in the processor
status word.

[Built-in Function]void __builtin_rx_int (int)
Generates the int machine instruction to generate an interrupt with the specified
value.

[Built-in Function]void __builtin_rx_machi (int, int)
Generates the machi machine instruction to add the result of multiplying the top 16
bits of the two arguments into the accumulator.

[Built-in Function]void __builtin_rx_maclo (int, int)
Generates the maclo machine instruction to add the result of multiplying the bottom
16 bits of the two arguments into the accumulator.

[Built-in Function]void __builtin_rx_mulhi (int, int)
Generates the mulhi machine instruction to place the result of multiplying the top
16 bits of the two arguments into the accumulator.

[Built-in Function]void __builtin_rx_mullo (int, int)
Generates the mullo machine instruction to place the result of multiplying the bottom
16 bits of the two arguments into the accumulator.

[Built-in Function]int __builtin_rx_mvfachi (void)
Generates the mvfachi machine instruction to read the top 32 bits of the accumulator.

[Built-in Function]int __builtin_rx_mvfacmi (void)
Generates the mvfacmi machine instruction to read the middle 32 bits of the accu-
mulator.

682 Using the GNU Compiler Collection (GCC)

[Built-in Function]int __builtin_rx_mvfc (int)
Generates the mvfc machine instruction which reads the control register specified in
its argument and returns its value.

[Built-in Function]void __builtin_rx_mvtachi (int)
Generates the mvtachi machine instruction to set the top 32 bits of the accumulator.

[Built-in Function]void __builtin_rx_mvtaclo (int)
Generates the mvtaclo machine instruction to set the bottom 32 bits of the accumu-
lator.

[Built-in Function]void __builtin_rx_mvtc (int reg, int val)
Generates the mvtc machine instruction which sets control register number reg to
val.

[Built-in Function]void __builtin_rx_mvtipl (int)
Generates the mvtipl machine instruction set the interrupt priority level.

[Built-in Function]void __builtin_rx_racw (int)
Generates the racw machine instruction to round the accumulator according to the
specified mode.

[Built-in Function]int __builtin_rx_revw (int)
Generates the revw machine instruction which swaps the bytes in the argument so
that bits 0–7 now occupy bits 8–15 and vice versa, and also bits 16–23 occupy bits
24–31 and vice versa.

[Built-in Function]void __builtin_rx_rmpa (void)
Generates the rmpa machine instruction which initiates a repeated multiply and ac-
cumulate sequence.

[Built-in Function]void __builtin_rx_round (float)
Generates the round machine instruction which returns the floating-point argument
rounded according to the current rounding mode set in the floating-point status word
register.

[Built-in Function]int __builtin_rx_sat (int)
Generates the sat machine instruction which returns the saturated value of the ar-
gument.

[Built-in Function]void __builtin_rx_setpsw (int)
Generates the setpsw machine instruction to set the specified bit in the processor
status word.

[Built-in Function]void __builtin_rx_wait (void)
Generates the wait machine instruction.

Chapter 6: Extensions to the C Language Family 683

6.57.24 S/390 System z Built-in Functions

[Built-in Function]int __builtin_tbegin (void*)
Generates the tbegin machine instruction starting a non-constraint hardware trans-
action. If the parameter is non-NULL the memory area is used to store the transaction
diagnostic buffer and will be passed as first operand to tbegin. This buffer can be
defined using the struct __htm_tdb C struct defined in htmintrin.h and must re-
side on a double-word boundary. The second tbegin operand is set to 0xff0c. This
enables save/restore of all GPRs and disables aborts for FPR and AR manipulations
inside the transaction body. The condition code set by the tbegin instruction is re-
turned as integer value. The tbegin instruction by definition overwrites the content
of all FPRs. The compiler will generate code which saves and restores the FPRs. For
soft-float code it is recommended to used the *_nofloat variant. In order to prevent
a TDB from being written it is required to pass an constant zero value as parameter.
Passing the zero value through a variable is not sufficient. Although modifications of
access registers inside the transaction will not trigger an transaction abort it is not
supported to actually modify them. Access registers do not get saved when entering
a transaction. They will have undefined state when reaching the abort code.

Macros for the possible return codes of tbegin are defined in the htmintrin.h header file:

_HTM_TBEGIN_STARTED
tbegin has been executed as part of normal processing. The transaction body
is supposed to be executed.

_HTM_TBEGIN_INDETERMINATE
The transaction was aborted due to an indeterminate condition which might
be persistent.

_HTM_TBEGIN_TRANSIENT
The transaction aborted due to a transient failure. The transaction should be
re-executed in that case.

_HTM_TBEGIN_PERSISTENT
The transaction aborted due to a persistent failure. Re-execution under same
circumstances will not be productive.

[Macro]_HTM_FIRST_USER_ABORT_CODE
The _HTM_FIRST_USER_ABORT_CODE defined in htmintrin.h specifies the first abort
code which can be used for __builtin_tabort. Values below this threshold are
reserved for machine use.

[Data type]struct __htm_tdb
The struct __htm_tdb defined in htmintrin.h describes the structure of the trans-
action diagnostic block as specified in the Principles of Operation manual chapter
5-91.

[Built-in Function]int __builtin_tbegin_nofloat (void*)
Same as __builtin_tbegin but without FPR saves and restores. Using this variant
in code making use of FPRs will leave the FPRs in undefined state when entering the
transaction abort handler code.

684 Using the GNU Compiler Collection (GCC)

[Built-in Function]int __builtin_tbegin_retry (void*, int)
In addition to __builtin_tbegin a loop for transient failures is generated. If tbegin
returns a condition code of 2 the transaction will be retried as often as specified in the
second argument. The perform processor assist instruction is used to tell the CPU
about the number of fails so far.

[Built-in Function]int __builtin_tbegin_retry_nofloat (void*, int)
Same as __builtin_tbegin_retry but without FPR saves and restores. Using this
variant in code making use of FPRs will leave the FPRs in undefined state when
entering the transaction abort handler code.

[Built-in Function]void __builtin_tbeginc (void)
Generates the tbeginc machine instruction starting a constraint hardware transac-
tion. The second operand is set to 0xff08.

[Built-in Function]int __builtin_tend (void)
Generates the tend machine instruction finishing a transaction and making the
changes visible to other threads. The condition code generated by tend is returned
as integer value.

[Built-in Function]void __builtin_tabort (int)
Generates the tabort machine instruction with the specified abort code. Abort codes
from 0 through 255 are reserved and will result in an error message.

[Built-in Function]void __builtin_tx_assist (int)
Generates the ppa rX,rY,1 machine instruction. Where the integer parameter is
loaded into rX and a value of zero is loaded into rY. The integer parameter specifies
the number of times the transaction repeatedly aborted.

[Built-in Function]int __builtin_tx_nesting_depth (void)
Generates the etnd machine instruction. The current nesting depth is returned as
integer value. For a nesting depth of 0 the code is not executed as part of an trans-
action.

[Built-in Function]void __builtin_non_tx_store (uint64 t *, uint64 t)
Generates the ntstg machine instruction. The second argument is written to the
first arguments location. The store operation will not be rolled-back in case of an
transaction abort.

6.57.25 SH Built-in Functions

The following built-in functions are supported on the SH1, SH2, SH3 and SH4 families of
processors:

[Built-in Function]void __builtin_set_thread_pointer (void *ptr)
Sets the ‘GBR’ register to the specified value ptr. This is usually used by system
code that manages threads and execution contexts. The compiler normally does not
generate code that modifies the contents of ‘GBR’ and thus the value is preserved across
function calls. Changing the ‘GBR’ value in user code must be done with caution, since
the compiler might use ‘GBR’ in order to access thread local variables.

Chapter 6: Extensions to the C Language Family 685

[Built-in Function]void * __builtin_thread_pointer (void)
Returns the value that is currently set in the ‘GBR’ register. Memory loads and stores
that use the thread pointer as a base address are turned into ‘GBR’ based displacement
loads and stores, if possible. For example:

struct my_tcb

{

int a, b, c, d, e;

};

int get_tcb_value (void)

{

// Generate ‘mov.l @(8,gbr),r0’ instruction

return ((my_tcb*)__builtin_thread_pointer ())->c;

}

6.57.26 SPARC VIS Built-in Functions

GCC supports SIMD operations on the SPARC using both the generic vector extensions
(see Section 6.49 [Vector Extensions], page 471) as well as built-in functions for the SPARC
Visual Instruction Set (VIS). When you use the ‘-mvis’ switch, the VIS extension is exposed
as the following built-in functions:

typedef int v1si __attribute__ ((vector_size (4)));

typedef int v2si __attribute__ ((vector_size (8)));

typedef short v4hi __attribute__ ((vector_size (8)));

typedef short v2hi __attribute__ ((vector_size (4)));

typedef unsigned char v8qi __attribute__ ((vector_size (8)));

typedef unsigned char v4qi __attribute__ ((vector_size (4)));

void __builtin_vis_write_gsr (int64_t);

int64_t __builtin_vis_read_gsr (void);

void * __builtin_vis_alignaddr (void *, long);

void * __builtin_vis_alignaddrl (void *, long);

int64_t __builtin_vis_faligndatadi (int64_t, int64_t);

v2si __builtin_vis_faligndatav2si (v2si, v2si);

v4hi __builtin_vis_faligndatav4hi (v4si, v4si);

v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);

v4hi __builtin_vis_fexpand (v4qi);

v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);

v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);

v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);

v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);

v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);

v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);

v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);

v4qi __builtin_vis_fpack16 (v4hi);

v8qi __builtin_vis_fpack32 (v2si, v8qi);

v2hi __builtin_vis_fpackfix (v2si);

v8qi __builtin_vis_fpmerge (v4qi, v4qi);

int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);

long __builtin_vis_edge8 (void *, void *);

686 Using the GNU Compiler Collection (GCC)

long __builtin_vis_edge8l (void *, void *);

long __builtin_vis_edge16 (void *, void *);

long __builtin_vis_edge16l (void *, void *);

long __builtin_vis_edge32 (void *, void *);

long __builtin_vis_edge32l (void *, void *);

long __builtin_vis_fcmple16 (v4hi, v4hi);

long __builtin_vis_fcmple32 (v2si, v2si);

long __builtin_vis_fcmpne16 (v4hi, v4hi);

long __builtin_vis_fcmpne32 (v2si, v2si);

long __builtin_vis_fcmpgt16 (v4hi, v4hi);

long __builtin_vis_fcmpgt32 (v2si, v2si);

long __builtin_vis_fcmpeq16 (v4hi, v4hi);

long __builtin_vis_fcmpeq32 (v2si, v2si);

v4hi __builtin_vis_fpadd16 (v4hi, v4hi);

v2hi __builtin_vis_fpadd16s (v2hi, v2hi);

v2si __builtin_vis_fpadd32 (v2si, v2si);

v1si __builtin_vis_fpadd32s (v1si, v1si);

v4hi __builtin_vis_fpsub16 (v4hi, v4hi);

v2hi __builtin_vis_fpsub16s (v2hi, v2hi);

v2si __builtin_vis_fpsub32 (v2si, v2si);

v1si __builtin_vis_fpsub32s (v1si, v1si);

long __builtin_vis_array8 (long, long);

long __builtin_vis_array16 (long, long);

long __builtin_vis_array32 (long, long);

When you use the ‘-mvis2’ switch, the VIS version 2.0 built-in functions also become
available:

long __builtin_vis_bmask (long, long);

int64_t __builtin_vis_bshuffledi (int64_t, int64_t);

v2si __builtin_vis_bshufflev2si (v2si, v2si);

v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);

v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);

long __builtin_vis_edge8n (void *, void *);

long __builtin_vis_edge8ln (void *, void *);

long __builtin_vis_edge16n (void *, void *);

long __builtin_vis_edge16ln (void *, void *);

long __builtin_vis_edge32n (void *, void *);

long __builtin_vis_edge32ln (void *, void *);

When you use the ‘-mvis3’ switch, the VIS version 3.0 built-in functions also become
available:

void __builtin_vis_cmask8 (long);

void __builtin_vis_cmask16 (long);

void __builtin_vis_cmask32 (long);

v4hi __builtin_vis_fchksm16 (v4hi, v4hi);

v4hi __builtin_vis_fsll16 (v4hi, v4hi);

v4hi __builtin_vis_fslas16 (v4hi, v4hi);

v4hi __builtin_vis_fsrl16 (v4hi, v4hi);

v4hi __builtin_vis_fsra16 (v4hi, v4hi);

v2si __builtin_vis_fsll16 (v2si, v2si);

v2si __builtin_vis_fslas16 (v2si, v2si);

v2si __builtin_vis_fsrl16 (v2si, v2si);

Chapter 6: Extensions to the C Language Family 687

v2si __builtin_vis_fsra16 (v2si, v2si);

long __builtin_vis_pdistn (v8qi, v8qi);

v4hi __builtin_vis_fmean16 (v4hi, v4hi);

int64_t __builtin_vis_fpadd64 (int64_t, int64_t);

int64_t __builtin_vis_fpsub64 (int64_t, int64_t);

v4hi __builtin_vis_fpadds16 (v4hi, v4hi);

v2hi __builtin_vis_fpadds16s (v2hi, v2hi);

v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);

v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);

v2si __builtin_vis_fpadds32 (v2si, v2si);

v1si __builtin_vis_fpadds32s (v1si, v1si);

v2si __builtin_vis_fpsubs32 (v2si, v2si);

v1si __builtin_vis_fpsubs32s (v1si, v1si);

long __builtin_vis_fucmple8 (v8qi, v8qi);

long __builtin_vis_fucmpne8 (v8qi, v8qi);

long __builtin_vis_fucmpgt8 (v8qi, v8qi);

long __builtin_vis_fucmpeq8 (v8qi, v8qi);

float __builtin_vis_fhadds (float, float);

double __builtin_vis_fhaddd (double, double);

float __builtin_vis_fhsubs (float, float);

double __builtin_vis_fhsubd (double, double);

float __builtin_vis_fnhadds (float, float);

double __builtin_vis_fnhaddd (double, double);

int64_t __builtin_vis_umulxhi (int64_t, int64_t);

int64_t __builtin_vis_xmulx (int64_t, int64_t);

int64_t __builtin_vis_xmulxhi (int64_t, int64_t);

6.57.27 SPU Built-in Functions

GCC provides extensions for the SPU processor as described in the Sony/Toshiba/IBM
SPU Language Extensions Specification, which can be found at http://cell.scei.co.
jp/ or http://www.ibm.com/developerworks/power/cell/. GCC’s implementation
differs in several ways.

• The optional extension of specifying vector constants in parentheses is not supported.

• A vector initializer requires no cast if the vector constant is of the same type as the
variable it is initializing.

• If signed or unsigned is omitted, the signedness of the vector type is the default
signedness of the base type. The default varies depending on the operating system, so
a portable program should always specify the signedness.

• By default, the keyword __vector is added. The macro vector is defined in <spu_
intrinsics.h> and can be undefined.

• GCC allows using a typedef name as the type specifier for a vector type.

• For C, overloaded functions are implemented with macros so the following does not
work:

spu_add ((vector signed int){1, 2, 3, 4}, foo);

http://cell.scei.co.jp/
http://cell.scei.co.jp/
http://www.ibm.com/developerworks/power/cell/

688 Using the GNU Compiler Collection (GCC)

Since spu_add is a macro, the vector constant in the example is treated as four separate
arguments. Wrap the entire argument in parentheses for this to work.

• The extended version of __builtin_expect is not supported.

Note: Only the interface described in the aforementioned specification is supported.
Internally, GCC uses built-in functions to implement the required functionality, but these
are not supported and are subject to change without notice.

6.57.28 TI C6X Built-in Functions

GCC provides intrinsics to access certain instructions of the TI C6X processors. These
intrinsics, listed below, are available after inclusion of the c6x_intrinsics.h header file.
They map directly to C6X instructions.

int _sadd (int, int)

int _ssub (int, int)

int _sadd2 (int, int)

int _ssub2 (int, int)

long long _mpy2 (int, int)

long long _smpy2 (int, int)

int _add4 (int, int)

int _sub4 (int, int)

int _saddu4 (int, int)

int _smpy (int, int)

int _smpyh (int, int)

int _smpyhl (int, int)

int _smpylh (int, int)

int _sshl (int, int)

int _subc (int, int)

int _avg2 (int, int)

int _avgu4 (int, int)

int _clrr (int, int)

int _extr (int, int)

int _extru (int, int)

int _abs (int)

int _abs2 (int)

6.57.29 TILE-Gx Built-in Functions

GCC provides intrinsics to access every instruction of the TILE-Gx processor. The intrinsics
are of the form:

unsigned long long __insn_op (...)

Where op is the name of the instruction. Refer to the ISA manual for the complete list
of instructions.

GCC also provides intrinsics to directly access the network registers. The intrinsics are:

unsigned long long __tile_idn0_receive (void)

unsigned long long __tile_idn1_receive (void)

Chapter 6: Extensions to the C Language Family 689

unsigned long long __tile_udn0_receive (void)

unsigned long long __tile_udn1_receive (void)

unsigned long long __tile_udn2_receive (void)

unsigned long long __tile_udn3_receive (void)

void __tile_idn_send (unsigned long long)

void __tile_udn_send (unsigned long long)

The intrinsic void __tile_network_barrier (void) is used to guarantee that no net-
work operations before it are reordered with those after it.

6.57.30 TILEPro Built-in Functions

GCC provides intrinsics to access every instruction of the TILEPro processor. The intrinsics
are of the form:

unsigned __insn_op (...)

where op is the name of the instruction. Refer to the ISA manual for the complete list of
instructions.

GCC also provides intrinsics to directly access the network registers. The intrinsics are:

unsigned __tile_idn0_receive (void)

unsigned __tile_idn1_receive (void)

unsigned __tile_sn_receive (void)

unsigned __tile_udn0_receive (void)

unsigned __tile_udn1_receive (void)

unsigned __tile_udn2_receive (void)

unsigned __tile_udn3_receive (void)

void __tile_idn_send (unsigned)

void __tile_sn_send (unsigned)

void __tile_udn_send (unsigned)

The intrinsic void __tile_network_barrier (void) is used to guarantee that no net-
work operations before it are reordered with those after it.

6.58 Format Checks Specific to Particular Target Machines

For some target machines, GCC supports additional options to the format attribute (see
Section 6.30 [Declaring Attributes of Functions], page 372).

6.58.1 Solaris Format Checks

Solaris targets support the cmn_err (or __cmn_err__) format check. cmn_err accepts a sub-
set of the standard printf conversions, and the two-argument %b conversion for displaying
bit-fields. See the Solaris man page for cmn_err for more information.

6.58.2 Darwin Format Checks

Darwin targets support the CFString (or __CFString__) in the format attribute context.
Declarations made with such attribution are parsed for correct syntax and format argument
types. However, parsing of the format string itself is currently undefined and is not carried
out by this version of the compiler.

690 Using the GNU Compiler Collection (GCC)

Additionally, CFStringRefs (defined by the CoreFoundation headers) may also be used
as format arguments. Note that the relevant headers are only likely to be available on
Darwin (OSX) installations. On such installations, the XCode and system documentation
provide descriptions of CFString, CFStringRefs and associated functions.

6.59 Pragmas Accepted by GCC

GCC supports several types of pragmas, primarily in order to compile code originally written
for other compilers. Note that in general we do not recommend the use of pragmas; See
Section 6.30 [Function Attributes], page 372, for further explanation.

6.59.1 ARM Pragmas

The ARM target defines pragmas for controlling the default addition of long_call and
short_call attributes to functions. See Section 6.30 [Function Attributes], page 372, for
information about the effects of these attributes.

long_calls
Set all subsequent functions to have the long_call attribute.

no_long_calls
Set all subsequent functions to have the short_call attribute.

long_calls_off
Do not affect the long_call or short_call attributes of subsequent functions.

6.59.2 M32C Pragmas

GCC memregs number

Overrides the command-line option -memregs= for the current file. Use with
care! This pragma must be before any function in the file, and mixing different
memregs values in different objects may make them incompatible. This pragma
is useful when a performance-critical function uses a memreg for temporary
values, as it may allow you to reduce the number of memregs used.

ADDRESS name address

For any declared symbols matching name, this does three things to that symbol:
it forces the symbol to be located at the given address (a number), it forces
the symbol to be volatile, and it changes the symbol’s scope to be static. This
pragma exists for compatibility with other compilers, but note that the common
1234H numeric syntax is not supported (use 0x1234 instead). Example:

#pragma ADDRESS port3 0x103

char port3;

6.59.3 MeP Pragmas

custom io_volatile (on|off)
Overrides the command-line option -mio-volatile for the current file. Note
that for compatibility with future GCC releases, this option should only be
used once before any io variables in each file.

Chapter 6: Extensions to the C Language Family 691

GCC coprocessor available registers

Specifies which coprocessor registers are available to the register allocator. reg-
isters may be a single register, register range separated by ellipses, or comma-
separated list of those. Example:

#pragma GCC coprocessor available $c0...$c10, $c28

GCC coprocessor call_saved registers

Specifies which coprocessor registers are to be saved and restored by any func-
tion using them. registers may be a single register, register range separated by
ellipses, or comma-separated list of those. Example:

#pragma GCC coprocessor call_saved $c4...$c6, $c31

GCC coprocessor subclass ’(A|B|C|D)’ = registers

Creates and defines a register class. These register classes can be used by inline
asm constructs. registers may be a single register, register range separated by
ellipses, or comma-separated list of those. Example:

#pragma GCC coprocessor subclass ’B’ = $c2, $c4, $c6

asm ("cpfoo %0" : "=B" (x));

GCC disinterrupt name , name ...
For the named functions, the compiler adds code to disable interrupts for the
duration of those functions. If any functions so named are not encountered in
the source, a warning is emitted that the pragma is not used. Examples:

#pragma disinterrupt foo

#pragma disinterrupt bar, grill

int foo () { ... }

GCC call name , name ...
For the named functions, the compiler always uses a register-indirect call model
when calling the named functions. Examples:

extern int foo ();

#pragma call foo

6.59.4 RS/6000 and PowerPC Pragmas

The RS/6000 and PowerPC targets define one pragma for controlling whether or not the
longcall attribute is added to function declarations by default. This pragma overrides the
‘-mlongcall’ option, but not the longcall and shortcall attributes. See Section 3.17.38
[RS/6000 and PowerPC Options], page 281, for more information about when long calls are
and are not necessary.

longcall (1)
Apply the longcall attribute to all subsequent function declarations.

longcall (0)
Do not apply the longcall attribute to subsequent function declarations.

6.59.5 Darwin Pragmas

The following pragmas are available for all architectures running the Darwin operating
system. These are useful for compatibility with other Mac OS compilers.

692 Using the GNU Compiler Collection (GCC)

mark tokens...
This pragma is accepted, but has no effect.

options align=alignment
This pragma sets the alignment of fields in structures. The values of alignment
may be mac68k, to emulate m68k alignment, or power, to emulate PowerPC
alignment. Uses of this pragma nest properly; to restore the previous setting,
use reset for the alignment.

segment tokens...
This pragma is accepted, but has no effect.

unused (var [, var]...)
This pragma declares variables to be possibly unused. GCC does not produce
warnings for the listed variables. The effect is similar to that of the unused
attribute, except that this pragma may appear anywhere within the variables’
scopes.

6.59.6 Solaris Pragmas

The Solaris target supports #pragma redefine_extname (see Section 6.59.7 [Symbol-
Renaming Pragmas], page 692). It also supports additional #pragma directives for
compatibility with the system compiler.

align alignment (variable [, variable]...)
Increase the minimum alignment of each variable to alignment. This is the same
as GCC’s aligned attribute see Section 6.36 [Variable Attributes], page 409).
Macro expansion occurs on the arguments to this pragma when compiling C
and Objective-C. It does not currently occur when compiling C++, but this is
a bug which may be fixed in a future release.

fini (function [, function]...)
This pragma causes each listed function to be called after main, or during shared
module unloading, by adding a call to the .fini section.

init (function [, function]...)
This pragma causes each listed function to be called during initialization (before
main) or during shared module loading, by adding a call to the .init section.

6.59.7 Symbol-Renaming Pragmas

For compatibility with the Solaris system headers, GCC supports two #pragma directives
that change the name used in assembly for a given declaration. To get this effect on all
platforms supported by GCC, use the asm labels extension (see Section 6.43 [Asm Labels],
page 465).

redefine_extname oldname newname

This pragma gives the C function oldname the assembly symbol newname. The
preprocessor macro __PRAGMA_REDEFINE_EXTNAME is defined if this pragma is
available (currently on all platforms).

This pragma and the asm labels extension interact in a complicated manner. Here are
some corner cases you may want to be aware of.

Chapter 6: Extensions to the C Language Family 693

1. Both pragmas silently apply only to declarations with external linkage. Asm labels do
not have this restriction.

2. In C++, both pragmas silently apply only to declarations with “C” linkage. Again, asm
labels do not have this restriction.

3. If any of the three ways of changing the assembly name of a declaration is applied to
a declaration whose assembly name has already been determined (either by a previous
use of one of these features, or because the compiler needed the assembly name in order
to generate code), and the new name is different, a warning issues and the name does
not change.

4. The oldname used by #pragma redefine_extname is always the C-language name.

6.59.8 Structure-Packing Pragmas

For compatibility with Microsoft Windows compilers, GCC supports a set of #pragma direc-
tives that change the maximum alignment of members of structures (other than zero-width
bit-fields), unions, and classes subsequently defined. The n value below always is required
to be a small power of two and specifies the new alignment in bytes.

1. #pragma pack(n) simply sets the new alignment.

2. #pragma pack() sets the alignment to the one that was in effect when compilation
started (see also command-line option ‘-fpack-struct[=n]’ see Section 3.18 [Code
Gen Options], page 323).

3. #pragma pack(push[,n]) pushes the current alignment setting on an internal stack
and then optionally sets the new alignment.

4. #pragma pack(pop) restores the alignment setting to the one saved at the top of the
internal stack (and removes that stack entry). Note that #pragma pack([n]) does not
influence this internal stack; thus it is possible to have #pragma pack(push) followed
by multiple #pragma pack(n) instances and finalized by a single #pragma pack(pop).

Some targets, e.g. i386 and PowerPC, support the ms_struct #pragma which lays out a
structure as the documented __attribute__ ((ms_struct)).

1. #pragma ms_struct on turns on the layout for structures declared.

2. #pragma ms_struct off turns off the layout for structures declared.

3. #pragma ms_struct reset goes back to the default layout.

6.59.9 Weak Pragmas

For compatibility with SVR4, GCC supports a set of #pragma directives for declaring sym-
bols to be weak, and defining weak aliases.

#pragma weak symbol

This pragma declares symbol to be weak, as if the declaration had the attribute
of the same name. The pragma may appear before or after the declaration of
symbol. It is not an error for symbol to never be defined at all.

#pragma weak symbol1 = symbol2

This pragma declares symbol1 to be a weak alias of symbol2. It is an error if
symbol2 is not defined in the current translation unit.

694 Using the GNU Compiler Collection (GCC)

6.59.10 Diagnostic Pragmas

GCC allows the user to selectively enable or disable certain types of diagnostics, and change
the kind of the diagnostic. For example, a project’s policy might require that all sources
compile with ‘-Werror’ but certain files might have exceptions allowing specific types of
warnings. Or, a project might selectively enable diagnostics and treat them as errors de-
pending on which preprocessor macros are defined.

#pragma GCC diagnostic kind option

Modifies the disposition of a diagnostic. Note that not all diagnostics are mod-
ifiable; at the moment only warnings (normally controlled by ‘-W...’) can be
controlled, and not all of them. Use ‘-fdiagnostics-show-option’ to deter-
mine which diagnostics are controllable and which option controls them.
kind is ‘error’ to treat this diagnostic as an error, ‘warning’ to treat it like
a warning (even if ‘-Werror’ is in effect), or ‘ignored’ if the diagnostic is to
be ignored. option is a double quoted string that matches the command-line
option.

#pragma GCC diagnostic warning "-Wformat"

#pragma GCC diagnostic error "-Wformat"

#pragma GCC diagnostic ignored "-Wformat"

Note that these pragmas override any command-line options. GCC keeps track
of the location of each pragma, and issues diagnostics according to the state
as of that point in the source file. Thus, pragmas occurring after a line do not
affect diagnostics caused by that line.

#pragma GCC diagnostic push
#pragma GCC diagnostic pop

Causes GCC to remember the state of the diagnostics as of each push, and
restore to that point at each pop. If a pop has no matching push, the command-
line options are restored.

#pragma GCC diagnostic error "-Wuninitialized"

foo(a); /* error is given for this one */

#pragma GCC diagnostic push

#pragma GCC diagnostic ignored "-Wuninitialized"

foo(b); /* no diagnostic for this one */

#pragma GCC diagnostic pop

foo(c); /* error is given for this one */

#pragma GCC diagnostic pop

foo(d); /* depends on command-line options */

GCC also offers a simple mechanism for printing messages during compilation.

#pragma message string

Prints string as a compiler message on compilation. The message is informa-
tional only, and is neither a compilation warning nor an error.

#pragma message "Compiling " __FILE__ "..."

string may be parenthesized, and is printed with location information. For
example,

#define DO_PRAGMA(x) _Pragma (#x)

#define TODO(x) DO_PRAGMA(message ("TODO - " #x))

TODO(Remember to fix this)

Chapter 6: Extensions to the C Language Family 695

prints ‘/tmp/file.c:4: note: #pragma message: TODO - Remember to fix
this’.

6.59.11 Visibility Pragmas

#pragma GCC visibility push(visibility)
#pragma GCC visibility pop

This pragma allows the user to set the visibility for multiple declarations with-
out having to give each a visibility attribute See Section 6.30 [Function At-
tributes], page 372, for more information about visibility and the attribute
syntax.
In C++, ‘#pragma GCC visibility’ affects only namespace-scope declarations.
Class members and template specializations are not affected; if you want to
override the visibility for a particular member or instantiation, you must use
an attribute.

6.59.12 Push/Pop Macro Pragmas

For compatibility with Microsoft Windows compilers, GCC supports ‘#pragma
push_macro("macro_name")’ and ‘#pragma pop_macro("macro_name")’.

#pragma push_macro("macro_name")
This pragma saves the value of the macro named as macro name to the top of
the stack for this macro.

#pragma pop_macro("macro_name")
This pragma sets the value of the macro named as macro name to the value
on top of the stack for this macro. If the stack for macro name is empty, the
value of the macro remains unchanged.

For example:
#define X 1

#pragma push_macro("X")

#undef X

#define X -1

#pragma pop_macro("X")

int x [X];

In this example, the definition of X as 1 is saved by #pragma push_macro and restored by
#pragma pop_macro.

6.59.13 Function Specific Option Pragmas

#pragma GCC target ("string"...)
This pragma allows you to set target specific options for functions defined later
in the source file. One or more strings can be specified. Each function that
is defined after this point is as if attribute((target("STRING"))) was spec-
ified for that function. The parenthesis around the options is optional. See
Section 6.30 [Function Attributes], page 372, for more information about the
target attribute and the attribute syntax.
The #pragma GCC target pragma is presently implemented for i386/x86 64,
PowerPC, and Nios II targets only.

696 Using the GNU Compiler Collection (GCC)

#pragma GCC optimize ("string"...)
This pragma allows you to set global optimization options for functions defined
later in the source file. One or more strings can be specified. Each function
that is defined after this point is as if attribute((optimize("STRING"))) was
specified for that function. The parenthesis around the options is optional. See
Section 6.30 [Function Attributes], page 372, for more information about the
optimize attribute and the attribute syntax.
The ‘#pragma GCC optimize’ pragma is not implemented in GCC versions ear-
lier than 4.4.

#pragma GCC push_options
#pragma GCC pop_options

These pragmas maintain a stack of the current target and optimization options.
It is intended for include files where you temporarily want to switch to using
a different ‘#pragma GCC target’ or ‘#pragma GCC optimize’ and then to pop
back to the previous options.
The ‘#pragma GCC push_options’ and ‘#pragma GCC pop_options’ pragmas
are not implemented in GCC versions earlier than 4.4.

#pragma GCC reset_options
This pragma clears the current #pragma GCC target and #pragma GCC
optimize to use the default switches as specified on the command line.
The ‘#pragma GCC reset_options’ pragma is not implemented in GCC versions
earlier than 4.4.

6.59.14 Loop-Specific Pragmas

#pragma GCC ivdep

With this pragma, the programmer asserts that there are no loop-carried dependencies
which would prevent that consecutive iterations of the following loop can be executed con-
currently with SIMD (single instruction multiple data) instructions.

For example, the compiler can only unconditionally vectorize the following loop with the
pragma:

void foo (int n, int *a, int *b, int *c)

{

int i, j;

#pragma GCC ivdep

for (i = 0; i < n; ++i)

a[i] = b[i] + c[i];

}

In this example, using the restrict qualifier had the same effect. In the following example,
that would not be possible. Assume k < −m or k >= m. Only with the pragma, the
compiler knows that it can unconditionally vectorize the following loop:

void ignore_vec_dep (int *a, int k, int c, int m)

{

#pragma GCC ivdep

for (int i = 0; i < m; i++)

a[i] = a[i + k] * c;

}

Chapter 6: Extensions to the C Language Family 697

6.60 Unnamed struct/union fields within structs/unions

As permitted by ISO C11 and for compatibility with other compilers, GCC allows you to
define a structure or union that contains, as fields, structures and unions without names.
For example:

struct {

int a;

union {

int b;

float c;

};

int d;

} foo;

In this example, you are able to access members of the unnamed union with code like
‘foo.b’. Note that only unnamed structs and unions are allowed, you may not have, for
example, an unnamed int.

You must never create such structures that cause ambiguous field definitions. For exam-
ple, in this structure:

struct {

int a;

struct {

int a;

};

} foo;

it is ambiguous which a is being referred to with ‘foo.a’. The compiler gives errors for such
constructs.

Unless ‘-fms-extensions’ is used, the unnamed field must be a structure or union defini-
tion without a tag (for example, ‘struct { int a; };’). If ‘-fms-extensions’ is used, the
field may also be a definition with a tag such as ‘struct foo { int a; };’, a reference to
a previously defined structure or union such as ‘struct foo;’, or a reference to a typedef
name for a previously defined structure or union type.

The option ‘-fplan9-extensions’ enables ‘-fms-extensions’ as well as two other ex-
tensions. First, a pointer to a structure is automatically converted to a pointer to an
anonymous field for assignments and function calls. For example:

struct s1 { int a; };

struct s2 { struct s1; };

extern void f1 (struct s1 *);

void f2 (struct s2 *p) { f1 (p); }

In the call to f1 inside f2, the pointer p is converted into a pointer to the anonymous field.
Second, when the type of an anonymous field is a typedef for a struct or union, code

may refer to the field using the name of the typedef.
typedef struct { int a; } s1;

struct s2 { s1; };

s1 f1 (struct s2 *p) { return p->s1; }

These usages are only permitted when they are not ambiguous.

6.61 Thread-Local Storage

Thread-local storage (TLS) is a mechanism by which variables are allocated such that there
is one instance of the variable per extant thread. The runtime model GCC uses to im-

698 Using the GNU Compiler Collection (GCC)

plement this originates in the IA-64 processor-specific ABI, but has since been migrated
to other processors as well. It requires significant support from the linker (ld), dynamic
linker (ld.so), and system libraries (‘libc.so’ and ‘libpthread.so’), so it is not available
everywhere.

At the user level, the extension is visible with a new storage class keyword: __thread.
For example:

__thread int i;

extern __thread struct state s;

static __thread char *p;

The __thread specifier may be used alone, with the extern or static specifiers, but
with no other storage class specifier. When used with extern or static, __thread must
appear immediately after the other storage class specifier.

The __thread specifier may be applied to any global, file-scoped static, function-scoped
static, or static data member of a class. It may not be applied to block-scoped automatic
or non-static data member.

When the address-of operator is applied to a thread-local variable, it is evaluated at
run time and returns the address of the current thread’s instance of that variable. An
address so obtained may be used by any thread. When a thread terminates, any pointers
to thread-local variables in that thread become invalid.

No static initialization may refer to the address of a thread-local variable.

In C++, if an initializer is present for a thread-local variable, it must be a constant-
expression, as defined in 5.19.2 of the ANSI/ISO C++ standard.

See ELF Handling For Thread-Local Storage for a detailed explanation of the four thread-
local storage addressing models, and how the runtime is expected to function.

6.61.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage

The following are a set of changes to ISO/IEC 9899:1999 (aka C99) that document the
exact semantics of the language extension.

• 5.1.2 Execution environments

Add new text after paragraph 1

Within either execution environment, a thread is a flow of control within
a program. It is implementation defined whether or not there may be
more than one thread associated with a program. It is implementation
defined how threads beyond the first are created, the name and type of
the function called at thread startup, and how threads may be terminated.
However, objects with thread storage duration shall be initialized before
thread startup.

• 6.2.4 Storage durations of objects

Add new text before paragraph 3

An object whose identifier is declared with the storage-class specifier
__thread has thread storage duration. Its lifetime is the entire execution
of the thread, and its stored value is initialized only once, prior to thread
startup.

http://www.akkadia.org/drepper/tls.pdf

Chapter 6: Extensions to the C Language Family 699

• 6.4.1 Keywords

Add __thread.
• 6.7.1 Storage-class specifiers

Add __thread to the list of storage class specifiers in paragraph 1.
Change paragraph 2 to

With the exception of __thread, at most one storage-class specifier may
be given [. . .]. The __thread specifier may be used alone, or immediately
following extern or static.

Add new text after paragraph 6
The declaration of an identifier for a variable that has block scope that
specifies __thread shall also specify either extern or static.
The __thread specifier shall be used only with variables.

6.61.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage

The following are a set of changes to ISO/IEC 14882:1998 (aka C++98) that document the
exact semantics of the language extension.

• [intro.execution]

New text after paragraph 4
A thread is a flow of control within the abstract machine. It is implemen-
tation defined whether or not there may be more than one thread.

New text after paragraph 7
It is unspecified whether additional action must be taken to ensure when
and whether side effects are visible to other threads.

• [lex.key]

Add __thread.
• [basic.start.main]

Add after paragraph 5
The thread that begins execution at the main function is called the main
thread. It is implementation defined how functions beginning threads other
than the main thread are designated or typed. A function so designated,
as well as the main function, is called a thread startup function. It is im-
plementation defined what happens if a thread startup function returns. It
is implementation defined what happens to other threads when any thread
calls exit.

• [basic.start.init]

Add after paragraph 4
The storage for an object of thread storage duration shall be statically
initialized before the first statement of the thread startup function. An
object of thread storage duration shall not require dynamic initialization.

• [basic.start.term]

Add after paragraph 3

700 Using the GNU Compiler Collection (GCC)

The type of an object with thread storage duration shall not have a non-
trivial destructor, nor shall it be an array type whose elements (directly or
indirectly) have non-trivial destructors.

• [basic.stc]

Add “thread storage duration” to the list in paragraph 1.
Change paragraph 2

Thread, static, and automatic storage durations are associated with objects
introduced by declarations [. . .].

Add __thread to the list of specifiers in paragraph 3.
• [basic.stc.thread]

New section before [basic.stc.static]

The keyword __thread applied to a non-local object gives the object thread
storage duration.
A local variable or class data member declared both static and __thread
gives the variable or member thread storage duration.

• [basic.stc.static]

Change paragraph 1
All objects that have neither thread storage duration, dynamic storage
duration nor are local [. . .].

• [dcl.stc]

Add __thread to the list in paragraph 1.
Change paragraph 1

With the exception of __thread, at most one storage-class-specifier shall
appear in a given decl-specifier-seq. The __thread specifier may be used
alone, or immediately following the extern or static specifiers. [. . .]

Add after paragraph 5
The __thread specifier can be applied only to the names of objects and to
anonymous unions.

• [class.mem]

Add after paragraph 6
Non-static members shall not be __thread.

6.62 Binary constants using the ‘0b’ prefix

Integer constants can be written as binary constants, consisting of a sequence of ‘0’ and ‘1’
digits, prefixed by ‘0b’ or ‘0B’. This is particularly useful in environments that operate a
lot on the bit level (like microcontrollers).

The following statements are identical:
i = 42;

i = 0x2a;

i = 052;

i = 0b101010;

The type of these constants follows the same rules as for octal or hexadecimal integer
constants, so suffixes like ‘L’ or ‘UL’ can be applied.

Chapter 7: Extensions to the C++ Language 701

7 Extensions to the C++ Language

The GNU compiler provides these extensions to the C++ language (and you can also use
most of the C language extensions in your C++ programs). If you want to write code
that checks whether these features are available, you can test for the GNU compiler the
same way as for C programs: check for a predefined macro __GNUC__. You can also use
__GNUG__ to test specifically for GNU C++ (see Section “Predefined Macros” in The GNU
C Preprocessor).

7.1 When is a Volatile C++ Object Accessed?

The C++ standard differs from the C standard in its treatment of volatile objects. It fails to
specify what constitutes a volatile access, except to say that C++ should behave in a similar
manner to C with respect to volatiles, where possible. However, the different lvalueness of
expressions between C and C++ complicate the behavior. G++ behaves the same as GCC
for volatile access, See Chapter 6 [Volatiles], page 349, for a description of GCC’s behavior.

The C and C++ language specifications differ when an object is accessed in a void context:
volatile int *src = somevalue;

*src;

The C++ standard specifies that such expressions do not undergo lvalue to rvalue conver-
sion, and that the type of the dereferenced object may be incomplete. The C++ standard
does not specify explicitly that it is lvalue to rvalue conversion that is responsible for causing
an access. There is reason to believe that it is, because otherwise certain simple expres-
sions become undefined. However, because it would surprise most programmers, G++ treats
dereferencing a pointer to volatile object of complete type as GCC would do for an equiva-
lent type in C. When the object has incomplete type, G++ issues a warning; if you wish to
force an error, you must force a conversion to rvalue with, for instance, a static cast.

When using a reference to volatile, G++ does not treat equivalent expressions as accesses
to volatiles, but instead issues a warning that no volatile is accessed. The rationale for
this is that otherwise it becomes difficult to determine where volatile access occur, and not
possible to ignore the return value from functions returning volatile references. Again, if
you wish to force a read, cast the reference to an rvalue.

G++ implements the same behavior as GCC does when assigning to a volatile object—
there is no reread of the assigned-to object, the assigned rvalue is reused. Note that in C++
assignment expressions are lvalues, and if used as an lvalue, the volatile object is referred
to. For instance, vref refers to vobj, as expected, in the following example:

volatile int vobj;

volatile int &vref = vobj = something;

7.2 Restricting Pointer Aliasing

As with the C front end, G++ understands the C99 feature of restricted pointers, specified
with the __restrict__, or __restrict type qualifier. Because you cannot compile C++ by
specifying the ‘-std=c99’ language flag, restrict is not a keyword in C++.

In addition to allowing restricted pointers, you can specify restricted references, which
indicate that the reference is not aliased in the local context.

702 Using the GNU Compiler Collection (GCC)

void fn (int *__restrict__ rptr, int &__restrict__ rref)

{

/* . . . */

}

In the body of fn, rptr points to an unaliased integer and rref refers to a (different) unaliased
integer.

You may also specify whether a member function’s this pointer is unaliased by using
__restrict__ as a member function qualifier.

void T::fn () __restrict__

{

/* . . . */

}

Within the body of T::fn, this has the effective definition T *__restrict__ const this.
Notice that the interpretation of a __restrict__ member function qualifier is different to
that of const or volatile qualifier, in that it is applied to the pointer rather than the
object. This is consistent with other compilers that implement restricted pointers.

As with all outermost parameter qualifiers, __restrict__ is ignored in function definition
matching. This means you only need to specify __restrict__ in a function definition,
rather than in a function prototype as well.

7.3 Vague Linkage

There are several constructs in C++ that require space in the object file but are not clearly
tied to a single translation unit. We say that these constructs have “vague linkage”. Typ-
ically such constructs are emitted wherever they are needed, though sometimes we can be
more clever.

Inline Functions
Inline functions are typically defined in a header file which can be included
in many different compilations. Hopefully they can usually be inlined, but
sometimes an out-of-line copy is necessary, if the address of the function is taken
or if inlining fails. In general, we emit an out-of-line copy in all translation units
where one is needed. As an exception, we only emit inline virtual functions with
the vtable, since it always requires a copy.
Local static variables and string constants used in an inline function are also
considered to have vague linkage, since they must be shared between all inlined
and out-of-line instances of the function.

VTables C++ virtual functions are implemented in most compilers using a lookup table,
known as a vtable. The vtable contains pointers to the virtual functions pro-
vided by a class, and each object of the class contains a pointer to its vtable (or
vtables, in some multiple-inheritance situations). If the class declares any non-
inline, non-pure virtual functions, the first one is chosen as the “key method”
for the class, and the vtable is only emitted in the translation unit where the
key method is defined.
Note: If the chosen key method is later defined as inline, the vtable is still
emitted in every translation unit that defines it. Make sure that any inline
virtuals are declared inline in the class body, even if they are not defined there.

Chapter 7: Extensions to the C++ Language 703

type_info objects
C++ requires information about types to be written out in order to implement
‘dynamic_cast’, ‘typeid’ and exception handling. For polymorphic classes
(classes with virtual functions), the ‘type_info’ object is written out along
with the vtable so that ‘dynamic_cast’ can determine the dynamic type of a
class object at run time. For all other types, we write out the ‘type_info’
object when it is used: when applying ‘typeid’ to an expression, throwing an
object, or referring to a type in a catch clause or exception specification.

Template Instantiations
Most everything in this section also applies to template instantiations, but there
are other options as well. See Section 7.5 [Where’s the Template?], page 704.

When used with GNU ld version 2.8 or later on an ELF system such as GNU/Linux or
Solaris 2, or on Microsoft Windows, duplicate copies of these constructs will be discarded
at link time. This is known as COMDAT support.

On targets that don’t support COMDAT, but do support weak symbols, GCC uses them.
This way one copy overrides all the others, but the unused copies still take up space in the
executable.

For targets that do not support either COMDAT or weak symbols, most entities with
vague linkage are emitted as local symbols to avoid duplicate definition errors from the
linker. This does not happen for local statics in inlines, however, as having multiple copies
almost certainly breaks things.

See Section 7.4 [Declarations and Definitions in One Header], page 703, for another way
to control placement of these constructs.

7.4 #pragma interface and implementation

#pragma interface and #pragma implementation provide the user with a way of explicitly
directing the compiler to emit entities with vague linkage (and debugging information) in a
particular translation unit.

Note: As of GCC 2.7.2, these #pragmas are not useful in most cases, because of COMDAT
support and the “key method” heuristic mentioned in Section 7.3 [Vague Linkage], page 702.
Using them can actually cause your program to grow due to unnecessary out-of-line copies
of inline functions. Currently (3.4) the only benefit of these #pragmas is reduced duplication
of debugging information, and that should be addressed soon on DWARF 2 targets with
the use of COMDAT groups.

#pragma interface
#pragma interface "subdir/objects.h"

Use this directive in header files that define object classes, to save space in
most of the object files that use those classes. Normally, local copies of certain
information (backup copies of inline member functions, debugging information,
and the internal tables that implement virtual functions) must be kept in each
object file that includes class definitions. You can use this pragma to avoid such
duplication. When a header file containing ‘#pragma interface’ is included in
a compilation, this auxiliary information is not generated (unless the main

704 Using the GNU Compiler Collection (GCC)

input source file itself uses ‘#pragma implementation’). Instead, the object
files contain references to be resolved at link time.
The second form of this directive is useful for the case where you have multiple
headers with the same name in different directories. If you use this form, you
must specify the same string to ‘#pragma implementation’.

#pragma implementation
#pragma implementation "objects.h"

Use this pragma in a main input file, when you want full output from included
header files to be generated (and made globally visible). The included header
file, in turn, should use ‘#pragma interface’. Backup copies of inline member
functions, debugging information, and the internal tables used to implement
virtual functions are all generated in implementation files.
If you use ‘#pragma implementation’ with no argument, it applies to an
include file with the same basename1 as your source file. For example, in
‘allclass.cc’, giving just ‘#pragma implementation’ by itself is equivalent
to ‘#pragma implementation "allclass.h"’.
In versions of GNU C++ prior to 2.6.0 ‘allclass.h’ was treated as an im-
plementation file whenever you would include it from ‘allclass.cc’ even if
you never specified ‘#pragma implementation’. This was deemed to be more
trouble than it was worth, however, and disabled.
Use the string argument if you want a single implementation file to include code
from multiple header files. (You must also use ‘#include’ to include the header
file; ‘#pragma implementation’ only specifies how to use the file—it doesn’t
actually include it.)
There is no way to split up the contents of a single header file into multiple
implementation files.

‘#pragma implementation’ and ‘#pragma interface’ also have an effect on function in-
lining.

If you define a class in a header file marked with ‘#pragma interface’, the effect on
an inline function defined in that class is similar to an explicit extern declaration—the
compiler emits no code at all to define an independent version of the function. Its definition
is used only for inlining with its callers.

Conversely, when you include the same header file in a main source file that declares it
as ‘#pragma implementation’, the compiler emits code for the function itself; this defines
a version of the function that can be found via pointers (or by callers compiled without
inlining). If all calls to the function can be inlined, you can avoid emitting the function by
compiling with ‘-fno-implement-inlines’. If any calls are not inlined, you will get linker
errors.

7.5 Where’s the Template?

C++ templates are the first language feature to require more intelligence from the environ-
ment than one usually finds on a UNIX system. Somehow the compiler and linker have to

1 A file’s basename is the name stripped of all leading path information and of trailing suffixes, such as ‘.h’
or ‘.C’ or ‘.cc’.

Chapter 7: Extensions to the C++ Language 705

make sure that each template instance occurs exactly once in the executable if it is needed,
and not at all otherwise. There are two basic approaches to this problem, which are referred
to as the Borland model and the Cfront model.

Borland model
Borland C++ solved the template instantiation problem by adding the code
equivalent of common blocks to their linker; the compiler emits template in-
stances in each translation unit that uses them, and the linker collapses them
together. The advantage of this model is that the linker only has to consider the
object files themselves; there is no external complexity to worry about. This
disadvantage is that compilation time is increased because the template code
is being compiled repeatedly. Code written for this model tends to include
definitions of all templates in the header file, since they must be seen to be
instantiated.

Cfront model
The AT&T C++ translator, Cfront, solved the template instantiation problem
by creating the notion of a template repository, an automatically maintained
place where template instances are stored. A more modern version of the repos-
itory works as follows: As individual object files are built, the compiler places
any template definitions and instantiations encountered in the repository. At
link time, the link wrapper adds in the objects in the repository and compiles
any needed instances that were not previously emitted. The advantages of this
model are more optimal compilation speed and the ability to use the system
linker; to implement the Borland model a compiler vendor also needs to replace
the linker. The disadvantages are vastly increased complexity, and thus poten-
tial for error; for some code this can be just as transparent, but in practice
it can been very difficult to build multiple programs in one directory and one
program in multiple directories. Code written for this model tends to separate
definitions of non-inline member templates into a separate file, which should be
compiled separately.

When used with GNU ld version 2.8 or later on an ELF system such as GNU/Linux or
Solaris 2, or on Microsoft Windows, G++ supports the Borland model. On other systems,
G++ implements neither automatic model.

You have the following options for dealing with template instantiations:
1. Compile your template-using code with ‘-frepo’. The compiler generates files with

the extension ‘.rpo’ listing all of the template instantiations used in the corresponding
object files that could be instantiated there; the link wrapper, ‘collect2’, then updates
the ‘.rpo’ files to tell the compiler where to place those instantiations and rebuild any
affected object files. The link-time overhead is negligible after the first pass, as the
compiler continues to place the instantiations in the same files.
This is your best option for application code written for the Borland model, as it just
works. Code written for the Cfront model needs to be modified so that the template
definitions are available at one or more points of instantiation; usually this is as simple
as adding #include <tmethods.cc> to the end of each template header.
For library code, if you want the library to provide all of the template instantiations
it needs, just try to link all of its object files together; the link will fail, but cause

706 Using the GNU Compiler Collection (GCC)

the instantiations to be generated as a side effect. Be warned, however, that this may
cause conflicts if multiple libraries try to provide the same instantiations. For greater
control, use explicit instantiation as described in the next option.

2. Compile your code with ‘-fno-implicit-templates’ to disable the implicit generation
of template instances, and explicitly instantiate all the ones you use. This approach
requires more knowledge of exactly which instances you need than do the others, but it’s
less mysterious and allows greater control. You can scatter the explicit instantiations
throughout your program, perhaps putting them in the translation units where the
instances are used or the translation units that define the templates themselves; you
can put all of the explicit instantiations you need into one big file; or you can create
small files like

#include "Foo.h"

#include "Foo.cc"

template class Foo<int>;

template ostream& operator <<

(ostream&, const Foo<int>&);

for each of the instances you need, and create a template instantiation library from
those.

If you are using Cfront-model code, you can probably get away with not using
‘-fno-implicit-templates’ when compiling files that don’t ‘#include’ the member
template definitions.

If you use one big file to do the instantiations, you may want to compile it without
‘-fno-implicit-templates’ so you get all of the instances required by your explicit
instantiations (but not by any other files) without having to specify them as well.

The ISO C++ 2011 standard allows forward declaration of explicit instantiations (with
extern). G++ supports explicit instantiation declarations in C++98 mode and has
extended the template instantiation syntax to support instantiation of the compiler
support data for a template class (i.e. the vtable) without instantiating any of its
members (with inline), and instantiation of only the static data members of a template
class, without the support data or member functions (with (static):

extern template int max (int, int);

inline template class Foo<int>;

static template class Foo<int>;

3. Do nothing. Pretend G++ does implement automatic instantiation management. Code
written for the Borland model works fine, but each translation unit contains instances
of each of the templates it uses. In a large program, this can lead to an unacceptable
amount of code duplication.

7.6 Extracting the function pointer from a bound pointer to
member function

In C++, pointer to member functions (PMFs) are implemented using a wide pointer of sorts
to handle all the possible call mechanisms; the PMF needs to store information about how
to adjust the ‘this’ pointer, and if the function pointed to is virtual, where to find the
vtable, and where in the vtable to look for the member function. If you are using PMFs in
an inner loop, you should really reconsider that decision. If that is not an option, you can

Chapter 7: Extensions to the C++ Language 707

extract the pointer to the function that would be called for a given object/PMF pair and
call it directly inside the inner loop, to save a bit of time.

Note that you still pay the penalty for the call through a function pointer; on most
modern architectures, such a call defeats the branch prediction features of the CPU. This
is also true of normal virtual function calls.

The syntax for this extension is
extern A a;

extern int (A::*fp)();

typedef int (*fptr)(A *);

fptr p = (fptr)(a.*fp);

For PMF constants (i.e. expressions of the form ‘&Klasse::Member’), no object is needed
to obtain the address of the function. They can be converted to function pointers directly:

fptr p1 = (fptr)(&A::foo);

You must specify ‘-Wno-pmf-conversions’ to use this extension.

7.7 C++-Specific Variable, Function, and Type Attributes

Some attributes only make sense for C++ programs.

abi_tag ("tag", ...)
The abi_tag attribute can be applied to a function or class declaration. It
modifies the mangled name of the function or class to incorporate the tag name,
in order to distinguish the function or class from an earlier version with a
different ABI; perhaps the class has changed size, or the function has a different
return type that is not encoded in the mangled name.
The argument can be a list of strings of arbitrary length. The strings are sorted
on output, so the order of the list is unimportant.
A redeclaration of a function or class must not add new ABI tags, since doing
so would change the mangled name.
The ABI tags apply to a name, so all instantiations and specializations of a
template have the same tags. The attribute will be ignored if applied to an
explicit specialization or instantiation.
The ‘-Wabi-tag’ flag enables a warning about a class which does not have all
the ABI tags used by its subobjects and virtual functions; for users with code
that needs to coexist with an earlier ABI, using this option can help to find all
affected types that need to be tagged.

init_priority (priority)
In Standard C++, objects defined at namespace scope are guaranteed to be
initialized in an order in strict accordance with that of their definitions in a given
translation unit. No guarantee is made for initializations across translation
units. However, GNU C++ allows users to control the order of initialization
of objects defined at namespace scope with the init_priority attribute by
specifying a relative priority, a constant integral expression currently bounded
between 101 and 65535 inclusive. Lower numbers indicate a higher priority.
In the following example, A would normally be created before B, but the init_
priority attribute reverses that order:

708 Using the GNU Compiler Collection (GCC)

Some_Class A __attribute__ ((init_priority (2000)));

Some_Class B __attribute__ ((init_priority (543)));

Note that the particular values of priority do not matter; only their relative
ordering.

java_interface
This type attribute informs C++ that the class is a Java interface. It may only
be applied to classes declared within an extern "Java" block. Calls to methods
declared in this interface are dispatched using GCJ’s interface table mechanism,
instead of regular virtual table dispatch.

warn_unused
For C++ types with non-trivial constructors and/or destructors it is impossible
for the compiler to determine whether a variable of this type is truly unused if
it is not referenced. This type attribute informs the compiler that variables of
this type should be warned about if they appear to be unused, just like variables
of fundamental types.
This attribute is appropriate for types which just represent a value, such as
std::string; it is not appropriate for types which control a resource, such as
std::mutex.
This attribute is also accepted in C, but it is unnecessary because C does not
have constructors or destructors.

See also Section 7.9 [Namespace Association], page 709.

7.8 Function Multiversioning

With the GNU C++ front end, for target i386, you may specify multiple versions of a func-
tion, where each function is specialized for a specific target feature. At runtime, the appro-
priate version of the function is automatically executed depending on the characteristics of
the execution platform. Here is an example.

__attribute__ ((target ("default")))

int foo ()

{

// The default version of foo.

return 0;

}

__attribute__ ((target ("sse4.2")))

int foo ()

{

// foo version for SSE4.2

return 1;

}

__attribute__ ((target ("arch=atom")))

int foo ()

{

// foo version for the Intel ATOM processor

return 2;

}

__attribute__ ((target ("arch=amdfam10")))

Chapter 7: Extensions to the C++ Language 709

int foo ()

{

// foo version for the AMD Family 0x10 processors.

return 3;

}

int main ()

{

int (*p)() = &foo;

assert ((*p) () == foo ());

return 0;

}

In the above example, four versions of function foo are created. The first version of foo
with the target attribute "default" is the default version. This version gets executed when
no other target specific version qualifies for execution on a particular platform. A new
version of foo is created by using the same function signature but with a different target
string. Function foo is called or a pointer to it is taken just like a regular function. GCC
takes care of doing the dispatching to call the right version at runtime. Refer to the GCC
wiki on Function Multiversioning for more details.

7.9 Namespace Association

Caution: The semantics of this extension are equivalent to C++ 2011 inline namespaces.
Users should use inline namespaces instead as this extension will be removed in future
versions of G++.

A using-directive with __attribute ((strong)) is stronger than a normal using-directive
in two ways:

• Templates from the used namespace can be specialized and explicitly instantiated as
though they were members of the using namespace.

• The using namespace is considered an associated namespace of all templates in the
used namespace for purposes of argument-dependent name lookup.

The used namespace must be nested within the using namespace so that normal unqual-
ified lookup works properly.

This is useful for composing a namespace transparently from implementation namespaces.
For example:

namespace std {

namespace debug {

template <class T> struct A { };

}

using namespace debug __attribute ((__strong__));

template <> struct A<int> { }; // OK to specialize

template <class T> void f (A<T>);

}

int main()

{

f (std::A<float>()); // lookup finds std::f

f (std::A<int>());

}

http://gcc.gnu.org/wiki/FunctionMultiVersioning
http://gcc.gnu.org/wiki/FunctionMultiVersioning

710 Using the GNU Compiler Collection (GCC)

7.10 Type Traits

The C++ front end implements syntactic extensions that allow compile-time determination
of various characteristics of a type (or of a pair of types).

__has_nothrow_assign (type)
If type is const qualified or is a reference type then the trait is false. Otherwise
if __has_trivial_assign (type) is true then the trait is true, else if type is
a cv class or union type with copy assignment operators that are known not
to throw an exception then the trait is true, else it is false. Requires: type
shall be a complete type, (possibly cv-qualified) void, or an array of unknown
bound.

__has_nothrow_copy (type)
If __has_trivial_copy (type) is true then the trait is true, else if type is
a cv class or union type with copy constructors that are known not to throw
an exception then the trait is true, else it is false. Requires: type shall be a
complete type, (possibly cv-qualified) void, or an array of unknown bound.

__has_nothrow_constructor (type)
If __has_trivial_constructor (type) is true then the trait is true, else if
type is a cv class or union type (or array thereof) with a default constructor
that is known not to throw an exception then the trait is true, else it is false.
Requires: type shall be a complete type, (possibly cv-qualified) void, or an
array of unknown bound.

__has_trivial_assign (type)
If type is const qualified or is a reference type then the trait is false. Otherwise
if __is_pod (type) is true then the trait is true, else if type is a cv class or
union type with a trivial copy assignment ([class.copy]) then the trait is true,
else it is false. Requires: type shall be a complete type, (possibly cv-qualified)
void, or an array of unknown bound.

__has_trivial_copy (type)
If __is_pod (type) is true or type is a reference type then the trait is true, else
if type is a cv class or union type with a trivial copy constructor ([class.copy])
then the trait is true, else it is false. Requires: type shall be a complete type,
(possibly cv-qualified) void, or an array of unknown bound.

__has_trivial_constructor (type)
If __is_pod (type) is true then the trait is true, else if type is a cv class or
union type (or array thereof) with a trivial default constructor ([class.ctor])
then the trait is true, else it is false. Requires: type shall be a complete type,
(possibly cv-qualified) void, or an array of unknown bound.

__has_trivial_destructor (type)
If __is_pod (type) is true or type is a reference type then the trait is true, else
if type is a cv class or union type (or array thereof) with a trivial destructor
([class.dtor]) then the trait is true, else it is false. Requires: type shall be a
complete type, (possibly cv-qualified) void, or an array of unknown bound.

Chapter 7: Extensions to the C++ Language 711

__has_virtual_destructor (type)
If type is a class type with a virtual destructor ([class.dtor]) then the trait
is true, else it is false. Requires: type shall be a complete type, (possibly
cv-qualified) void, or an array of unknown bound.

__is_abstract (type)
If type is an abstract class ([class.abstract]) then the trait is true, else it is
false. Requires: type shall be a complete type, (possibly cv-qualified) void, or
an array of unknown bound.

__is_base_of (base_type, derived_type)
If base_type is a base class of derived_type ([class.derived]) then the trait
is true, otherwise it is false. Top-level cv qualifications of base_type and
derived_type are ignored. For the purposes of this trait, a class type is con-
sidered is own base. Requires: if __is_class (base_type) and __is_class
(derived_type) are true and base_type and derived_type are not the same
type (disregarding cv-qualifiers), derived_type shall be a complete type. Di-
agnostic is produced if this requirement is not met.

__is_class (type)
If type is a cv class type, and not a union type ([basic.compound]) the trait is
true, else it is false.

__is_empty (type)
If __is_class (type) is false then the trait is false. Otherwise type is con-
sidered empty if and only if: type has no non-static data members, or all
non-static data members, if any, are bit-fields of length 0, and type has no
virtual members, and type has no virtual base classes, and type has no base
classes base_type for which __is_empty (base_type) is false. Requires: type
shall be a complete type, (possibly cv-qualified) void, or an array of unknown
bound.

__is_enum (type)
If type is a cv enumeration type ([basic.compound]) the trait is true, else it is
false.

__is_literal_type (type)
If type is a literal type ([basic.types]) the trait is true, else it is false. Requires:
type shall be a complete type, (possibly cv-qualified) void, or an array of
unknown bound.

__is_pod (type)
If type is a cv POD type ([basic.types]) then the trait is true, else it is false.
Requires: type shall be a complete type, (possibly cv-qualified) void, or an
array of unknown bound.

__is_polymorphic (type)
If type is a polymorphic class ([class.virtual]) then the trait is true, else it is
false. Requires: type shall be a complete type, (possibly cv-qualified) void, or
an array of unknown bound.

712 Using the GNU Compiler Collection (GCC)

__is_standard_layout (type)
If type is a standard-layout type ([basic.types]) the trait is true, else it is false.
Requires: type shall be a complete type, (possibly cv-qualified) void, or an
array of unknown bound.

__is_trivial (type)
If type is a trivial type ([basic.types]) the trait is true, else it is false. Requires:
type shall be a complete type, (possibly cv-qualified) void, or an array of
unknown bound.

__is_union (type)
If type is a cv union type ([basic.compound]) the trait is true, else it is false.

__underlying_type (type)
The underlying type of type. Requires: type shall be an enumeration type
([dcl.enum]).

7.11 Java Exceptions

The Java language uses a slightly different exception handling model from C++. Normally,
GNU C++ automatically detects when you are writing C++ code that uses Java exceptions,
and handle them appropriately. However, if C++ code only needs to execute destructors
when Java exceptions are thrown through it, GCC guesses incorrectly. Sample problematic
code is:

struct S { ~S(); };

extern void bar(); // is written in Java, and may throw exceptions
void foo()

{

S s;

bar();

}

The usual effect of an incorrect guess is a link failure, complaining of a missing routine
called ‘__gxx_personality_v0’.

You can inform the compiler that Java exceptions are to be used in a translation unit,
irrespective of what it might think, by writing ‘#pragma GCC java_exceptions’ at the head
of the file. This ‘#pragma’ must appear before any functions that throw or catch exceptions,
or run destructors when exceptions are thrown through them.

You cannot mix Java and C++ exceptions in the same translation unit. It is believed to
be safe to throw a C++ exception from one file through another file compiled for the Java
exception model, or vice versa, but there may be bugs in this area.

7.12 Deprecated Features

In the past, the GNU C++ compiler was extended to experiment with new features, at a
time when the C++ language was still evolving. Now that the C++ standard is complete,
some of those features are superseded by superior alternatives. Using the old features might
cause a warning in some cases that the feature will be dropped in the future. In other cases,
the feature might be gone already.

While the list below is not exhaustive, it documents some of the options that are now
deprecated:

Chapter 7: Extensions to the C++ Language 713

-fexternal-templates
-falt-external-templates

These are two of the many ways for G++ to implement template instantiation.
See Section 7.5 [Template Instantiation], page 704. The C++ standard clearly
defines how template definitions have to be organized across implementation
units. G++ has an implicit instantiation mechanism that should work just fine
for standard-conforming code.

-fstrict-prototype
-fno-strict-prototype

Previously it was possible to use an empty prototype parameter list to indicate
an unspecified number of parameters (like C), rather than no parameters, as
C++ demands. This feature has been removed, except where it is required for
backwards compatibility. See Section 7.13 [Backwards Compatibility], page 713.

G++ allows a virtual function returning ‘void *’ to be overridden by one returning a
different pointer type. This extension to the covariant return type rules is now deprecated
and will be removed from a future version.

The G++ minimum and maximum operators (‘<?’ and ‘>?’) and their compound forms
(‘<?=’) and ‘>?=’) have been deprecated and are now removed from G++. Code using these
operators should be modified to use std::min and std::max instead.

The named return value extension has been deprecated, and is now removed from G++.
The use of initializer lists with new expressions has been deprecated, and is now removed

from G++.
Floating and complex non-type template parameters have been deprecated, and are now

removed from G++.
The implicit typename extension has been deprecated and is now removed from G++.
The use of default arguments in function pointers, function typedefs and other places

where they are not permitted by the standard is deprecated and will be removed from a
future version of G++.

G++ allows floating-point literals to appear in integral constant expressions, e.g. ‘ enum E
{ e = int(2.2 * 3.7) } ’ This extension is deprecated and will be removed from a future
version.

G++ allows static data members of const floating-point type to be declared with an
initializer in a class definition. The standard only allows initializers for static members of
const integral types and const enumeration types so this extension has been deprecated and
will be removed from a future version.

7.13 Backwards Compatibility

Now that there is a definitive ISO standard C++, G++ has a specification to adhere to. The
C++ language evolved over time, and features that used to be acceptable in previous drafts of
the standard, such as the ARM [Annotated C++ Reference Manual], are no longer accepted.
In order to allow compilation of C++ written to such drafts, G++ contains some backwards
compatibilities. All such backwards compatibility features are liable to disappear in future
versions of G++. They should be considered deprecated. See Section 7.12 [Deprecated
Features], page 712.

714 Using the GNU Compiler Collection (GCC)

For scope If a variable is declared at for scope, it used to remain in scope until the end
of the scope that contained the for statement (rather than just within the for
scope). G++ retains this, but issues a warning, if such a variable is accessed
outside the for scope.

Implicit C language
Old C system header files did not contain an extern "C" {...} scope to set
the language. On such systems, all header files are implicitly scoped inside a
C language scope. Also, an empty prototype () is treated as an unspecified
number of arguments, rather than no arguments, as C++ demands.

Chapter 8: GNU Objective-C features 715

8 GNU Objective-C features

This document is meant to describe some of the GNU Objective-C features. It is not
intended to teach you Objective-C. There are several resources on the Internet that present
the language.

8.1 GNU Objective-C runtime API

This section is specific for the GNU Objective-C runtime. If you are using a different
runtime, you can skip it.

The GNU Objective-C runtime provides an API that allows you to interact with the
Objective-C runtime system, querying the live runtime structures and even manipulating
them. This allows you for example to inspect and navigate classes, methods and protocols;
to define new classes or new methods, and even to modify existing classes or protocols.

If you are using a “Foundation” library such as GNUstep-Base, this library will provide
you with a rich set of functionality to do most of the inspection tasks, and you probably
will only need direct access to the GNU Objective-C runtime API to define new classes or
methods.

8.1.1 Modern GNU Objective-C runtime API

The GNU Objective-C runtime provides an API which is similar to the one provided by
the “Objective-C 2.0” Apple/NeXT Objective-C runtime. The API is documented in the
public header files of the GNU Objective-C runtime:

• ‘objc/objc.h’: this is the basic Objective-C header file, defining the basic Objective-
C types such as id, Class and BOOL. You have to include this header to do almost
anything with Objective-C.

• ‘objc/runtime.h’: this header declares most of the public runtime API functions al-
lowing you to inspect and manipulate the Objective-C runtime data structures. These
functions are fairly standardized across Objective-C runtimes and are almost iden-
tical to the Apple/NeXT Objective-C runtime ones. It does not declare functions
in some specialized areas (constructing and forwarding message invocations, thread-
ing) which are in the other headers below. You have to include ‘objc/objc.h’ and
‘objc/runtime.h’ to use any of the functions, such as class_getName(), declared in
‘objc/runtime.h’.

• ‘objc/message.h’: this header declares public functions used to construct, deconstruct
and forward message invocations. Because messaging is done in quite a different way
on different runtimes, functions in this header are specific to the GNU Objective-C
runtime implementation.

• ‘objc/objc-exception.h’: this header declares some public functions related to
Objective-C exceptions. For example functions in this header allow you to throw an
Objective-C exception from plain C/C++ code.

• ‘objc/objc-sync.h’: this header declares some public functions related to the
Objective-C @synchronized() syntax, allowing you to emulate an Objective-C
@synchronized() block in plain C/C++ code.

716 Using the GNU Compiler Collection (GCC)

• ‘objc/thr.h’: this header declares a public runtime API threading layer that is only
provided by the GNU Objective-C runtime. It declares functions such as objc_mutex_
lock(), which provide a platform-independent set of threading functions.

The header files contain detailed documentation for each function in the GNU Objective-
C runtime API.

8.1.2 Traditional GNU Objective-C runtime API

The GNU Objective-C runtime used to provide a different API, which we call the “tradi-
tional” GNU Objective-C runtime API. Functions belonging to this API are easy to rec-
ognize because they use a different naming convention, such as class_get_super_class()
(traditional API) instead of class_getSuperclass() (modern API). Software using this
API includes the file ‘objc/objc-api.h’ where it is declared.

Starting with GCC 4.7.0, the traditional GNU runtime API is no longer available.

8.2 +load: Executing code before main

This section is specific for the GNU Objective-C runtime. If you are using a different
runtime, you can skip it.

The GNU Objective-C runtime provides a way that allows you to execute code before
the execution of the program enters the main function. The code is executed on a per-class
and a per-category basis, through a special class method +load.

This facility is very useful if you want to initialize global variables which can be accessed
by the program directly, without sending a message to the class first. The usual way
to initialize global variables, in the +initialize method, might not be useful because
+initialize is only called when the first message is sent to a class object, which in some
cases could be too late.

Suppose for example you have a FileStream class that declares Stdin, Stdout and
Stderr as global variables, like below:

FileStream *Stdin = nil;

FileStream *Stdout = nil;

FileStream *Stderr = nil;

@implementation FileStream

+ (void)initialize

{

Stdin = [[FileStream new] initWithFd:0];

Stdout = [[FileStream new] initWithFd:1];

Stderr = [[FileStream new] initWithFd:2];

}

/* Other methods here */

@end

In this example, the initialization of Stdin, Stdout and Stderr in +initialize occurs
too late. The programmer can send a message to one of these objects before the variables
are actually initialized, thus sending messages to the nil object. The +initialize method
which actually initializes the global variables is not invoked until the first message is sent

Chapter 8: GNU Objective-C features 717

to the class object. The solution would require these variables to be initialized just before
entering main.

The correct solution of the above problem is to use the +load method instead of
+initialize:

@implementation FileStream

+ (void)load

{

Stdin = [[FileStream new] initWithFd:0];

Stdout = [[FileStream new] initWithFd:1];

Stderr = [[FileStream new] initWithFd:2];

}

/* Other methods here */

@end

The +load is a method that is not overridden by categories. If a class and a category of
it both implement +load, both methods are invoked. This allows some additional initial-
izations to be performed in a category.

This mechanism is not intended to be a replacement for +initialize. You should be
aware of its limitations when you decide to use it instead of +initialize.

8.2.1 What you can and what you cannot do in +load

+load is to be used only as a last resort. Because it is executed very early, most of the
Objective-C runtime machinery will not be ready when +load is executed; hence +load
works best for executing C code that is independent on the Objective-C runtime.

The +load implementation in the GNU runtime guarantees you the following things:
• you can write whatever C code you like;
• you can allocate and send messages to objects whose class is implemented in the same

file;
• the +load implementation of all super classes of a class are executed before the +load

of that class is executed;
• the +load implementation of a class is executed before the +load implementation of

any category.

In particular, the following things, even if they can work in a particular case, are not
guaranteed:
• allocation of or sending messages to arbitrary objects;
• allocation of or sending messages to objects whose classes have a category implemented

in the same file;
• sending messages to Objective-C constant strings (@"this is a constant string");

You should make no assumptions about receiving +load in sibling classes when you write
+load of a class. The order in which sibling classes receive +load is not guaranteed.

The order in which +load and +initialize are called could be problematic if this mat-
ters. If you don’t allocate objects inside +load, it is guaranteed that +load is called before
+initialize. If you create an object inside +load the +initialize method of object’s

718 Using the GNU Compiler Collection (GCC)

class is invoked even if +load was not invoked. Note if you explicitly call +load on a class,
+initialize will be called first. To avoid possible problems try to implement only one of
these methods.

The +load method is also invoked when a bundle is dynamically loaded into your running
program. This happens automatically without any intervening operation from you. When
you write bundles and you need to write +load you can safely create and send messages to
objects whose classes already exist in the running program. The same restrictions as above
apply to classes defined in bundle.

8.3 Type encoding

This is an advanced section. Type encodings are used extensively by the compiler and by
the runtime, but you generally do not need to know about them to use Objective-C.

The Objective-C compiler generates type encodings for all the types. These type encod-
ings are used at runtime to find out information about selectors and methods and about
objects and classes.

The types are encoded in the following way:

_Bool B
char c
unsigned char C
short s
unsigned short S
int i
unsigned int I
long l
unsigned long L
long long q
unsigned long long Q
float f
double d
long double D
void v
id @
Class #
SEL :
char* *
enum an enum is encoded exactly as the integer type that the compiler

uses for it, which depends on the enumeration values. Often the
compiler users unsigned int, which is then encoded as I.

unknown type ?
Complex types j followed by the inner type. For example _Complex double is

encoded as "jd".
bit-fields b followed by the starting position of the bit-field, the type of the

bit-field and the size of the bit-field (the bit-fields encoding was
changed from the NeXT’s compiler encoding, see below)

Chapter 8: GNU Objective-C features 719

The encoding of bit-fields has changed to allow bit-fields to be properly handled by the
runtime functions that compute sizes and alignments of types that contain bit-fields. The
previous encoding contained only the size of the bit-field. Using only this information it is
not possible to reliably compute the size occupied by the bit-field. This is very important
in the presence of the Boehm’s garbage collector because the objects are allocated using
the typed memory facility available in this collector. The typed memory allocation requires
information about where the pointers are located inside the object.

The position in the bit-field is the position, counting in bits, of the bit closest to the
beginning of the structure.

The non-atomic types are encoded as follows:

pointers ‘^’ followed by the pointed type.
arrays ‘[’ followed by the number of elements in the array followed by the

type of the elements followed by ‘]’
structures ‘{’ followed by the name of the structure (or ‘?’ if the structure is

unnamed), the ‘=’ sign, the type of the members and by ‘}’
unions ‘(’ followed by the name of the structure (or ‘?’ if the union is un-

named), the ‘=’ sign, the type of the members followed by ‘)’
vectors ‘![’ followed by the vector size (the number of bytes composing the

vector) followed by a comma, followed by the alignment (in bytes) of
the vector, followed by the type of the elements followed by ‘]’

Here are some types and their encodings, as they are generated by the compiler on an
i386 machine:

Objective-C type Compiler encoding
int a[10]; [10i]

struct {

int i;

float f[3];

int a:3;

int b:2;

char c;

}

{?=i[3f]b128i3b131i2c}

int a __attribute__ ((vector_size (16)));![16,16i] (alignment would depend on the machine)

In addition to the types the compiler also encodes the type specifiers. The table below
describes the encoding of the current Objective-C type specifiers:

Specifier Encoding
const r
in n
inout N
out o
bycopy O

720 Using the GNU Compiler Collection (GCC)

byref R
oneway V

The type specifiers are encoded just before the type. Unlike types however, the type
specifiers are only encoded when they appear in method argument types.

Note how const interacts with pointers:

Objective-C type Compiler encoding
const int ri

const int* ^ri

int *const r^i

const int* is a pointer to a const int, and so is encoded as ^ri. int* const, instead,
is a const pointer to an int, and so is encoded as r^i.

Finally, there is a complication when encoding const char * versus char * const. Be-
cause char * is encoded as * and not as ^c, there is no way to express the fact that r applies
to the pointer or to the pointee.

Hence, it is assumed as a convention that r* means const char * (since it is what is
most often meant), and there is no way to encode char *const. char *const would simply
be encoded as *, and the const is lost.

8.3.1 Legacy type encoding

Unfortunately, historically GCC used to have a number of bugs in its encoding code. The
NeXT runtime expects GCC to emit type encodings in this historical format (compatible
with GCC-3.3), so when using the NeXT runtime, GCC will introduce on purpose a number
of incorrect encodings:
• the read-only qualifier of the pointee gets emitted before the ’^’. The read-only qualifier

of the pointer itself gets ignored, unless it is a typedef. Also, the ’r’ is only emitted for
the outermost type.

• 32-bit longs are encoded as ’l’ or ’L’, but not always. For typedefs, the compiler uses
’i’ or ’I’ instead if encoding a struct field or a pointer.

• enums are always encoded as ’i’ (int) even if they are actually unsigned or long.

In addition to that, the NeXT runtime uses a different encoding for bitfields. It encodes
them as b followed by the size, without a bit offset or the underlying field type.

8.3.2 @encode

GNU Objective-C supports the @encode syntax that allows you to create a type encoding
from a C/Objective-C type. For example, @encode(int) is compiled by the compiler into
"i".
@encode does not support type qualifiers other than const. For example, @encode(const

char*) is valid and is compiled into "r*", while @encode(bycopy char *) is invalid and
will cause a compilation error.

Chapter 8: GNU Objective-C features 721

8.3.3 Method signatures

This section documents the encoding of method types, which is rarely needed to use
Objective-C. You should skip it at a first reading; the runtime provides functions that
will work on methods and can walk through the list of parameters and interpret them for
you. These functions are part of the public “API” and are the preferred way to interact
with method signatures from user code.

But if you need to debug a problem with method signatures and need to know how they
are implemented (i.e., the “ABI”), read on.

Methods have their “signature” encoded and made available to the runtime. The “signa-
ture” encodes all the information required to dynamically build invocations of the method
at runtime: return type and arguments.

The “signature” is a null-terminated string, composed of the following:

• The return type, including type qualifiers. For example, a method returning int would
have i here.

• The total size (in bytes) required to pass all the parameters. This includes the two
hidden parameters (the object self and the method selector _cmd).

• Each argument, with the type encoding, followed by the offset (in bytes) of the argu-
ment in the list of parameters.

For example, a method with no arguments and returning int would have the signature
i8@0:4 if the size of a pointer is 4. The signature is interpreted as follows: the i is the
return type (an int), the 8 is the total size of the parameters in bytes (two pointers each
of size 4), the @0 is the first parameter (an object at byte offset 0) and :4 is the second
parameter (a SEL at byte offset 4).

You can easily find more examples by running the “strings” program on an Objective-C
object file compiled by GCC. You’ll see a lot of strings that look very much like i8@0:4.
They are signatures of Objective-C methods.

8.4 Garbage Collection

This section is specific for the GNU Objective-C runtime. If you are using a different
runtime, you can skip it.

Support for garbage collection with the GNU runtime has been added by using a powerful
conservative garbage collector, known as the Boehm-Demers-Weiser conservative garbage
collector.

To enable the support for it you have to configure the compiler using an additional argu-
ment, ‘--enable-objc-gc’. This will build the boehm-gc library, and build an additional
runtime library which has several enhancements to support the garbage collector. The
new library has a new name, ‘libobjc_gc.a’ to not conflict with the non-garbage-collected
library.

When the garbage collector is used, the objects are allocated using the so-called typed
memory allocation mechanism available in the Boehm-Demers-Weiser collector. This mode
requires precise information on where pointers are located inside objects. This information
is computed once per class, immediately after the class has been initialized.

722 Using the GNU Compiler Collection (GCC)

There is a new runtime function class_ivar_set_gcinvisible() which can be used to
declare a so-called weak pointer reference. Such a pointer is basically hidden for the garbage
collector; this can be useful in certain situations, especially when you want to keep track
of the allocated objects, yet allow them to be collected. This kind of pointers can only be
members of objects, you cannot declare a global pointer as a weak reference. Every type
which is a pointer type can be declared a weak pointer, including id, Class and SEL.

Here is an example of how to use this feature. Suppose you want to implement a class
whose instances hold a weak pointer reference; the following class does this:

@interface WeakPointer : Object

{

const void* weakPointer;

}

- initWithPointer:(const void*)p;

- (const void*)weakPointer;

@end

@implementation WeakPointer

+ (void)initialize

{

if (self == objc_lookUpClass ("WeakPointer"))

class_ivar_set_gcinvisible (self, "weakPointer", YES);

}

- initWithPointer:(const void*)p

{

weakPointer = p;

return self;

}

- (const void*)weakPointer

{

return weakPointer;

}

@end

Weak pointers are supported through a new type character specifier represented by the
‘!’ character. The class_ivar_set_gcinvisible() function adds or removes this specifier
to the string type description of the instance variable named as argument.

8.5 Constant string objects

GNU Objective-C provides constant string objects that are generated directly by the com-
piler. You declare a constant string object by prefixing a C constant string with the character
‘@’:

id myString = @"this is a constant string object";

The constant string objects are by default instances of the NXConstantString class which
is provided by the GNU Objective-C runtime. To get the definition of this class you must
include the ‘objc/NXConstStr.h’ header file.

Chapter 8: GNU Objective-C features 723

User defined libraries may want to implement their own constant string class. To be able
to support them, the GNU Objective-C compiler provides a new command line options
‘-fconstant-string-class=class-name’. The provided class should adhere to a strict
structure, the same as NXConstantString’s structure:

@interface MyConstantStringClass

{

Class isa;

char *c_string;

unsigned int len;

}

@end

NXConstantString inherits from Object; user class libraries may choose to inherit the
customized constant string class from a different class than Object. There is no requirement
in the methods the constant string class has to implement, but the final ivar layout of the
class must be the compatible with the given structure.

When the compiler creates the statically allocated constant string object, the c_string
field will be filled by the compiler with the string; the length field will be filled by the
compiler with the string length; the isa pointer will be filled with NULL by the compiler,
and it will later be fixed up automatically at runtime by the GNU Objective-C runtime
library to point to the class which was set by the ‘-fconstant-string-class’ option when
the object file is loaded (if you wonder how it works behind the scenes, the name of the
class to use, and the list of static objects to fixup, are stored by the compiler in the object
file in a place where the GNU runtime library will find them at runtime).

As a result, when a file is compiled with the ‘-fconstant-string-class’ option, all the
constant string objects will be instances of the class specified as argument to this option. It
is possible to have multiple compilation units referring to different constant string classes,
neither the compiler nor the linker impose any restrictions in doing this.

8.6 compatibility alias

The keyword @compatibility_alias allows you to define a class name as equivalent to
another class name. For example:

@compatibility_alias WOApplication GSWApplication;

tells the compiler that each time it encounters WOApplication as a class name, it
should replace it with GSWApplication (that is, WOApplication is just an alias for
GSWApplication).

There are some constraints on how this can be used—
• WOApplication (the alias) must not be an existing class;
• GSWApplication (the real class) must be an existing class.

8.7 Exceptions

GNU Objective-C provides exception support built into the language, as in the following
example:

@try {

...

724 Using the GNU Compiler Collection (GCC)

@throw expr;

...

}

@catch (AnObjCClass *exc) {

...

@throw expr;

...

@throw;

...

}

@catch (AnotherClass *exc) {

...

}

@catch (id allOthers) {

...

}

@finally {

...

@throw expr;

...

}

The @throw statement may appear anywhere in an Objective-C or Objective-C++ pro-
gram; when used inside of a @catch block, the @throw may appear without an argument
(as shown above), in which case the object caught by the @catch will be rethrown.

Note that only (pointers to) Objective-C objects may be thrown and caught using this
scheme. When an object is thrown, it will be caught by the nearest @catch clause capable
of handling objects of that type, analogously to how catch blocks work in C++ and Java.
A @catch(id ...) clause (as shown above) may also be provided to catch any and all
Objective-C exceptions not caught by previous @catch clauses (if any).

The @finally clause, if present, will be executed upon exit from the immediately pre-
ceding @try ... @catch section. This will happen regardless of whether any exceptions
are thrown, caught or rethrown inside the @try ... @catch section, analogously to the
behavior of the finally clause in Java.

There are several caveats to using the new exception mechanism:

• The ‘-fobjc-exceptions’ command line option must be used when compiling
Objective-C files that use exceptions.

• With the GNU runtime, exceptions are always implemented as “native” exceptions
and it is recommended that the ‘-fexceptions’ and ‘-shared-libgcc’ options are
used when linking.

• With the NeXT runtime, although currently designed to be binary compatible with NS_
HANDLER-style idioms provided by the NSException class, the new exceptions can only
be used on Mac OS X 10.3 (Panther) and later systems, due to additional functionality
needed in the NeXT Objective-C runtime.

• As mentioned above, the new exceptions do not support handling types other than
Objective-C objects. Furthermore, when used from Objective-C++, the Objective-C
exception model does not interoperate with C++ exceptions at this time. This means
you cannot @throw an exception from Objective-C and catch it in C++, or vice versa
(i.e., throw ... @catch).

Chapter 8: GNU Objective-C features 725

8.8 Synchronization

GNU Objective-C provides support for synchronized blocks:
@synchronized (ObjCClass *guard) {

...

}

Upon entering the @synchronized block, a thread of execution shall first check whether
a lock has been placed on the corresponding guard object by another thread. If it has, the
current thread shall wait until the other thread relinquishes its lock. Once guard becomes
available, the current thread will place its own lock on it, execute the code contained in the
@synchronized block, and finally relinquish the lock (thereby making guard available to
other threads).

Unlike Java, Objective-C does not allow for entire methods to be marked @synchronized.
Note that throwing exceptions out of @synchronized blocks is allowed, and will cause the
guarding object to be unlocked properly.

Because of the interactions between synchronization and exception handling, you can only
use @synchronized when compiling with exceptions enabled, that is with the command line
option ‘-fobjc-exceptions’.

8.9 Fast enumeration

8.9.1 Using fast enumeration

GNU Objective-C provides support for the fast enumeration syntax:
id array = ...;

id object;

for (object in array)

{

/* Do something with ’object’ */

}

array needs to be an Objective-C object (usually a collection object, for example an array,
a dictionary or a set) which implements the “Fast Enumeration Protocol” (see below). If
you are using a Foundation library such as GNUstep Base or Apple Cocoa Foundation, all
collection objects in the library implement this protocol and can be used in this way.

The code above would iterate over all objects in array. For each of them, it assigns it to
object, then executes the Do something with ’object’ statements.

Here is a fully worked-out example using a Foundation library (which provides the im-
plementation of NSArray, NSString and NSLog):

NSArray *array = [NSArray arrayWithObjects: @"1", @"2", @"3", nil];

NSString *object;

for (object in array)

NSLog (@"Iterating over %@", object);

8.9.2 c99-like fast enumeration syntax

A c99-like declaration syntax is also allowed:
id array = ...;

726 Using the GNU Compiler Collection (GCC)

for (id object in array)

{

/* Do something with ’object’ */

}

this is completely equivalent to:
id array = ...;

{

id object;

for (object in array)

{

/* Do something with ’object’ */

}

}

but can save some typing.
Note that the option ‘-std=c99’ is not required to allow this syntax in Objective-C.

8.9.3 Fast enumeration details

Here is a more technical description with the gory details. Consider the code
for (object expression in collection expression)

{

statements

}

here is what happens when you run it:
• collection expression is evaluated exactly once and the result is used as the collec-

tion object to iterate over. This means it is safe to write code such as for (object in
[NSDictionary keyEnumerator])

• the iteration is implemented by the compiler by repeatedly getting batches of objects
from the collection object using the fast enumeration protocol (see below), then iter-
ating over all objects in the batch. This is faster than a normal enumeration where
objects are retrieved one by one (hence the name “fast enumeration”).

• if there are no objects in the collection, then object expression is set to nil and the
loop immediately terminates.

• if there are objects in the collection, then for each object in the collection (in the
order they are returned) object expression is set to the object, then statements are
executed.

• statements can contain break and continue commands, which will abort the iteration
or skip to the next loop iteration as expected.

• when the iteration ends because there are no more objects to iterate over, object

expression is set to nil. This allows you to determine whether the iteration finished
because a break command was used (in which case object expression will remain
set to the last object that was iterated over) or because it iterated over all the objects
(in which case object expression will be set to nil).

• statements must not make any changes to the collection object; if they do, it is a hard
error and the fast enumeration terminates by invoking objc_enumerationMutation, a
runtime function that normally aborts the program but which can be customized by
Foundation libraries via objc_set_mutation_handler to do something different, such
as raising an exception.

Chapter 8: GNU Objective-C features 727

8.9.4 Fast enumeration protocol

If you want your own collection object to be usable with fast enumeration, you need to have
it implement the method

- (unsigned long) countByEnumeratingWithState: (NSFastEnumerationState *)state

objects: (id *)objects

count: (unsigned long)len;

where NSFastEnumerationState must be defined in your code as follows:

typedef struct

{

unsigned long state;

id *itemsPtr;

unsigned long *mutationsPtr;

unsigned long extra[5];

} NSFastEnumerationState;

If no NSFastEnumerationState is defined in your code, the compiler will automatically
replace NSFastEnumerationState * with struct __objcFastEnumerationState *, where
that type is silently defined by the compiler in an identical way. This can be confusing and
we recommend that you define NSFastEnumerationState (as shown above) instead.

The method is called repeatedly during a fast enumeration to retrieve batches of objects.
Each invocation of the method should retrieve the next batch of objects.

The return value of the method is the number of objects in the current batch; this should
not exceed len, which is the maximum size of a batch as requested by the caller. The batch
itself is returned in the itemsPtr field of the NSFastEnumerationState struct.

To help with returning the objects, the objects array is a C array preallocated by the
caller (on the stack) of size len. In many cases you can put the objects you want to return in
that objects array, then do itemsPtr = objects. But you don’t have to; if your collection
already has the objects to return in some form of C array, it could return them from there
instead.

The state and extra fields of the NSFastEnumerationState structure allows your collec-
tion object to keep track of the state of the enumeration. In a simple array implementation,
state may keep track of the index of the last object that was returned, and extra may be
unused.

The mutationsPtr field of the NSFastEnumerationState is used to keep track of muta-
tions. It should point to a number; before working on each object, the fast enumeration
loop will check that this number has not changed. If it has, a mutation has happened and
the fast enumeration will abort. So, mutationsPtr could be set to point to some sort of
version number of your collection, which is increased by one every time there is a change
(for example when an object is added or removed). Or, if you are content with less strict
mutation checks, it could point to the number of objects in your collection or some other
value that can be checked to perform an approximate check that the collection has not been
mutated.

Finally, note how we declared the len argument and the return value to be of type
unsigned long. They could also be declared to be of type unsigned int and everything
would still work.

728 Using the GNU Compiler Collection (GCC)

8.10 Messaging with the GNU Objective-C runtime

This section is specific for the GNU Objective-C runtime. If you are using a different
runtime, you can skip it.

The implementation of messaging in the GNU Objective-C runtime is designed to be
portable, and so is based on standard C.

Sending a message in the GNU Objective-C runtime is composed of two separate steps.
First, there is a call to the lookup function, objc_msg_lookup () (or, in the case of mes-
sages to super, objc_msg_lookup_super ()). This runtime function takes as argument the
receiver and the selector of the method to be called; it returns the IMP, that is a pointer
to the function implementing the method. The second step of method invocation consists
of casting this pointer function to the appropriate function pointer type, and calling the
function pointed to it with the right arguments.

For example, when the compiler encounters a method invocation such as [object init],
it compiles it into a call to objc_msg_lookup (object, @selector(init)) followed by a
cast of the returned value to the appropriate function pointer type, and then it calls it.

8.10.1 Dynamically registering methods

If objc_msg_lookup() does not find a suitable method implementation, because the receiver
does not implement the required method, it tries to see if the class can dynamically register
the method.

To do so, the runtime checks if the class of the receiver implements the method
+ (BOOL) resolveInstanceMethod: (SEL)selector;

in the case of an instance method, or
+ (BOOL) resolveClassMethod: (SEL)selector;

in the case of a class method. If the class implements it, the runtime invokes it, passing
as argument the selector of the original method, and if it returns YES, the runtime tries the
lookup again, which could now succeed if a matching method was added dynamically by
+resolveInstanceMethod: or +resolveClassMethod:.

This allows classes to dynamically register methods (by adding them to the class us-
ing class_addMethod) when they are first called. To do so, a class should implement
+resolveInstanceMethod: (or, depending on the case, +resolveClassMethod:) and have
it recognize the selectors of methods that can be registered dynamically at runtime, regis-
ter them, and return YES. It should return NO for methods that it does not dynamically
registered at runtime.

If +resolveInstanceMethod: (or +resolveClassMethod:) is not implemented or returns
NO, the runtime then tries the forwarding hook.

Support for +resolveInstanceMethod: and resolveClassMethod: was added to the
GNU Objective-C runtime in GCC version 4.6.

8.10.2 Forwarding hook

The GNU Objective-C runtime provides a hook, called __objc_msg_forward2, which is
called by objc_msg_lookup() when it can’t find a method implementation in the runtime
tables and after calling +resolveInstanceMethod: and +resolveClassMethod: has been
attempted and did not succeed in dynamically registering the method.

Chapter 8: GNU Objective-C features 729

To configure the hook, you set the global variable __objc_msg_forward2 to a func-
tion with the same argument and return types of objc_msg_lookup(). When objc_msg_
lookup() can not find a method implementation, it invokes the hook function you provided
to get a method implementation to return. So, in practice __objc_msg_forward2 allows you
to extend objc_msg_lookup() by adding some custom code that is called to do a further
lookup when no standard method implementation can be found using the normal lookup.

This hook is generally reserved for “Foundation” libraries such as GNUstep Base, which
use it to implement their high-level method forwarding API, typically based around the
forwardInvocation: method. So, unless you are implementing your own “Foundation”
library, you should not set this hook.

In a typical forwarding implementation, the __objc_msg_forward2 hook function deter-
mines the argument and return type of the method that is being looked up, and then creates
a function that takes these arguments and has that return type, and returns it to the caller.
Creating this function is non-trivial and is typically performed using a dedicated library
such as libffi.

The forwarding method implementation thus created is returned by objc_msg_lookup()
and is executed as if it was a normal method implementation. When the forwarding method
implementation is called, it is usually expected to pack all arguments into some sort of
object (typically, an NSInvocation in a “Foundation” library), and hand it over to the
programmer (forwardInvocation:) who is then allowed to manipulate the method in-
vocation using a high-level API provided by the “Foundation” library. For example, the
programmer may want to examine the method invocation arguments and name and poten-
tially change them before forwarding the method invocation to one or more local objects
(performInvocation:) or even to remote objects (by using Distributed Objects or some
other mechanism). When all this completes, the return value is passed back and must be
returned correctly to the original caller.

Note that the GNU Objective-C runtime currently provides no support for method for-
warding or method invocations other than the __objc_msg_forward2 hook.

If the forwarding hook does not exist or returns NULL, the runtime currently attempts
forwarding using an older, deprecated API, and if that fails, it aborts the program. In
future versions of the GNU Objective-C runtime, the runtime will immediately abort.

Chapter 9: Binary Compatibility 731

9 Binary Compatibility

Binary compatibility encompasses several related concepts:

application binary interface (ABI)
The set of runtime conventions followed by all of the tools that deal with bi-
nary representations of a program, including compilers, assemblers, linkers, and
language runtime support. Some ABIs are formal with a written specification,
possibly designed by multiple interested parties. Others are simply the way
things are actually done by a particular set of tools.

ABI conformance
A compiler conforms to an ABI if it generates code that follows all of the
specifications enumerated by that ABI. A library conforms to an ABI if it is
implemented according to that ABI. An application conforms to an ABI if it
is built using tools that conform to that ABI and does not contain source code
that specifically changes behavior specified by the ABI.

calling conventions
Calling conventions are a subset of an ABI that specify of how arguments are
passed and function results are returned.

interoperability
Different sets of tools are interoperable if they generate files that can be used
in the same program. The set of tools includes compilers, assemblers, linkers,
libraries, header files, startup files, and debuggers. Binaries produced by dif-
ferent sets of tools are not interoperable unless they implement the same ABI.
This applies to different versions of the same tools as well as tools from different
vendors.

intercallability
Whether a function in a binary built by one set of tools can call a function in
a binary built by a different set of tools is a subset of interoperability.

implementation-defined features
Language standards include lists of implementation-defined features whose be-
havior can vary from one implementation to another. Some of these features
are normally covered by a platform’s ABI and others are not. The features
that are not covered by an ABI generally affect how a program behaves, but
not intercallability.

compatibility
Conformance to the same ABI and the same behavior of implementation-defined
features are both relevant for compatibility.

The application binary interface implemented by a C or C++ compiler affects code gen-
eration and runtime support for:

• size and alignment of data types
• layout of structured types
• calling conventions

732 Using the GNU Compiler Collection (GCC)

• register usage conventions
• interfaces for runtime arithmetic support
• object file formats

In addition, the application binary interface implemented by a C++ compiler affects code
generation and runtime support for:
• name mangling
• exception handling
• invoking constructors and destructors
• layout, alignment, and padding of classes
• layout and alignment of virtual tables

Some GCC compilation options cause the compiler to generate code that does not con-
form to the platform’s default ABI. Other options cause different program behavior for
implementation-defined features that are not covered by an ABI. These options are pro-
vided for consistency with other compilers that do not follow the platform’s default ABI
or the usual behavior of implementation-defined features for the platform. Be very careful
about using such options.

Most platforms have a well-defined ABI that covers C code, but ABIs that cover C++
functionality are not yet common.

Starting with GCC 3.2, GCC binary conventions for C++ are based on a written, vendor-
neutral C++ ABI that was designed to be specific to 64-bit Itanium but also includes generic
specifications that apply to any platform. This C++ ABI is also implemented by other
compiler vendors on some platforms, notably GNU/Linux and BSD systems. We have tried
hard to provide a stable ABI that will be compatible with future GCC releases, but it is
possible that we will encounter problems that make this difficult. Such problems could
include different interpretations of the C++ ABI by different vendors, bugs in the ABI, or
bugs in the implementation of the ABI in different compilers. GCC’s ‘-Wabi’ switch warns
when G++ generates code that is probably not compatible with the C++ ABI.

The C++ library used with a C++ compiler includes the Standard C++ Library, with
functionality defined in the C++ Standard, plus language runtime support. The runtime
support is included in a C++ ABI, but there is no formal ABI for the Standard C++ Library.
Two implementations of that library are interoperable if one follows the de-facto ABI of the
other and if they are both built with the same compiler, or with compilers that conform to
the same ABI for C++ compiler and runtime support.

When G++ and another C++ compiler conform to the same C++ ABI, but the implemen-
tations of the Standard C++ Library that they normally use do not follow the same ABI for
the Standard C++ Library, object files built with those compilers can be used in the same
program only if they use the same C++ library. This requires specifying the location of the
C++ library header files when invoking the compiler whose usual library is not being used.
The location of GCC’s C++ header files depends on how the GCC build was configured, but
can be seen by using the G++ ‘-v’ option. With default configuration options for G++ 3.3
the compile line for a different C++ compiler needs to include

-Igcc_install_directory/include/c++/3.3

Similarly, compiling code with G++ that must use a C++ library other than the GNU C++
library requires specifying the location of the header files for that other library.

Chapter 9: Binary Compatibility 733

The most straightforward way to link a program to use a particular C++ library is to
use a C++ driver that specifies that C++ library by default. The g++ driver, for example,
tells the linker where to find GCC’s C++ library (‘libstdc++’) plus the other libraries and
startup files it needs, in the proper order.

If a program must use a different C++ library and it’s not possible to do the final link
using a C++ driver that uses that library by default, it is necessary to tell g++ the location
and name of that library. It might also be necessary to specify different startup files and
other runtime support libraries, and to suppress the use of GCC’s support libraries with
one or more of the options ‘-nostdlib’, ‘-nostartfiles’, and ‘-nodefaultlibs’.

Chapter 10: gcov—a Test Coverage Program 735

10 gcov—a Test Coverage Program

gcov is a tool you can use in conjunction with GCC to test code coverage in your programs.

10.1 Introduction to gcov

gcov is a test coverage program. Use it in concert with GCC to analyze your programs
to help create more efficient, faster running code and to discover untested parts of your
program. You can use gcov as a profiling tool to help discover where your optimization
efforts will best affect your code. You can also use gcov along with the other profiling tool,
gprof, to assess which parts of your code use the greatest amount of computing time.

Profiling tools help you analyze your code’s performance. Using a profiler such as gcov
or gprof, you can find out some basic performance statistics, such as:

• how often each line of code executes

• what lines of code are actually executed

• how much computing time each section of code uses

Once you know these things about how your code works when compiled, you can look at
each module to see which modules should be optimized. gcov helps you determine where
to work on optimization.

Software developers also use coverage testing in concert with testsuites, to make sure
software is actually good enough for a release. Testsuites can verify that a program works
as expected; a coverage program tests to see how much of the program is exercised by the
testsuite. Developers can then determine what kinds of test cases need to be added to the
testsuites to create both better testing and a better final product.

You should compile your code without optimization if you plan to use gcov because
the optimization, by combining some lines of code into one function, may not give you
as much information as you need to look for ‘hot spots’ where the code is using a great
deal of computer time. Likewise, because gcov accumulates statistics by line (at the lowest
resolution), it works best with a programming style that places only one statement on each
line. If you use complicated macros that expand to loops or to other control structures,
the statistics are less helpful—they only report on the line where the macro call appears.
If your complex macros behave like functions, you can replace them with inline functions
to solve this problem.

gcov creates a logfile called ‘sourcefile.gcov’ which indicates how many times each line
of a source file ‘sourcefile.c’ has executed. You can use these logfiles along with gprof
to aid in fine-tuning the performance of your programs. gprof gives timing information
you can use along with the information you get from gcov.

gcov works only on code compiled with GCC. It is not compatible with any other profiling
or test coverage mechanism.

10.2 Invoking gcov
gcov [options] files

gcov accepts the following options:

736 Using the GNU Compiler Collection (GCC)

-h
--help Display help about using gcov (on the standard output), and exit without doing

any further processing.

-v
--version

Display the gcov version number (on the standard output), and exit without
doing any further processing.

-a
--all-blocks

Write individual execution counts for every basic block. Normally gcov outputs
execution counts only for the main blocks of a line. With this option you can
determine if blocks within a single line are not being executed.

-b
--branch-probabilities

Write branch frequencies to the output file, and write branch summary info to
the standard output. This option allows you to see how often each branch in
your program was taken. Unconditional branches will not be shown, unless the
‘-u’ option is given.

-c
--branch-counts

Write branch frequencies as the number of branches taken, rather than the
percentage of branches taken.

-n
--no-output

Do not create the gcov output file.

-l
--long-file-names

Create long file names for included source files. For example, if the header
file ‘x.h’ contains code, and was included in the file ‘a.c’, then running gcov
on the file ‘a.c’ will produce an output file called ‘a.c##x.h.gcov’ instead of
‘x.h.gcov’. This can be useful if ‘x.h’ is included in multiple source files and
you want to see the individual contributions. If you use the ‘-p’ option, both
the including and included file names will be complete path names.

-p
--preserve-paths

Preserve complete path information in the names of generated ‘.gcov’ files.
Without this option, just the filename component is used. With this option, all
directories are used, with ‘/’ characters translated to ‘#’ characters, ‘.’ directory
components removed and unremoveable ‘..’ components renamed to ‘^’. This
is useful if sourcefiles are in several different directories.

Chapter 10: gcov—a Test Coverage Program 737

-r
--relative-only

Only output information about source files with a relative pathname (after
source prefix elision). Absolute paths are usually system header files and cov-
erage of any inline functions therein is normally uninteresting.

-f
--function-summaries

Output summaries for each function in addition to the file level summary.

-o directory|file
--object-directory directory

--object-file file

Specify either the directory containing the gcov data files, or the object path
name. The ‘.gcno’, and ‘.gcda’ data files are searched for using this option. If
a directory is specified, the data files are in that directory and named after the
input file name, without its extension. If a file is specified here, the data files
are named after that file, without its extension.

-s directory

--source-prefix directory

A prefix for source file names to remove when generating the output coverage
files. This option is useful when building in a separate directory, and the path-
name to the source directory is not wanted when determining the output file
names. Note that this prefix detection is applied before determining whether
the source file is absolute.

-u
--unconditional-branches

When branch probabilities are given, include those of unconditional branches.
Unconditional branches are normally not interesting.

-d
--display-progress

Display the progress on the standard output.

-i
--intermediate-format

Output gcov file in an easy-to-parse intermediate text format that can be used
by lcov or other tools. The output is a single ‘.gcov’ file per ‘.gcda’ file. No
source code is required.
The format of the intermediate ‘.gcov’ file is plain text with one entry per line

file:source_file_name

function:line_number,execution_count,function_name

lcount:line number,execution_count

branch:line_number,branch_coverage_type

Where the branch_coverage_type is

notexec (Branch not executed)

taken (Branch executed and taken)

nottaken (Branch executed, but not taken)

738 Using the GNU Compiler Collection (GCC)

There can be multiple file entries in an intermediate gcov

file. All entries following a file pertain to that source file

until the next file entry.

Here is a sample when ‘-i’ is used in conjunction with ‘-b’ option:
file:array.cc

function:11,1,_Z3sumRKSt6vectorIPiSaIS0_EE

function:22,1,main

lcount:11,1

lcount:12,1

lcount:14,1

branch:14,taken

lcount:26,1

branch:28,nottaken

-m
--demangled-names

Display demangled function names in output. The default is to show mangled
function names.

gcov should be run with the current directory the same as that when you invoked the
compiler. Otherwise it will not be able to locate the source files. gcov produces files called
‘mangledname.gcov’ in the current directory. These contain the coverage information of
the source file they correspond to. One ‘.gcov’ file is produced for each source (or header)
file containing code, which was compiled to produce the data files. The mangledname part
of the output file name is usually simply the source file name, but can be something more
complicated if the ‘-l’ or ‘-p’ options are given. Refer to those options for details.

If you invoke gcov with multiple input files, the contributions from each input file are
summed. Typically you would invoke it with the same list of files as the final link of your
executable.

The ‘.gcov’ files contain the ‘:’ separated fields along with program source code. The
format is

execution_count:line_number:source line text

Additional block information may succeed each line, when requested by command line
option. The execution count is ‘-’ for lines containing no code. Unexecuted lines are marked
‘#####’ or ‘====’, depending on whether they are reachable by non-exceptional paths or
only exceptional paths such as C++ exception handlers, respectively.

Some lines of information at the start have line number of zero. These preamble lines
are of the form

-:0:tag:value

The ordering and number of these preamble lines will be augmented as gcov development
progresses — do not rely on them remaining unchanged. Use tag to locate a particular
preamble line.

The additional block information is of the form
tag information

The information is human readable, but designed to be simple enough for machine parsing
too.

When printing percentages, 0% and 100% are only printed when the values are exactly
0% and 100% respectively. Other values which would conventionally be rounded to 0% or
100% are instead printed as the nearest non-boundary value.

Chapter 10: gcov—a Test Coverage Program 739

When using gcov, you must first compile your program with two special GCC options:
‘-fprofile-arcs -ftest-coverage’. This tells the compiler to generate additional infor-
mation needed by gcov (basically a flow graph of the program) and also includes additional
code in the object files for generating the extra profiling information needed by gcov. These
additional files are placed in the directory where the object file is located.

Running the program will cause profile output to be generated. For each source file
compiled with ‘-fprofile-arcs’, an accompanying ‘.gcda’ file will be placed in the object
file directory.

Running gcov with your program’s source file names as arguments will now produce a
listing of the code along with frequency of execution for each line. For example, if your
program is called ‘tmp.c’, this is what you see when you use the basic gcov facility:

$ gcc -fprofile-arcs -ftest-coverage tmp.c

$ a.out

$ gcov tmp.c

90.00% of 10 source lines executed in file tmp.c

Creating tmp.c.gcov.

The file ‘tmp.c.gcov’ contains output from gcov. Here is a sample:
-: 0:Source:tmp.c

-: 0:Graph:tmp.gcno

-: 0:Data:tmp.gcda

-: 0:Runs:1

-: 0:Programs:1

-: 1:#include <stdio.h>

-: 2:

-: 3:int main (void)

1: 4:{

1: 5: int i, total;

-: 6:

1: 7: total = 0;

-: 8:

11: 9: for (i = 0; i < 10; i++)

10: 10: total += i;

-: 11:

1: 12: if (total != 45)

#####: 13: printf ("Failure\n");

-: 14: else

1: 15: printf ("Success\n");

1: 16: return 0;

-: 17:}

When you use the ‘-a’ option, you will get individual block counts, and the output looks
like this:

-: 0:Source:tmp.c

-: 0:Graph:tmp.gcno

-: 0:Data:tmp.gcda

-: 0:Runs:1

-: 0:Programs:1

-: 1:#include <stdio.h>

-: 2:

-: 3:int main (void)

1: 4:{

1: 4-block 0

1: 5: int i, total;

-: 6:

740 Using the GNU Compiler Collection (GCC)

1: 7: total = 0;

-: 8:

11: 9: for (i = 0; i < 10; i++)

11: 9-block 0

10: 10: total += i;

10: 10-block 0

-: 11:

1: 12: if (total != 45)

1: 12-block 0

#####: 13: printf ("Failure\n");

$$$$$: 13-block 0

-: 14: else

1: 15: printf ("Success\n");

1: 15-block 0

1: 16: return 0;

1: 16-block 0

-: 17:}

In this mode, each basic block is only shown on one line – the last line of the block.
A multi-line block will only contribute to the execution count of that last line, and other
lines will not be shown to contain code, unless previous blocks end on those lines. The
total execution count of a line is shown and subsequent lines show the execution counts for
individual blocks that end on that line. After each block, the branch and call counts of the
block will be shown, if the ‘-b’ option is given.

Because of the way GCC instruments calls, a call count can be shown after a line with
no individual blocks. As you can see, line 13 contains a basic block that was not executed.

When you use the ‘-b’ option, your output looks like this:
$ gcov -b tmp.c

90.00% of 10 source lines executed in file tmp.c

80.00% of 5 branches executed in file tmp.c

80.00% of 5 branches taken at least once in file tmp.c

50.00% of 2 calls executed in file tmp.c

Creating tmp.c.gcov.

Here is a sample of a resulting ‘tmp.c.gcov’ file:
-: 0:Source:tmp.c

-: 0:Graph:tmp.gcno

-: 0:Data:tmp.gcda

-: 0:Runs:1

-: 0:Programs:1

-: 1:#include <stdio.h>

-: 2:

-: 3:int main (void)

function main called 1 returned 1 blocks executed 75%

1: 4:{

1: 5: int i, total;

-: 6:

1: 7: total = 0;

-: 8:

11: 9: for (i = 0; i < 10; i++)

branch 0 taken 91% (fallthrough)

branch 1 taken 9%

10: 10: total += i;

-: 11:

1: 12: if (total != 45)

branch 0 taken 0% (fallthrough)

Chapter 10: gcov—a Test Coverage Program 741

branch 1 taken 100%

#####: 13: printf ("Failure\n");

call 0 never executed

-: 14: else

1: 15: printf ("Success\n");

call 0 called 1 returned 100%

1: 16: return 0;

-: 17:}

For each function, a line is printed showing how many times the function is called, how
many times it returns and what percentage of the function’s blocks were executed.

For each basic block, a line is printed after the last line of the basic block describing the
branch or call that ends the basic block. There can be multiple branches and calls listed for
a single source line if there are multiple basic blocks that end on that line. In this case, the
branches and calls are each given a number. There is no simple way to map these branches
and calls back to source constructs. In general, though, the lowest numbered branch or call
will correspond to the leftmost construct on the source line.

For a branch, if it was executed at least once, then a percentage indicating the number
of times the branch was taken divided by the number of times the branch was executed will
be printed. Otherwise, the message “never executed” is printed.

For a call, if it was executed at least once, then a percentage indicating the number of
times the call returned divided by the number of times the call was executed will be printed.
This will usually be 100%, but may be less for functions that call exit or longjmp, and
thus may not return every time they are called.

The execution counts are cumulative. If the example program were executed again with-
out removing the ‘.gcda’ file, the count for the number of times each line in the source was
executed would be added to the results of the previous run(s). This is potentially useful in
several ways. For example, it could be used to accumulate data over a number of program
runs as part of a test verification suite, or to provide more accurate long-term information
over a large number of program runs.

The data in the ‘.gcda’ files is saved immediately before the program exits. For each
source file compiled with ‘-fprofile-arcs’, the profiling code first attempts to read in an
existing ‘.gcda’ file; if the file doesn’t match the executable (differing number of basic block
counts) it will ignore the contents of the file. It then adds in the new execution counts and
finally writes the data to the file.

10.3 Using gcov with GCC Optimization

If you plan to use gcov to help optimize your code, you must first compile your program
with two special GCC options: ‘-fprofile-arcs -ftest-coverage’. Aside from that, you
can use any other GCC options; but if you want to prove that every single line in your
program was executed, you should not compile with optimization at the same time. On
some machines the optimizer can eliminate some simple code lines by combining them with
other lines. For example, code like this:

if (a != b)

c = 1;

else

c = 0;

742 Using the GNU Compiler Collection (GCC)

can be compiled into one instruction on some machines. In this case, there is no way for
gcov to calculate separate execution counts for each line because there isn’t separate code
for each line. Hence the gcov output looks like this if you compiled the program with
optimization:

100: 12:if (a != b)

100: 13: c = 1;

100: 14:else

100: 15: c = 0;

The output shows that this block of code, combined by optimization, executed 100 times.
In one sense this result is correct, because there was only one instruction representing all
four of these lines. However, the output does not indicate how many times the result was
0 and how many times the result was 1.

Inlineable functions can create unexpected line counts. Line counts are shown for the
source code of the inlineable function, but what is shown depends on where the function is
inlined, or if it is not inlined at all.

If the function is not inlined, the compiler must emit an out of line copy of the function, in
any object file that needs it. If ‘fileA.o’ and ‘fileB.o’ both contain out of line bodies of a
particular inlineable function, they will also both contain coverage counts for that function.
When ‘fileA.o’ and ‘fileB.o’ are linked together, the linker will, on many systems, select
one of those out of line bodies for all calls to that function, and remove or ignore the other.
Unfortunately, it will not remove the coverage counters for the unused function body. Hence
when instrumented, all but one use of that function will show zero counts.

If the function is inlined in several places, the block structure in each location might not
be the same. For instance, a condition might now be calculable at compile time in some
instances. Because the coverage of all the uses of the inline function will be shown for the
same source lines, the line counts themselves might seem inconsistent.

Long-running applications can use the _gcov_reset and _gcov_dump facilities to restrict
profile collection to the program region of interest. Calling _gcov_reset(void) will clear
all profile counters to zero, and calling _gcov_dump(void) will cause the profile information
collected at that point to be dumped to ‘.gcda’ output files.

10.4 Brief description of gcov data files

gcov uses two files for profiling. The names of these files are derived from the original object
file by substituting the file suffix with either ‘.gcno’, or ‘.gcda’. The files contain coverage
and profile data stored in a platform-independent format. The ‘.gcno’ files are placed in
the same directory as the object file. By default, the ‘.gcda’ files are also stored in the same
directory as the object file, but the GCC ‘-fprofile-dir’ option may be used to store the
‘.gcda’ files in a separate directory.

The ‘.gcno’ notes file is generated when the source file is compiled with the GCC
‘-ftest-coverage’ option. It contains information to reconstruct the basic block graphs
and assign source line numbers to blocks.

The ‘.gcda’ count data file is generated when a program containing object files built with
the GCC ‘-fprofile-arcs’ option is executed. A separate ‘.gcda’ file is created for each
object file compiled with this option. It contains arc transition counts, value profile counts,
and some summary information.

Chapter 10: gcov—a Test Coverage Program 743

The full details of the file format is specified in ‘gcov-io.h’, and functions provided in
that header file should be used to access the coverage files.

10.5 Data file relocation to support cross-profiling

Running the program will cause profile output to be generated. For each source file com-
piled with ‘-fprofile-arcs’, an accompanying ‘.gcda’ file will be placed in the object file
directory. That implicitly requires running the program on the same system as it was built
or having the same absolute directory structure on the target system. The program will try
to create the needed directory structure, if it is not already present.

To support cross-profiling, a program compiled with ‘-fprofile-arcs’ can relocate the
data files based on two environment variables:
• GCOV PREFIX contains the prefix to add to the absolute paths in the object file.

Prefix can be absolute, or relative. The default is no prefix.
• GCOV PREFIX STRIP indicates the how many initial directory names to strip off

the hardwired absolute paths. Default value is 0.
Note: If GCOV PREFIX STRIP is set without GCOV PREFIX is undefined, then a
relative path is made out of the hardwired absolute paths.

For example, if the object file ‘/user/build/foo.o’ was built with ‘-fprofile-arcs’,
the final executable will try to create the data file ‘/user/build/foo.gcda’ when running
on the target system. This will fail if the corresponding directory does not exist and it
is unable to create it. This can be overcome by, for example, setting the environment as
‘GCOV_PREFIX=/target/run’ and ‘GCOV_PREFIX_STRIP=1’. Such a setting will name the
data file ‘/target/run/build/foo.gcda’.

You must move the data files to the expected directory tree in order to use them for
profile directed optimizations (‘--use-profile’), or to use the gcov tool.

Chapter 11: Known Causes of Trouble with GCC 745

11 Known Causes of Trouble with GCC

This section describes known problems that affect users of GCC. Most of these are not
GCC bugs per se—if they were, we would fix them. But the result for a user may be like
the result of a bug.

Some of these problems are due to bugs in other software, some are missing features that
are too much work to add, and some are places where people’s opinions differ as to what is
best.

11.1 Actual Bugs We Haven’t Fixed Yet

• The fixincludes script interacts badly with automounters; if the directory of system
header files is automounted, it tends to be unmounted while fixincludes is running.
This would seem to be a bug in the automounter. We don’t know any good way to
work around it.

11.2 Interoperation

This section lists various difficulties encountered in using GCC together with other compilers
or with the assemblers, linkers, libraries and debuggers on certain systems.

• On many platforms, GCC supports a different ABI for C++ than do other compilers, so
the object files compiled by GCC cannot be used with object files generated by another
C++ compiler.

An area where the difference is most apparent is name mangling. The use of different
name mangling is intentional, to protect you from more subtle problems. Compilers
differ as to many internal details of C++ implementation, including: how class instances
are laid out, how multiple inheritance is implemented, and how virtual function calls
are handled. If the name encoding were made the same, your programs would link
against libraries provided from other compilers—but the programs would then crash
when run. Incompatible libraries are then detected at link time, rather than at run
time.

• On some BSD systems, including some versions of Ultrix, use of profiling causes static
variable destructors (currently used only in C++) not to be run.

• On a SPARC, GCC aligns all values of type double on an 8-byte boundary, and it
expects every double to be so aligned. The Sun compiler usually gives double values
8-byte alignment, with one exception: function arguments of type double may not be
aligned.

As a result, if a function compiled with Sun CC takes the address of an argument
of type double and passes this pointer of type double * to a function compiled with
GCC, dereferencing the pointer may cause a fatal signal.

One way to solve this problem is to compile your entire program with GCC. Another
solution is to modify the function that is compiled with Sun CC to copy the argument
into a local variable; local variables are always properly aligned. A third solution is to
modify the function that uses the pointer to dereference it via the following function
access_double instead of directly with ‘*’:

746 Using the GNU Compiler Collection (GCC)

inline double

access_double (double *unaligned_ptr)

{

union d2i { double d; int i[2]; };

union d2i *p = (union d2i *) unaligned_ptr;

union d2i u;

u.i[0] = p->i[0];

u.i[1] = p->i[1];

return u.d;

}

Storing into the pointer can be done likewise with the same union.
• On Solaris, the malloc function in the ‘libmalloc.a’ library may allocate memory

that is only 4 byte aligned. Since GCC on the SPARC assumes that doubles are 8 byte
aligned, this may result in a fatal signal if doubles are stored in memory allocated by
the ‘libmalloc.a’ library.
The solution is to not use the ‘libmalloc.a’ library. Use instead malloc and related
functions from ‘libc.a’; they do not have this problem.

• On the HP PA machine, ADB sometimes fails to work on functions compiled with
GCC. Specifically, it fails to work on functions that use alloca or variable-size arrays.
This is because GCC doesn’t generate HP-UX unwind descriptors for such functions.
It may even be impossible to generate them.

• Debugging (‘-g’) is not supported on the HP PA machine, unless you use the prelimi-
nary GNU tools.

• Taking the address of a label may generate errors from the HP-UX PA assembler. GAS
for the PA does not have this problem.

• Using floating point parameters for indirect calls to static functions will not work when
using the HP assembler. There simply is no way for GCC to specify what registers hold
arguments for static functions when using the HP assembler. GAS for the PA does not
have this problem.

• In extremely rare cases involving some very large functions you may receive errors from
the HP linker complaining about an out of bounds unconditional branch offset. This
used to occur more often in previous versions of GCC, but is now exceptionally rare.
If you should run into it, you can work around by making your function smaller.

• GCC compiled code sometimes emits warnings from the HP-UX assembler of the form:
(warning) Use of GR3 when

frame >= 8192 may cause conflict.

These warnings are harmless and can be safely ignored.
• In extremely rare cases involving some very large functions you may receive errors from

the AIX Assembler complaining about a displacement that is too large. If you should
run into it, you can work around by making your function smaller.

• The ‘libstdc++.a’ library in GCC relies on the SVR4 dynamic linker semantics which
merges global symbols between libraries and applications, especially necessary for C++
streams functionality. This is not the default behavior of AIX shared libraries and
dynamic linking. ‘libstdc++.a’ is built on AIX with “runtime-linking” enabled so

Chapter 11: Known Causes of Trouble with GCC 747

that symbol merging can occur. To utilize this feature, the application linked with
‘libstdc++.a’ must include the ‘-Wl,-brtl’ flag on the link line. G++ cannot impose
this because this option may interfere with the semantics of the user program and users
may not always use ‘g++’ to link his or her application. Applications are not required to
use the ‘-Wl,-brtl’ flag on the link line—the rest of the ‘libstdc++.a’ library which
is not dependent on the symbol merging semantics will continue to function correctly.

• An application can interpose its own definition of functions for functions invoked by
‘libstdc++.a’ with “runtime-linking” enabled on AIX. To accomplish this the appli-
cation must be linked with “runtime-linking” option and the functions explicitly must
be exported by the application (‘-Wl,-brtl,-bE:exportfile’).

• AIX on the RS/6000 provides support (NLS) for environments outside of the United
States. Compilers and assemblers use NLS to support locale-specific representations
of various objects including floating-point numbers (‘.’ vs ‘,’ for separating decimal
fractions). There have been problems reported where the library linked with GCC does
not produce the same floating-point formats that the assembler accepts. If you have
this problem, set the LANG environment variable to ‘C’ or ‘En_US’.

• Even if you specify ‘-fdollars-in-identifiers’, you cannot successfully use ‘$’ in
identifiers on the RS/6000 due to a restriction in the IBM assembler. GAS supports
these identifiers.

11.3 Incompatibilities of GCC

There are several noteworthy incompatibilities between GNU C and K&R (non-ISO) ver-
sions of C.
• GCC normally makes string constants read-only. If several identical-looking string

constants are used, GCC stores only one copy of the string.
One consequence is that you cannot call mktemp with a string constant argument. The
function mktemp always alters the string its argument points to.
Another consequence is that sscanf does not work on some very old systems when
passed a string constant as its format control string or input. This is because sscanf
incorrectly tries to write into the string constant. Likewise fscanf and scanf.
The solution to these problems is to change the program to use char-array variables
with initialization strings for these purposes instead of string constants.

• -2147483648 is positive.
This is because 2147483648 cannot fit in the type int, so (following the ISO C rules)
its data type is unsigned long int. Negating this value yields 2147483648 again.

• GCC does not substitute macro arguments when they appear inside of string constants.
For example, the following macro in GCC

#define foo(a) "a"

will produce output "a" regardless of what the argument a is.
• When you use setjmp and longjmp, the only automatic variables guaranteed to re-

main valid are those declared volatile. This is a consequence of automatic register
allocation. Consider this function:

jmp_buf j;

748 Using the GNU Compiler Collection (GCC)

foo ()

{

int a, b;

a = fun1 ();

if (setjmp (j))

return a;

a = fun2 ();

/* longjmp (j) may occur in fun3. */

return a + fun3 ();

}

Here a may or may not be restored to its first value when the longjmp occurs. If a is
allocated in a register, then its first value is restored; otherwise, it keeps the last value
stored in it.

If you use the ‘-W’ option with the ‘-O’ option, you will get a warning when GCC thinks
such a problem might be possible.

• Programs that use preprocessing directives in the middle of macro arguments do not
work with GCC. For example, a program like this will not work:

foobar (

#define luser

hack)

ISO C does not permit such a construct.

• K&R compilers allow comments to cross over an inclusion boundary (i.e. started in an
include file and ended in the including file).

• Declarations of external variables and functions within a block apply only to the block
containing the declaration. In other words, they have the same scope as any other
declaration in the same place.

In some other C compilers, an extern declaration affects all the rest of the file even if
it happens within a block.

• In traditional C, you can combine long, etc., with a typedef name, as shown here:
typedef int foo;

typedef long foo bar;

In ISO C, this is not allowed: long and other type modifiers require an explicit int.

• PCC allows typedef names to be used as function parameters.

• Traditional C allows the following erroneous pair of declarations to appear together in
a given scope:

typedef int foo;

typedef foo foo;

• GCC treats all characters of identifiers as significant. According to K&R-1 (2.2), “No
more than the first eight characters are significant, although more may be used.”. Also
according to K&R-1 (2.2), “An identifier is a sequence of letters and digits; the first
character must be a letter. The underscore counts as a letter.”, but GCC also allows
dollar signs in identifiers.

• PCC allows whitespace in the middle of compound assignment operators such as ‘+=’.
GCC, following the ISO standard, does not allow this.

Chapter 11: Known Causes of Trouble with GCC 749

• GCC complains about unterminated character constants inside of preprocessing con-
ditionals that fail. Some programs have English comments enclosed in conditionals
that are guaranteed to fail; if these comments contain apostrophes, GCC will probably
report an error. For example, this code would produce an error:

#if 0

You can’t expect this to work.

#endif

The best solution to such a problem is to put the text into an actual C comment
delimited by ‘/*...*/’.

• Many user programs contain the declaration ‘long time ();’. In the past, the system
header files on many systems did not actually declare time, so it did not matter what
type your program declared it to return. But in systems with ISO C headers, time is
declared to return time_t, and if that is not the same as long, then ‘long time ();’
is erroneous.

The solution is to change your program to use appropriate system headers (<time.h>
on systems with ISO C headers) and not to declare time if the system header files
declare it, or failing that to use time_t as the return type of time.

• When compiling functions that return float, PCC converts it to a double. GCC
actually returns a float. If you are concerned with PCC compatibility, you should
declare your functions to return double; you might as well say what you mean.

• When compiling functions that return structures or unions, GCC output code normally
uses a method different from that used on most versions of Unix. As a result, code
compiled with GCC cannot call a structure-returning function compiled with PCC,
and vice versa.

The method used by GCC is as follows: a structure or union which is 1, 2, 4 or 8
bytes long is returned like a scalar. A structure or union with any other size is stored
into an address supplied by the caller (usually in a special, fixed register, but on some
machines it is passed on the stack). The target hook TARGET_STRUCT_VALUE_RTX tells
GCC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size
by copying the data into an area of static storage, and then returning the address of
that storage as if it were a pointer value. The caller must copy the data from that
memory area to the place where the value is wanted. GCC does not use this method
because it is slower and nonreentrant.

On some newer machines, PCC uses a reentrant convention for all structure and union
returning. GCC on most of these machines uses a compatible convention when return-
ing structures and unions in memory, but still returns small structures and unions in
registers.

You can tell GCC to use a compatible convention for all structure and union returning
with the option ‘-fpcc-struct-return’.

• GCC complains about program fragments such as ‘0x74ae-0x4000’ which appear to be
two hexadecimal constants separated by the minus operator. Actually, this string is a
single preprocessing token. Each such token must correspond to one token in C. Since
this does not, GCC prints an error message. Although it may appear obvious that

750 Using the GNU Compiler Collection (GCC)

what is meant is an operator and two values, the ISO C standard specifically requires
that this be treated as erroneous.
A preprocessing token is a preprocessing number if it begins with a digit and is followed
by letters, underscores, digits, periods and ‘e+’, ‘e-’, ‘E+’, ‘E-’, ‘p+’, ‘p-’, ‘P+’, or ‘P-’
character sequences. (In strict C90 mode, the sequences ‘p+’, ‘p-’, ‘P+’ and ‘P-’ cannot
appear in preprocessing numbers.)
To make the above program fragment valid, place whitespace in front of the minus
sign. This whitespace will end the preprocessing number.

11.4 Fixed Header Files

GCC needs to install corrected versions of some system header files. This is because most
target systems have some header files that won’t work with GCC unless they are changed.
Some have bugs, some are incompatible with ISO C, and some depend on special features
of other compilers.

Installing GCC automatically creates and installs the fixed header files, by running a
program called fixincludes. Normally, you don’t need to pay attention to this. But there
are cases where it doesn’t do the right thing automatically.
• If you update the system’s header files, such as by installing a new sys-

tem version, the fixed header files of GCC are not automatically up-
dated. They can be updated using the mkheaders script installed in
‘libexecdir/gcc/target/version/install-tools/’.

• On some systems, header file directories contain machine-specific symbolic links in
certain places. This makes it possible to share most of the header files among hosts
running the same version of the system on different machine models.
The programs that fix the header files do not understand this special way of using
symbolic links; therefore, the directory of fixed header files is good only for the machine
model used to build it.
It is possible to make separate sets of fixed header files for the different machine models,
and arrange a structure of symbolic links so as to use the proper set, but you’ll have
to do this by hand.

11.5 Standard Libraries

GCC by itself attempts to be a conforming freestanding implementation. See Chapter 2
[Language Standards Supported by GCC], page 5, for details of what this means. Beyond
the library facilities required of such an implementation, the rest of the C library is supplied
by the vendor of the operating system. If that C library doesn’t conform to the C standards,
then your programs might get warnings (especially when using ‘-Wall’) that you don’t
expect.

For example, the sprintf function on SunOS 4.1.3 returns char * while the C standard
says that sprintf returns an int. The fixincludes program could make the prototype
for this function match the Standard, but that would be wrong, since the function will still
return char *.

If you need a Standard compliant library, then you need to find one, as GCC does not
provide one. The GNU C library (called glibc) provides ISO C, POSIX, BSD, SystemV and

Chapter 11: Known Causes of Trouble with GCC 751

X/Open compatibility for GNU/Linux and HURD-based GNU systems; no recent version
of it supports other systems, though some very old versions did. Version 2.2 of the GNU
C library includes nearly complete C99 support. You could also ask your operating system
vendor if newer libraries are available.

11.6 Disappointments and Misunderstandings

These problems are perhaps regrettable, but we don’t know any practical way around them.

• Certain local variables aren’t recognized by debuggers when you compile with opti-
mization.

This occurs because sometimes GCC optimizes the variable out of existence. There
is no way to tell the debugger how to compute the value such a variable “would have
had”, and it is not clear that would be desirable anyway. So GCC simply does not
mention the eliminated variable when it writes debugging information.

You have to expect a certain amount of disagreement between the executable and your
source code, when you use optimization.

• Users often think it is a bug when GCC reports an error for code like this:
int foo (struct mumble *);

struct mumble { ... };

int foo (struct mumble *x)

{ ... }

This code really is erroneous, because the scope of struct mumble in the prototype
is limited to the argument list containing it. It does not refer to the struct mumble
defined with file scope immediately below—they are two unrelated types with similar
names in different scopes.

But in the definition of foo, the file-scope type is used because that is available to be
inherited. Thus, the definition and the prototype do not match, and you get an error.

This behavior may seem silly, but it’s what the ISO standard specifies. It is easy enough
for you to make your code work by moving the definition of struct mumble above the
prototype. It’s not worth being incompatible with ISO C just to avoid an error for the
example shown above.

• Accesses to bit-fields even in volatile objects works by accessing larger objects, such as
a byte or a word. You cannot rely on what size of object is accessed in order to read or
write the bit-field; it may even vary for a given bit-field according to the precise usage.

If you care about controlling the amount of memory that is accessed, use volatile but
do not use bit-fields.

• GCC comes with shell scripts to fix certain known problems in system header files.
They install corrected copies of various header files in a special directory where only
GCC will normally look for them. The scripts adapt to various systems by searching
all the system header files for the problem cases that we know about.

If new system header files are installed, nothing automatically arranges to update the
corrected header files. They can be updated using the mkheaders script installed in
‘libexecdir/gcc/target/version/install-tools/’.

752 Using the GNU Compiler Collection (GCC)

• On 68000 and x86 systems, for instance, you can get paradoxical results if you test
the precise values of floating point numbers. For example, you can find that a floating
point value which is not a NaN is not equal to itself. This results from the fact that
the floating point registers hold a few more bits of precision than fit in a double in
memory. Compiled code moves values between memory and floating point registers at
its convenience, and moving them into memory truncates them.

You can partially avoid this problem by using the ‘-ffloat-store’ option (see
Section 3.10 [Optimize Options], page 101).

• On AIX and other platforms without weak symbol support, templates need to be in-
stantiated explicitly and symbols for static members of templates will not be generated.

• On AIX, GCC scans object files and library archives for static constructors and de-
structors when linking an application before the linker prunes unreferenced symbols.
This is necessary to prevent the AIX linker from mistakenly assuming that static con-
structor or destructor are unused and removing them before the scanning can occur.
All static constructors and destructors found will be referenced even though the mod-
ules in which they occur may not be used by the program. This may lead to both
increased executable size and unexpected symbol references.

11.7 Common Misunderstandings with GNU C++

C++ is a complex language and an evolving one, and its standard definition (the ISO C++
standard) was only recently completed. As a result, your C++ compiler may occasionally
surprise you, even when its behavior is correct. This section discusses some areas that
frequently give rise to questions of this sort.

11.7.1 Declare and Define Static Members

When a class has static data members, it is not enough to declare the static member; you
must also define it. For example:

class Foo

{

...

void method();

static int bar;

};

This declaration only establishes that the class Foo has an int named Foo::bar, and a
member function named Foo::method. But you still need to define both method and bar
elsewhere. According to the ISO standard, you must supply an initializer in one (and only
one) source file, such as:

int Foo::bar = 0;

Other C++ compilers may not correctly implement the standard behavior. As a result,
when you switch to g++ from one of these compilers, you may discover that a program
that appeared to work correctly in fact does not conform to the standard: g++ reports as
undefined symbols any static data members that lack definitions.

Chapter 11: Known Causes of Trouble with GCC 753

11.7.2 Name lookup, templates, and accessing members of base
classes

The C++ standard prescribes that all names that are not dependent on template parameters
are bound to their present definitions when parsing a template function or class.1 Only
names that are dependent are looked up at the point of instantiation. For example, consider

void foo(double);

struct A {

template <typename T>

void f () {

foo (1); // 1
int i = N; // 2
T t;

t.bar(); // 3
foo (t); // 4

}

static const int N;

};

Here, the names foo and N appear in a context that does not depend on the type of T.
The compiler will thus require that they are defined in the context of use in the template,
not only before the point of instantiation, and will here use ::foo(double) and A::N,
respectively. In particular, it will convert the integer value to a double when passing it to
::foo(double).

Conversely, bar and the call to foo in the fourth marked line are used in contexts that do
depend on the type of T, so they are only looked up at the point of instantiation, and you
can provide declarations for them after declaring the template, but before instantiating it.
In particular, if you instantiate A::f<int>, the last line will call an overloaded ::foo(int)
if one was provided, even if after the declaration of struct A.

This distinction between lookup of dependent and non-dependent names is called two-
stage (or dependent) name lookup. G++ implements it since version 3.4.

Two-stage name lookup sometimes leads to situations with behavior different from non-
template codes. The most common is probably this:

template <typename T> struct Base {

int i;

};

template <typename T> struct Derived : public Base<T> {

int get_i() { return i; }

};

In get_i(), i is not used in a dependent context, so the compiler will look for a name
declared at the enclosing namespace scope (which is the global scope here). It will not look
into the base class, since that is dependent and you may declare specializations of Base
even after declaring Derived, so the compiler can’t really know what i would refer to. If
there is no global variable i, then you will get an error message.

In order to make it clear that you want the member of the base class, you need to defer
lookup until instantiation time, at which the base class is known. For this, you need to

1 The C++ standard just uses the term “dependent” for names that depend on the type or value of template
parameters. This shorter term will also be used in the rest of this section.

754 Using the GNU Compiler Collection (GCC)

access i in a dependent context, by either using this->i (remember that this is of type
Derived<T>*, so is obviously dependent), or using Base<T>::i. Alternatively, Base<T>::i
might be brought into scope by a using-declaration.

Another, similar example involves calling member functions of a base class:
template <typename T> struct Base {

int f();

};

template <typename T> struct Derived : Base<T> {

int g() { return f(); };

};

Again, the call to f() is not dependent on template arguments (there are no arguments
that depend on the type T, and it is also not otherwise specified that the call should be
in a dependent context). Thus a global declaration of such a function must be available,
since the one in the base class is not visible until instantiation time. The compiler will
consequently produce the following error message:

x.cc: In member function ‘int Derived<T>::g()’:

x.cc:6: error: there are no arguments to ‘f’ that depend on a template

parameter, so a declaration of ‘f’ must be available

x.cc:6: error: (if you use ‘-fpermissive’, G++ will accept your code, but

allowing the use of an undeclared name is deprecated)

To make the code valid either use this->f(), or Base<T>::f(). Using the
‘-fpermissive’ flag will also let the compiler accept the code, by marking all function
calls for which no declaration is visible at the time of definition of the template for later
lookup at instantiation time, as if it were a dependent call. We do not recommend using
‘-fpermissive’ to work around invalid code, and it will also only catch cases where
functions in base classes are called, not where variables in base classes are used (as in the
example above).

Note that some compilers (including G++ versions prior to 3.4) get these examples wrong
and accept above code without an error. Those compilers do not implement two-stage name
lookup correctly.

11.7.3 Temporaries May Vanish Before You Expect

It is dangerous to use pointers or references to portions of a temporary object. The compiler
may very well delete the object before you expect it to, leaving a pointer to garbage. The
most common place where this problem crops up is in classes like string classes, especially
ones that define a conversion function to type char * or const char *—which is one reason
why the standard string class requires you to call the c_str member function. However,
any class that returns a pointer to some internal structure is potentially subject to this
problem.

For example, a program may use a function strfunc that returns string objects, and
another function charfunc that operates on pointers to char:

string strfunc ();

void charfunc (const char *);

void

f ()

{

const char *p = strfunc().c_str();

Chapter 11: Known Causes of Trouble with GCC 755

...

charfunc (p);

...

charfunc (p);

}

In this situation, it may seem reasonable to save a pointer to the C string returned by
the c_str member function and use that rather than call c_str repeatedly. However, the
temporary string created by the call to strfunc is destroyed after p is initialized, at which
point p is left pointing to freed memory.

Code like this may run successfully under some other compilers, particularly obsolete
cfront-based compilers that delete temporaries along with normal local variables. How-
ever, the GNU C++ behavior is standard-conforming, so if your program depends on late
destruction of temporaries it is not portable.

The safe way to write such code is to give the temporary a name, which forces it to
remain until the end of the scope of the name. For example:

const string& tmp = strfunc ();

charfunc (tmp.c_str ());

11.7.4 Implicit Copy-Assignment for Virtual Bases

When a base class is virtual, only one subobject of the base class belongs to each full
object. Also, the constructors and destructors are invoked only once, and called from the
most-derived class. However, such objects behave unspecified when being assigned. For
example:

struct Base{

char *name;

Base(char *n) : name(strdup(n)){}

Base& operator= (const Base& other){

free (name);

name = strdup (other.name);

}

};

struct A:virtual Base{

int val;

A():Base("A"){}

};

struct B:virtual Base{

int bval;

B():Base("B"){}

};

struct Derived:public A, public B{

Derived():Base("Derived"){}

};

void func(Derived &d1, Derived &d2)

{

d1 = d2;

}

The C++ standard specifies that ‘Base::Base’ is only called once when constructing or
copy-constructing a Derived object. It is unspecified whether ‘Base::operator=’ is called

756 Using the GNU Compiler Collection (GCC)

more than once when the implicit copy-assignment for Derived objects is invoked (as it is
inside ‘func’ in the example).

G++ implements the “intuitive” algorithm for copy-assignment: assign all direct bases,
then assign all members. In that algorithm, the virtual base subobject can be encountered
more than once. In the example, copying proceeds in the following order: ‘val’, ‘name’ (via
strdup), ‘bval’, and ‘name’ again.

If application code relies on copy-assignment, a user-defined copy-assignment operator
removes any uncertainties. With such an operator, the application can define whether and
how the virtual base subobject is assigned.

11.8 Certain Changes We Don’t Want to Make

This section lists changes that people frequently request, but which we do not make because
we think GCC is better without them.
• Checking the number and type of arguments to a function which has an old-fashioned

definition and no prototype.
Such a feature would work only occasionally—only for calls that appear in the same
file as the called function, following the definition. The only way to check all calls
reliably is to add a prototype for the function. But adding a prototype eliminates the
motivation for this feature. So the feature is not worthwhile.

• Warning about using an expression whose type is signed as a shift count.
Shift count operands are probably signed more often than unsigned. Warning about
this would cause far more annoyance than good.

• Warning about assigning a signed value to an unsigned variable.
Such assignments must be very common; warning about them would cause more an-
noyance than good.

• Warning when a non-void function value is ignored.
C contains many standard functions that return a value that most programs choose to
ignore. One obvious example is printf. Warning about this practice only leads the
defensive programmer to clutter programs with dozens of casts to void. Such casts
are required so frequently that they become visual noise. Writing those casts becomes
so automatic that they no longer convey useful information about the intentions of
the programmer. For functions where the return value should never be ignored, use
the warn_unused_result function attribute (see Section 6.30 [Function Attributes],
page 372).

• Making ‘-fshort-enums’ the default.
This would cause storage layout to be incompatible with most other C compilers. And
it doesn’t seem very important, given that you can get the same result in other ways.
The case where it matters most is when the enumeration-valued object is inside a
structure, and in that case you can specify a field width explicitly.

• Making bit-fields unsigned by default on particular machines where “the ABI standard”
says to do so.
The ISO C standard leaves it up to the implementation whether a bit-field declared
plain int is signed or not. This in effect creates two alternative dialects of C.

Chapter 11: Known Causes of Trouble with GCC 757

The GNU C compiler supports both dialects; you can specify the signed dialect with
‘-fsigned-bitfields’ and the unsigned dialect with ‘-funsigned-bitfields’. How-
ever, this leaves open the question of which dialect to use by default.
Currently, the preferred dialect makes plain bit-fields signed, because this is simplest.
Since int is the same as signed int in every other context, it is cleanest for them to
be the same in bit-fields as well.
Some computer manufacturers have published Application Binary Interface standards
which specify that plain bit-fields should be unsigned. It is a mistake, however, to say
anything about this issue in an ABI. This is because the handling of plain bit-fields
distinguishes two dialects of C. Both dialects are meaningful on every type of machine.
Whether a particular object file was compiled using signed bit-fields or unsigned is of
no concern to other object files, even if they access the same bit-fields in the same data
structures.
A given program is written in one or the other of these two dialects. The program
stands a chance to work on most any machine if it is compiled with the proper dialect.
It is unlikely to work at all if compiled with the wrong dialect.
Many users appreciate the GNU C compiler because it provides an environment that is
uniform across machines. These users would be inconvenienced if the compiler treated
plain bit-fields differently on certain machines.
Occasionally users write programs intended only for a particular machine type. On
these occasions, the users would benefit if the GNU C compiler were to support by
default the same dialect as the other compilers on that machine. But such applications
are rare. And users writing a program to run on more than one type of machine cannot
possibly benefit from this kind of compatibility.
This is why GCC does and will treat plain bit-fields in the same fashion on all types
of machines (by default).
There are some arguments for making bit-fields unsigned by default on all machines.
If, for example, this becomes a universal de facto standard, it would make sense for
GCC to go along with it. This is something to be considered in the future.
(Of course, users strongly concerned about portability should indicate explicitly in each
bit-field whether it is signed or not. In this way, they write programs which have the
same meaning in both C dialects.)

• Undefining __STDC__ when ‘-ansi’ is not used.
Currently, GCC defines __STDC__ unconditionally. This provides good results in prac-
tice.
Programmers normally use conditionals on __STDC__ to ask whether it is safe to use
certain features of ISO C, such as function prototypes or ISO token concatenation.
Since plain gcc supports all the features of ISO C, the correct answer to these questions
is “yes”.
Some users try to use __STDC__ to check for the availability of certain library facilities.
This is actually incorrect usage in an ISO C program, because the ISO C standard says
that a conforming freestanding implementation should define __STDC__ even though it
does not have the library facilities. ‘gcc -ansi -pedantic’ is a conforming freestanding
implementation, and it is therefore required to define __STDC__, even though it does
not come with an ISO C library.

758 Using the GNU Compiler Collection (GCC)

Sometimes people say that defining __STDC__ in a compiler that does not completely
conform to the ISO C standard somehow violates the standard. This is illogical. The
standard is a standard for compilers that claim to support ISO C, such as ‘gcc -ansi’—
not for other compilers such as plain gcc. Whatever the ISO C standard says is
relevant to the design of plain gcc without ‘-ansi’ only for pragmatic reasons, not as
a requirement.
GCC normally defines __STDC__ to be 1, and in addition defines __STRICT_ANSI__ if
you specify the ‘-ansi’ option, or a ‘-std’ option for strict conformance to some version
of ISO C. On some hosts, system include files use a different convention, where __STDC_
_ is normally 0, but is 1 if the user specifies strict conformance to the C Standard. GCC
follows the host convention when processing system include files, but when processing
user files it follows the usual GNU C convention.

• Undefining __STDC__ in C++.
Programs written to compile with C++-to-C translators get the value of __STDC__ that
goes with the C compiler that is subsequently used. These programs must test __STDC_
_ to determine what kind of C preprocessor that compiler uses: whether they should
concatenate tokens in the ISO C fashion or in the traditional fashion.
These programs work properly with GNU C++ if __STDC__ is defined. They would not
work otherwise.
In addition, many header files are written to provide prototypes in ISO C but not in
traditional C. Many of these header files can work without change in C++ provided
__STDC__ is defined. If __STDC__ is not defined, they will all fail, and will all need to
be changed to test explicitly for C++ as well.

• Deleting “empty” loops.
Historically, GCC has not deleted “empty” loops under the assumption that the most
likely reason you would put one in a program is to have a delay, so deleting them will
not make real programs run any faster.
However, the rationale here is that optimization of a nonempty loop cannot produce an
empty one. This held for carefully written C compiled with less powerful optimizers but
is not always the case for carefully written C++ or with more powerful optimizers. Thus
GCC will remove operations from loops whenever it can determine those operations
are not externally visible (apart from the time taken to execute them, of course). In
case the loop can be proved to be finite, GCC will also remove the loop itself.
Be aware of this when performing timing tests, for instance the following loop can be
completely removed, provided some_expression can provably not change any global
state.

{

int sum = 0;

int ix;

for (ix = 0; ix != 10000; ix++)

sum += some_expression;

}

Even though sum is accumulated in the loop, no use is made of that summation, so the
accumulation can be removed.

• Making side effects happen in the same order as in some other compiler.

Chapter 11: Known Causes of Trouble with GCC 759

It is never safe to depend on the order of evaluation of side effects. For example, a
function call like this may very well behave differently from one compiler to another:

void func (int, int);

int i = 2;

func (i++, i++);

There is no guarantee (in either the C or the C++ standard language definitions) that the
increments will be evaluated in any particular order. Either increment might happen
first. func might get the arguments ‘2, 3’, or it might get ‘3, 2’, or even ‘2, 2’.

• Making certain warnings into errors by default.
Some ISO C testsuites report failure when the compiler does not produce an error
message for a certain program.
ISO C requires a “diagnostic” message for certain kinds of invalid programs, but a
warning is defined by GCC to count as a diagnostic. If GCC produces a warning but
not an error, that is correct ISO C support. If testsuites call this “failure”, they should
be run with the GCC option ‘-pedantic-errors’, which will turn these warnings into
errors.

11.9 Warning Messages and Error Messages

The GNU compiler can produce two kinds of diagnostics: errors and warnings. Each kind
has a different purpose:

Errors report problems that make it impossible to compile your program. GCC reports
errors with the source file name and line number where the problem is apparent.
Warnings report other unusual conditions in your code that may indicate a problem,
although compilation can (and does) proceed. Warning messages also report the source
file name and line number, but include the text ‘warning:’ to distinguish them from
error messages.

Warnings may indicate danger points where you should check to make sure that your
program really does what you intend; or the use of obsolete features; or the use of nonstan-
dard features of GNU C or C++. Many warnings are issued only if you ask for them, with
one of the ‘-W’ options (for instance, ‘-Wall’ requests a variety of useful warnings).

GCC always tries to compile your program if possible; it never gratuitously rejects a
program whose meaning is clear merely because (for instance) it fails to conform to a
standard. In some cases, however, the C and C++ standards specify that certain extensions
are forbidden, and a diagnostic must be issued by a conforming compiler. The ‘-pedantic’
option tells GCC to issue warnings in such cases; ‘-pedantic-errors’ says to make them
errors instead. This does not mean that all non-ISO constructs get warnings or errors.

See Section 3.8 [Options to Request or Suppress Warnings], page 53, for more detail on
these and related command-line options.

Chapter 12: Reporting Bugs 761

12 Reporting Bugs

Your bug reports play an essential role in making GCC reliable.
When you encounter a problem, the first thing to do is to see if it is already known. See

Chapter 11 [Trouble], page 745. If it isn’t known, then you should report the problem.

12.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:
• If the compiler gets a fatal signal, for any input whatever, that is a compiler bug.

Reliable compilers never crash.
• If the compiler produces invalid assembly code, for any input whatever (except an

asm statement), that is a compiler bug, unless the compiler reports errors (not just
warnings) which would ordinarily prevent the assembler from being run.

• If the compiler produces valid assembly code that does not correctly execute the input
source code, that is a compiler bug.
However, you must double-check to make sure, because you may have a program whose
behavior is undefined, which happened by chance to give the desired results with an-
other C or C++ compiler.
For example, in many nonoptimizing compilers, you can write ‘x;’ at the end of a
function instead of ‘return x;’, with the same results. But the value of the function
is undefined if return is omitted; it is not a bug when GCC produces different results.
Problems often result from expressions with two increment operators, as in f (*p++,
*p++). Your previous compiler might have interpreted that expression the way you
intended; GCC might interpret it another way. Neither compiler is wrong. The bug is
in your code.
After you have localized the error to a single source line, it should be easy to check for
these things. If your program is correct and well defined, you have found a compiler
bug.

• If the compiler produces an error message for valid input, that is a compiler bug.
• If the compiler does not produce an error message for invalid input, that is a compiler

bug. However, you should note that your idea of “invalid input” might be someone
else’s idea of “an extension” or “support for traditional practice”.

• If you are an experienced user of one of the languages GCC supports, your suggestions
for improvement of GCC are welcome in any case.

12.2 How and where to Report Bugs

Bugs should be reported to the bug database at http://gcc.gnu.org/bugs.html.

http://gcc.gnu.org/bugs.html

Chapter 13: How To Get Help with GCC 763

13 How To Get Help with GCC

If you need help installing, using or changing GCC, there are two ways to find it:
• Send a message to a suitable network mailing list. First try gcc-help@gcc.gnu.org (for

help installing or using GCC), and if that brings no response, try gcc@gcc.gnu.org.
For help changing GCC, ask gcc@gcc.gnu.org. If you think you have found a bug in
GCC, please report it following the instructions at see Section 12.2 [Bug Reporting],
page 761.

• Look in the service directory for someone who might help you for a fee. The service
directory is found at http://www.fsf.org/resources/service.

For further information, see http://gcc.gnu.org/faq.html#support.

mailto:gcc-help@gcc.gnu.org
mailto:gcc@gcc.gnu.org
mailto:gcc@gcc.gnu.org
http://www.fsf.org/resources/service
http://gcc.gnu.org/faq.html#support

Chapter 14: Contributing to GCC Development 765

14 Contributing to GCC Development

If you would like to help pretest GCC releases to assure they work well, current development
sources are available by SVN (see http://gcc.gnu.org/svn.html). Source and binary
snapshots are also available for FTP; see http://gcc.gnu.org/snapshots.html.

If you would like to work on improvements to GCC, please read the advice at these URLs:
http://gcc.gnu.org/contribute.html

http://gcc.gnu.org/contributewhy.html

for information on how to make useful contributions and avoid duplication of effort. Sug-
gested projects are listed at http://gcc.gnu.org/projects/.

http://gcc.gnu.org/svn.html
http://gcc.gnu.org/snapshots.html
http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html
http://gcc.gnu.org/projects/

Funding Free Software 767

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to
help encourage people to contribute funds for its development. The most effective approach
known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-
fee distributors to donate part of their selling price to free software developers—the Free
Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied
with a vague promise, such as “A portion of the profits are donated,” since it doesn’t give
a basis for comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since creative
accounting and unrelated business decisions can greatly alter what fraction of the sales price
counts as profit. If the price you pay is $50, ten percent of the profit is probably less than
a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep
everyone honest, you need to inquire how much they do, and what kind. Some kinds of
development make much more long-term difference than others. For example, maintaining
a separate version of a program contributes very little; maintaining the standard version
of a program for the whole community contributes much. Easy new ports contribute little,
since someone else would surely do them; difficult ports such as adding a new CPU to the
GNU Compiler Collection contribute more; major new features or packages contribute the
most.

By establishing the idea that supporting further development is “the proper thing to
do” when distributing free software for a fee, we can assure a steady flow of resources into
making more free software.

Copyright c© 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

The GNU Project and GNU/Linux 769

The GNU Project and GNU/Linux

The GNU Project was launched in 1984 to develop a complete Unix-like operating system
which is free software: the GNU system. (GNU is a recursive acronym for “GNU’s Not
Unix”; it is pronounced “guh-NEW”.) Variants of the GNU operating system, which use the
kernel Linux, are now widely used; though these systems are often referred to as “Linux”,
they are more accurately called GNU/Linux systems.

For more information, see:
http://www.gnu.org/

http://www.gnu.org/gnu/linux-and-gnu.html

http://www.gnu.org/
http://www.gnu.org/gnu/linux-and-gnu.html

GNU General Public License 771

GNU General Public License

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program–to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright
on the software, and (2) offer you this License giving you legal permission to copy, distribute
and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

http://fsf.org/

772 Using the GNU Compiler Collection (GCC)

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

GNU General Public License 773

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

774 Using the GNU Compiler Collection (GCC)

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:
a. The work must carry prominent notices stating that you modified it, and giving a

relevant date.
b. The work must carry prominent notices stating that it is released under this Li-

cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

GNU General Public License 775

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.
A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.
“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

776 Using the GNU Compiler Collection (GCC)

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.
If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).
The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.
“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.
When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:
a. Disclaiming warranty or limiting liability differently from the terms of sections 15

and 16 of this License; or
b. Requiring preservation of specified reasonable legal notices or author attributions

in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

GNU General Public License 777

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.
Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

778 Using the GNU Compiler Collection (GCC)

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.
An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.
A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.
A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.
In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

GNU General Public License 779

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

780 Using the GNU Compiler Collection (GCC)

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

GNU General Public License 781

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like this when it

starts in an interactive mode:
program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
http://www.gnu.org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

GNU Free Documentation License 783

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

784 Using the GNU Compiler Collection (GCC)

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

GNU Free Documentation License 785

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,

786 Using the GNU Compiler Collection (GCC)

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

GNU Free Documentation License 787

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

788 Using the GNU Compiler Collection (GCC)

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

GNU Free Documentation License 789

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.
“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.
An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

790 Using the GNU Compiler Collection (GCC)

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Contributors to GCC 791

Contributors to GCC

The GCC project would like to thank its many contributors. Without them the project
would not have been nearly as successful as it has been. Any omissions in this list are
accidental. Feel free to contact law@redhat.com or gerald@pfeifer.com if you have been
left out or some of your contributions are not listed. Please keep this list in alphabetical
order.
• Analog Devices helped implement the support for complex data types and iterators.
• John David Anglin for threading-related fixes and improvements to libstdc++-v3, and

the HP-UX port.
• James van Artsdalen wrote the code that makes efficient use of the Intel 80387 register

stack.
• Abramo and Roberto Bagnara for the SysV68 Motorola 3300 Delta Series port.
• Alasdair Baird for various bug fixes.
• Giovanni Bajo for analyzing lots of complicated C++ problem reports.
• Peter Barada for his work to improve code generation for new ColdFire cores.
• Gerald Baumgartner added the signature extension to the C++ front end.
• Godmar Back for his Java improvements and encouragement.
• Scott Bambrough for help porting the Java compiler.
• Wolfgang Bangerth for processing tons of bug reports.
• Jon Beniston for his Microsoft Windows port of Java and port to Lattice Mico32.
• Daniel Berlin for better DWARF2 support, faster/better optimizations, improved alias

analysis, plus migrating GCC to Bugzilla.
• Geoff Berry for his Java object serialization work and various patches.
• David Binderman tests weekly snapshots of GCC trunk against Fedora Rawhide for

several architectures.
• Uros Bizjak for the implementation of x87 math built-in functions and for various

middle end and i386 back end improvements and bug fixes.
• Eric Blake for helping to make GCJ and libgcj conform to the specifications.
• Janne Blomqvist for contributions to GNU Fortran.
• Segher Boessenkool for various fixes.
• Hans-J. Boehm for his garbage collector, IA-64 libffi port, and other Java work.
• Neil Booth for work on cpplib, lang hooks, debug hooks and other miscellaneous clean-

ups.
• Steven Bosscher for integrating the GNU Fortran front end into GCC and for con-

tributing to the tree-ssa branch.
• Eric Botcazou for fixing middle- and backend bugs left and right.
• Per Bothner for his direction via the steering committee and various improvements

to the infrastructure for supporting new languages. Chill front end implementation.
Initial implementations of cpplib, fix-header, config.guess, libio, and past C++ library
(libg++) maintainer. Dreaming up, designing and implementing much of GCJ.

mailto:law@redhat.com
mailto:gerald@pfeifer.com
http://www.hpl.hp.com/personal/Hans_Boehm/gc/

792 Using the GNU Compiler Collection (GCC)

• Devon Bowen helped port GCC to the Tahoe.
• Don Bowman for mips-vxworks contributions.
• Dave Brolley for work on cpplib and Chill.
• Paul Brook for work on the ARM architecture and maintaining GNU Fortran.
• Robert Brown implemented the support for Encore 32000 systems.
• Christian Bruel for improvements to local store elimination.
• Herman A.J. ten Brugge for various fixes.
• Joerg Brunsmann for Java compiler hacking and help with the GCJ FAQ.
• Joe Buck for his direction via the steering committee.
• Craig Burley for leadership of the G77 Fortran effort.
• Stephan Buys for contributing Doxygen notes for libstdc++.
• Paolo Carlini for libstdc++ work: lots of efficiency improvements to the C++ strings,

streambufs and formatted I/O, hard detective work on the frustrating localization
issues, and keeping up with the problem reports.

• John Carr for his alias work, SPARC hacking, infrastructure improvements, previous
contributions to the steering committee, loop optimizations, etc.

• Stephane Carrez for 68HC11 and 68HC12 ports.
• Steve Chamberlain for support for the Renesas SH and H8 processors and the PicoJava

processor, and for GCJ config fixes.
• Glenn Chambers for help with the GCJ FAQ.
• John-Marc Chandonia for various libgcj patches.
• Denis Chertykov for contributing and maintaining the AVR port, the first GCC port

for an 8-bit architecture.
• Scott Christley for his Objective-C contributions.
• Eric Christopher for his Java porting help and clean-ups.
• Branko Cibej for more warning contributions.
• The GNU Classpath project for all of their merged runtime code.
• Nick Clifton for arm, mcore, fr30, v850, m32r, msp430 rx work, ‘--help’, and other

random hacking.
• Michael Cook for libstdc++ cleanup patches to reduce warnings.
• R. Kelley Cook for making GCC buildable from a read-only directory as well as other

miscellaneous build process and documentation clean-ups.
• Ralf Corsepius for SH testing and minor bug fixing.
• Stan Cox for care and feeding of the x86 port and lots of behind the scenes hacking.
• Alex Crain provided changes for the 3b1.
• Ian Dall for major improvements to the NS32k port.
• Paul Dale for his work to add uClinux platform support to the m68k backend.
• Dario Dariol contributed the four varieties of sample programs that print a copy of

their source.
• Russell Davidson for fstream and stringstream fixes in libstdc++.

http://www.gnu.org/software/classpath/

Contributors to GCC 793

• Bud Davis for work on the G77 and GNU Fortran compilers.
• Mo DeJong for GCJ and libgcj bug fixes.
• DJ Delorie for the DJGPP port, build and libiberty maintenance, various bug fixes,

and the M32C, MeP, MSP430, and RL78 ports.
• Arnaud Desitter for helping to debug GNU Fortran.
• Gabriel Dos Reis for contributions to G++, contributions and maintenance of GCC

diagnostics infrastructure, libstdc++-v3, including valarray<>, complex<>, maintain-
ing the numerics library (including that pesky <limits> :-) and keeping up-to-date
anything to do with numbers.

• Ulrich Drepper for his work on glibc, testing of GCC using glibc, ISO C99 support,
CFG dumping support, etc., plus support of the C++ runtime libraries including for all
kinds of C interface issues, contributing and maintaining complex<>, sanity checking
and disbursement, configuration architecture, libio maintenance, and early math work.

• François Dumont for his work on libstdc++-v3, especially maintaining and improving
debug-mode and associative and unordered containers.

• Zdenek Dvorak for a new loop unroller and various fixes.
• Michael Eager for his work on the Xilinx MicroBlaze port.
• Richard Earnshaw for his ongoing work with the ARM.
• David Edelsohn for his direction via the steering committee, ongoing work with the

RS6000/PowerPC port, help cleaning up Haifa loop changes, doing the entire AIX
port of libstdc++ with his bare hands, and for ensuring GCC properly keeps working
on AIX.

• Kevin Ediger for the floating point formatting of num put::do put in libstdc++.
• Phil Edwards for libstdc++ work including configuration hackery, documentation main-

tainer, chief breaker of the web pages, the occasional iostream bug fix, and work on
shared library symbol versioning.

• Paul Eggert for random hacking all over GCC.
• Mark Elbrecht for various DJGPP improvements, and for libstdc++ configuration sup-

port for locales and fstream-related fixes.
• Vadim Egorov for libstdc++ fixes in strings, streambufs, and iostreams.
• Christian Ehrhardt for dealing with bug reports.
• Ben Elliston for his work to move the Objective-C runtime into its own subdirectory

and for his work on autoconf.
• Revital Eres for work on the PowerPC 750CL port.
• Marc Espie for OpenBSD support.
• Doug Evans for much of the global optimization framework, arc, m32r, and SPARC

work.
• Christopher Faylor for his work on the Cygwin port and for caring and feeding the

gcc.gnu.org box and saving its users tons of spam.
• Fred Fish for BeOS support and Ada fixes.
• Ivan Fontes Garcia for the Portuguese translation of the GCJ FAQ.
• Peter Gerwinski for various bug fixes and the Pascal front end.

794 Using the GNU Compiler Collection (GCC)

• Kaveh R. Ghazi for his direction via the steering committee, amazing work to make
‘-W -Wall -W* -Werror’ useful, and testing GCC on a plethora of platforms. Kaveh
extends his gratitude to the CAIP Center at Rutgers University for providing him with
computing resources to work on Free Software from the late 1980s to 2010.

• John Gilmore for a donation to the FSF earmarked improving GNU Java.
• Judy Goldberg for c++ contributions.
• Torbjorn Granlund for various fixes and the c-torture testsuite, multiply- and divide-

by-constant optimization, improved long long support, improved leaf function register
allocation, and his direction via the steering committee.

• Anthony Green for his ‘-Os’ contributions, the moxie port, and Java front end work.
• Stu Grossman for gdb hacking, allowing GCJ developers to debug Java code.
• Michael K. Gschwind contributed the port to the PDP-11.
• Richard Biener for his ongoing middle-end contributions and bug fixes and for release

management.
• Ron Guilmette implemented the protoize and unprotoize tools, the support for

Dwarf symbolic debugging information, and much of the support for System V Re-
lease 4. He has also worked heavily on the Intel 386 and 860 support.

• Sumanth Gundapaneni for contributing the CR16 port.
• Mostafa Hagog for Swing Modulo Scheduling (SMS) and post reload GCSE.
• Bruno Haible for improvements in the runtime overhead for EH, new warnings and

assorted bug fixes.
• Andrew Haley for his amazing Java compiler and library efforts.
• Chris Hanson assisted in making GCC work on HP-UX for the 9000 series 300.
• Michael Hayes for various thankless work he’s done trying to get the c30/c40 ports

functional. Lots of loop and unroll improvements and fixes.
• Dara Hazeghi for wading through myriads of target-specific bug reports.
• Kate Hedstrom for staking the G77 folks with an initial testsuite.
• Richard Henderson for his ongoing SPARC, alpha, ia32, and ia64 work, loop opts, and

generally fixing lots of old problems we’ve ignored for years, flow rewrite and lots of
further stuff, including reviewing tons of patches.

• Aldy Hernandez for working on the PowerPC port, SIMD support, and various fixes.
• Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed the support for

the Sony NEWS machine.
• Kazu Hirata for caring and feeding the Renesas H8/300 port and various fixes.
• Katherine Holcomb for work on GNU Fortran.
• Manfred Hollstein for his ongoing work to keep the m88k alive, lots of testing and bug

fixing, particularly of GCC configury code.
• Steve Holmgren for MachTen patches.
• Mat Hostetter for work on the TILE-Gx and TILEPro ports.
• Jan Hubicka for his x86 port improvements.
• Falk Hueffner for working on C and optimization bug reports.

Contributors to GCC 795

• Bernardo Innocenti for his m68k work, including merging of ColdFire improvements
and uClinux support.

• Christian Iseli for various bug fixes.
• Kamil Iskra for general m68k hacking.
• Lee Iverson for random fixes and MIPS testing.
• Andreas Jaeger for testing and benchmarking of GCC and various bug fixes.
• Jakub Jelinek for his SPARC work and sibling call optimizations as well as lots of bug

fixes and test cases, and for improving the Java build system.
• Janis Johnson for ia64 testing and fixes, her quality improvement sidetracks, and web

page maintenance.
• Kean Johnston for SCO OpenServer support and various fixes.
• Tim Josling for the sample language treelang based originally on Richard Kenner’s

“toy” language.
• Nicolai Josuttis for additional libstdc++ documentation.
• Klaus Kaempf for his ongoing work to make alpha-vms a viable target.
• Steven G. Kargl for work on GNU Fortran.
• David Kashtan of SRI adapted GCC to VMS.
• Ryszard Kabatek for many, many libstdc++ bug fixes and optimizations of strings,

especially member functions, and for auto ptr fixes.
• Geoffrey Keating for his ongoing work to make the PPC work for GNU/Linux and his

automatic regression tester.
• Brendan Kehoe for his ongoing work with G++ and for a lot of early work in just about

every part of libstdc++.
• Oliver M. Kellogg of Deutsche Aerospace contributed the port to the MIL-STD-1750A.
• Richard Kenner of the New York University Ultracomputer Research Laboratory wrote

the machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and
the IBM RS/6000 as well as the support for instruction attributes. He also made
changes to better support RISC processors including changes to common subexpression
elimination, strength reduction, function calling sequence handling, and condition code
support, in addition to generalizing the code for frame pointer elimination and delay
slot scheduling. Richard Kenner was also the head maintainer of GCC for several years.

• Mumit Khan for various contributions to the Cygwin and Mingw32 ports and main-
taining binary releases for Microsoft Windows hosts, and for massive libstdc++ porting
work to Cygwin/Mingw32.

• Robin Kirkham for cpu32 support.
• Mark Klein for PA improvements.
• Thomas Koenig for various bug fixes.
• Bruce Korb for the new and improved fixincludes code.
• Benjamin Kosnik for his G++ work and for leading the libstdc++-v3 effort.
• Charles LaBrec contributed the support for the Integrated Solutions 68020 system.
• Asher Langton and Mike Kumbera for contributing Cray pointer support to GNU

Fortran, and for other GNU Fortran improvements.

796 Using the GNU Compiler Collection (GCC)

• Jeff Law for his direction via the steering committee, coordinating the entire egcs
project and GCC 2.95, rolling out snapshots and releases, handling merges from GCC2,
reviewing tons of patches that might have fallen through the cracks else, and random
but extensive hacking.

• Walter Lee for work on the TILE-Gx and TILEPro ports.
• Marc Lehmann for his direction via the steering committee and helping with analysis

and improvements of x86 performance.
• Victor Leikehman for work on GNU Fortran.
• Ted Lemon wrote parts of the RTL reader and printer.
• Kriang Lerdsuwanakij for C++ improvements including template as template parameter

support, and many C++ fixes.
• Warren Levy for tremendous work on libgcj (Java Runtime Library) and random work

on the Java front end.
• Alain Lichnewsky ported GCC to the MIPS CPU.
• Oskar Liljeblad for hacking on AWT and his many Java bug reports and patches.
• Robert Lipe for OpenServer support, new testsuites, testing, etc.
• Chen Liqin for various S+core related fixes/improvement, and for maintaining the

S+core port.
• Weiwen Liu for testing and various bug fixes.
• Manuel López-Ibá~nez for improving ‘-Wconversion’ and many other diagnostics fixes

and improvements.
• Dave Love for his ongoing work with the Fortran front end and runtime libraries.
• Martin von Löwis for internal consistency checking infrastructure, various C++ improve-

ments including namespace support, and tons of assistance with libstdc++/compiler
merges.

• H.J. Lu for his previous contributions to the steering committee, many x86 bug reports,
prototype patches, and keeping the GNU/Linux ports working.

• Greg McGary for random fixes and (someday) bounded pointers.
• Andrew MacLeod for his ongoing work in building a real EH system, various code

generation improvements, work on the global optimizer, etc.
• Vladimir Makarov for hacking some ugly i960 problems, PowerPC hacking improve-

ments to compile-time performance, overall knowledge and direction in the area of
instruction scheduling, and design and implementation of the automaton based in-
struction scheduler.

• Bob Manson for his behind the scenes work on dejagnu.
• Philip Martin for lots of libstdc++ string and vector iterator fixes and improvements,

and string clean up and testsuites.
• All of the Mauve project contributors, for Java test code.
• Bryce McKinlay for numerous GCJ and libgcj fixes and improvements.
• Adam Megacz for his work on the Microsoft Windows port of GCJ.
• Michael Meissner for LRS framework, ia32, m32r, v850, m88k, MIPS, powerpc, haifa,

ECOFF debug support, and other assorted hacking.

http://sourceware.org/cgi-bin/cvsweb.cgi/~checkout~/mauve/THANKS?rev=1.2&cvsroot=mauve&only_with_tag=HEAD

Contributors to GCC 797

• Jason Merrill for his direction via the steering committee and leading the G++ effort.

• Martin Michlmayr for testing GCC on several architectures using the entire Debian
archive.

• David Miller for his direction via the steering committee, lots of SPARC work, im-
provements in jump.c and interfacing with the Linux kernel developers.

• Gary Miller ported GCC to Charles River Data Systems machines.

• Alfred Minarik for libstdc++ string and ios bug fixes, and turning the entire libstdc++
testsuite namespace-compatible.

• Mark Mitchell for his direction via the steering committee, mountains of C++ work,
load/store hoisting out of loops, alias analysis improvements, ISO C restrict support,
and serving as release manager from 2000 to 2011.

• Alan Modra for various GNU/Linux bits and testing.

• Toon Moene for his direction via the steering committee, Fortran maintenance, and his
ongoing work to make us make Fortran run fast.

• Jason Molenda for major help in the care and feeding of all the services on the
gcc.gnu.org (formerly egcs.cygnus.com) machine—mail, web services, ftp services, etc
etc. Doing all this work on scrap paper and the backs of envelopes would have been. . .
difficult.

• Catherine Moore for fixing various ugly problems we have sent her way, including the
haifa bug which was killing the Alpha & PowerPC Linux kernels.

• Mike Moreton for his various Java patches.

• David Mosberger-Tang for various Alpha improvements, and for the initial IA-64 port.

• Stephen Moshier contributed the floating point emulator that assists in cross-
compilation and permits support for floating point numbers wider than 64 bits and
for ISO C99 support.

• Bill Moyer for his behind the scenes work on various issues.

• Philippe De Muyter for his work on the m68k port.

• Joseph S. Myers for his work on the PDP-11 port, format checking and ISO C99
support, and continuous emphasis on (and contributions to) documentation.

• Nathan Myers for his work on libstdc++-v3: architecture and authorship through the
first three snapshots, including implementation of locale infrastructure, string, shadow
C headers, and the initial project documentation (DESIGN, CHECKLIST, and so
forth). Later, more work on MT-safe string and shadow headers.

• Felix Natter for documentation on porting libstdc++.

• Nathanael Nerode for cleaning up the configuration/build process.

• NeXT, Inc. donated the front end that supports the Objective-C language.

• Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the search engine
setup, various documentation fixes and other small fixes.

• Geoff Noer for his work on getting cygwin native builds working.

• Diego Novillo for his work on Tree SSA, OpenMP, SPEC performance tracking web
pages, GIMPLE tuples, and assorted fixes.

798 Using the GNU Compiler Collection (GCC)

• David O’Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, FreeBSD/ARM,
FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related infrastructure
improvements.

• Alexandre Oliva for various build infrastructure improvements, scripts and amazing
testing work, including keeping libtool issues sane and happy.

• Stefan Olsson for work on mt alloc.
• Melissa O’Neill for various NeXT fixes.
• Rainer Orth for random MIPS work, including improvements to GCC’s o32 ABI sup-

port, improvements to dejagnu’s MIPS support, Java configuration clean-ups and port-
ing work, and maintaining the IRIX, Solaris 2, and Tru64 UNIX ports.

• Hartmut Penner for work on the s390 port.
• Paul Petersen wrote the machine description for the Alliant FX/8.
• Alexandre Petit-Bianco for implementing much of the Java compiler and continued

Java maintainership.
• Matthias Pfaller for major improvements to the NS32k port.
• Gerald Pfeifer for his direction via the steering committee, pointing out lots of problems

we need to solve, maintenance of the web pages, and taking care of documentation
maintenance in general.

• Andrew Pinski for processing bug reports by the dozen.
• Ovidiu Predescu for his work on the Objective-C front end and runtime libraries.
• Jerry Quinn for major performance improvements in C++ formatted I/O.
• Ken Raeburn for various improvements to checker, MIPS ports and various cleanups

in the compiler.
• Rolf W. Rasmussen for hacking on AWT.
• David Reese of Sun Microsystems contributed to the Solaris on PowerPC port.
• Volker Reichelt for keeping up with the problem reports.
• Joern Rennecke for maintaining the sh port, loop, regmove & reload hacking and de-

veloping and maintaining the Epiphany port.
• Loren J. Rittle for improvements to libstdc++-v3 including the FreeBSD port, threading

fixes, thread-related configury changes, critical threading documentation, and solutions
to really tricky I/O problems, as well as keeping GCC properly working on FreeBSD
and continuous testing.

• Craig Rodrigues for processing tons of bug reports.
• Ola Rönnerup for work on mt alloc.
• Gavin Romig-Koch for lots of behind the scenes MIPS work.
• David Ronis inspired and encouraged Craig to rewrite the G77 documentation in texinfo

format by contributing a first pass at a translation of the old ‘g77-0.5.16/f/DOC’ file.
• Ken Rose for fixes to GCC’s delay slot filling code.
• Paul Rubin wrote most of the preprocessor.
• Pétur Runólfsson for major performance improvements in C++ formatted I/O and large

file support in C++ filebuf.

Contributors to GCC 799

• Chip Salzenberg for libstdc++ patches and improvements to locales, traits, Makefiles,
libio, libtool hackery, and “long long” support.

• Juha Sarlin for improvements to the H8 code generator.
• Greg Satz assisted in making GCC work on HP-UX for the 9000 series 300.
• Roger Sayle for improvements to constant folding and GCC’s RTL optimizers as well

as for fixing numerous bugs.
• Bradley Schatz for his work on the GCJ FAQ.
• Peter Schauer wrote the code to allow debugging to work on the Alpha.
• William Schelter did most of the work on the Intel 80386 support.
• Tobias Schlüter for work on GNU Fortran.
• Bernd Schmidt for various code generation improvements and major work in the reload

pass, serving as release manager for GCC 2.95.3, and work on the Blackfin and C6X
ports.

• Peter Schmid for constant testing of libstdc++—especially application testing, going
above and beyond what was requested for the release criteria—and libstdc++ header
file tweaks.

• Jason Schroeder for jcf-dump patches.
• Andreas Schwab for his work on the m68k port.
• Lars Segerlund for work on GNU Fortran.
• Dodji Seketeli for numerous C++ bug fixes and debug info improvements.
• Tim Shen for major work on <regex>.
• Joel Sherrill for his direction via the steering committee, RTEMS contributions and

RTEMS testing.
• Nathan Sidwell for many C++ fixes/improvements.
• Jeffrey Siegal for helping RMS with the original design of GCC, some code which

handles the parse tree and RTL data structures, constant folding and help with the
original VAX & m68k ports.

• Kenny Simpson for prompting libstdc++ fixes due to defect reports from the LWG
(thereby keeping GCC in line with updates from the ISO).

• Franz Sirl for his ongoing work with making the PPC port stable for GNU/Linux.
• Andrey Slepuhin for assorted AIX hacking.
• Trevor Smigiel for contributing the SPU port.
• Christopher Smith did the port for Convex machines.
• Danny Smith for his major efforts on the Mingw (and Cygwin) ports.
• Randy Smith finished the Sun FPA support.
• Ed Smith-Rowland for his continuous work on libstdc++-v3, special functions,

<random>, and various improvements to C++11 features.
• Scott Snyder for queue, iterator, istream, and string fixes and libstdc++ testsuite en-

tries. Also for providing the patch to G77 to add rudimentary support for INTEGER*1,
INTEGER*2, and LOGICAL*1.

• Zdenek Sojka for running automated regression testing of GCC and reporting numerous
bugs.

800 Using the GNU Compiler Collection (GCC)

• Jayant Sonar for contributing the CR16 port.
• Brad Spencer for contributions to the GLIBCPP FORCE NEW technique.
• Richard Stallman, for writing the original GCC and launching the GNU project.
• Jan Stein of the Chalmers Computer Society provided support for Genix, as well as

part of the 32000 machine description.
• Nigel Stephens for various mips16 related fixes/improvements.
• Jonathan Stone wrote the machine description for the Pyramid computer.
• Graham Stott for various infrastructure improvements.
• John Stracke for his Java HTTP protocol fixes.
• Mike Stump for his Elxsi port, G++ contributions over the years and more recently his

vxworks contributions
• Jeff Sturm for Java porting help, bug fixes, and encouragement.
• Shigeya Suzuki for this fixes for the bsdi platforms.
• Ian Lance Taylor for the Go frontend, the initial mips16 and mips64 support, general

configury hacking, fixincludes, etc.
• Holger Teutsch provided the support for the Clipper CPU.
• Gary Thomas for his ongoing work to make the PPC work for GNU/Linux.
• Philipp Thomas for random bug fixes throughout the compiler
• Jason Thorpe for thread support in libstdc++ on NetBSD.
• Kresten Krab Thorup wrote the run time support for the Objective-C language and

the fantastic Java bytecode interpreter.
• Michael Tiemann for random bug fixes, the first instruction scheduler, initial C++

support, function integration, NS32k, SPARC and M88k machine description work,
delay slot scheduling.

• Andreas Tobler for his work porting libgcj to Darwin.
• Teemu Torma for thread safe exception handling support.
• Leonard Tower wrote parts of the parser, RTL generator, and RTL definitions, and of

the VAX machine description.
• Daniel Towner and Hariharan Sandanagobalane contributed and maintain the picoChip

port.
• Tom Tromey for internationalization support and for his many Java contributions and

libgcj maintainership.
• Lassi Tuura for improvements to config.guess to determine HP processor types.
• Petter Urkedal for libstdc++ CXXFLAGS, math, and algorithms fixes.
• Andy Vaught for the design and initial implementation of the GNU Fortran front end.
• Brent Verner for work with the libstdc++ cshadow files and their associated configure

steps.
• Todd Vierling for contributions for NetBSD ports.
• Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML guidance.
• Dean Wakerley for converting the install documentation from HTML to texinfo in time

for GCC 3.0.

Contributors to GCC 801

• Krister Walfridsson for random bug fixes.
• Feng Wang for contributions to GNU Fortran.
• Stephen M. Webb for time and effort on making libstdc++ shadow files work with the

tricky Solaris 8+ headers, and for pushing the build-time header tree. Also, for starting
and driving the <regex> effort.

• John Wehle for various improvements for the x86 code generator, related infrastructure
improvements to help x86 code generation, value range propagation and other work,
WE32k port.

• Ulrich Weigand for work on the s390 port.
• Zack Weinberg for major work on cpplib and various other bug fixes.
• Matt Welsh for help with Linux Threads support in GCJ.
• Urban Widmark for help fixing java.io.
• Mark Wielaard for new Java library code and his work integrating with Classpath.
• Dale Wiles helped port GCC to the Tahoe.
• Bob Wilson from Tensilica, Inc. for the Xtensa port.
• Jim Wilson for his direction via the steering committee, tackling hard problems in

various places that nobody else wanted to work on, strength reduction and other loop
optimizations.

• Paul Woegerer and Tal Agmon for the CRX port.
• Carlo Wood for various fixes.
• Tom Wood for work on the m88k port.
• Chung-Ju Wu for his work on the Andes NDS32 port.
• Canqun Yang for work on GNU Fortran.
• Masanobu Yuhara of Fujitsu Laboratories implemented the machine description for the

Tron architecture (specifically, the Gmicro).
• Kevin Zachmann helped port GCC to the Tahoe.
• Ayal Zaks for Swing Modulo Scheduling (SMS).
• Xiaoqiang Zhang for work on GNU Fortran.
• Gilles Zunino for help porting Java to Irix.

The following people are recognized for their contributions to GNAT, the Ada front end
of GCC:
• Bernard Banner
• Romain Berrendonner
• Geert Bosch
• Emmanuel Briot
• Joel Brobecker
• Ben Brosgol
• Vincent Celier
• Arnaud Charlet
• Chien Chieng

802 Using the GNU Compiler Collection (GCC)

• Cyrille Comar
• Cyrille Crozes
• Robert Dewar
• Gary Dismukes
• Robert Duff
• Ed Falis
• Ramon Fernandez
• Sam Figueroa
• Vasiliy Fofanov
• Michael Friess
• Franco Gasperoni
• Ted Giering
• Matthew Gingell
• Laurent Guerby
• Jerome Guitton
• Olivier Hainque
• Jerome Hugues
• Hristian Kirtchev
• Jerome Lambourg
• Bruno Leclerc
• Albert Lee
• Sean McNeil
• Javier Miranda
• Laurent Nana
• Pascal Obry
• Dong-Ik Oh
• Laurent Pautet
• Brett Porter
• Thomas Quinot
• Nicolas Roche
• Pat Rogers
• Jose Ruiz
• Douglas Rupp
• Sergey Rybin
• Gail Schenker
• Ed Schonberg
• Nicolas Setton
• Samuel Tardieu

Contributors to GCC 803

The following people are recognized for their contributions of new features, bug reports,
testing and integration of classpath/libgcj for GCC version 4.1:
• Lillian Angel for JTree implementation and lots Free Swing additions and bug fixes.
• Wolfgang Baer for GapContent bug fixes.
• Anthony Balkissoon for JList, Free Swing 1.5 updates and mouse event fixes, lots of

Free Swing work including JTable editing.
• Stuart Ballard for RMI constant fixes.
• Goffredo Baroncelli for HTTPURLConnection fixes.
• Gary Benson for MessageFormat fixes.
• Daniel Bonniot for Serialization fixes.
• Chris Burdess for lots of gnu.xml and http protocol fixes, StAX and DOM xml:id support.
• Ka-Hing Cheung for TreePath and TreeSelection fixes.
• Archie Cobbs for build fixes, VM interface updates, URLClassLoader updates.
• Kelley Cook for build fixes.
• Martin Cordova for Suggestions for better SocketTimeoutException.
• David Daney for BitSet bug fixes, HttpURLConnection rewrite and improvements.
• Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo 2D support.

Lots of imageio framework additions, lots of AWT and Free Swing bug fixes.
• Jeroen Frijters for ClassLoader and nio cleanups, serialization fixes, better Proxy

support, bug fixes and IKVM integration.
• Santiago Gala for AccessControlContext fixes.
• Nicolas Geoffray for VMClassLoader and AccessController improvements.
• David Gilbert for basic and metal icon and plaf support and lots of documenting,

Lots of Free Swing and metal theme additions. MetalIconFactory implementation.
• Anthony Green for MIDI framework, ALSA and DSSI providers.
• Andrew Haley for Serialization and URLClassLoader fixes, gcj build speedups.
• Kim Ho for JFileChooser implementation.
• Andrew John Hughes for Locale and net fixes, URI RFC2986 updates, Serialization

fixes, Properties XML support and generic branch work, VMIntegration guide update.
• Bastiaan Huisman for TimeZone bug fixing.
• Andreas Jaeger for mprec updates.
• Paul Jenner for better ‘-Werror’ support.
• Ito Kazumitsu for NetworkInterface implementation and updates.
• Roman Kennke for BoxLayout, GrayFilter and SplitPane, plus bug fixes all over.

Lots of Free Swing work including styled text.
• Simon Kitching for String cleanups and optimization suggestions.
• Michael Koch for configuration fixes, Locale updates, bug and build fixes.
• Guilhem Lavaux for configuration, thread and channel fixes and Kaffe integration. JCL

native Pointer updates. Logger bug fixes.
• David Lichteblau for JCL support library global/local reference cleanups.

804 Using the GNU Compiler Collection (GCC)

• Aaron Luchko for JDWP updates and documentation fixes.
• Ziga Mahkovec for Graphics2D upgraded to Cairo 0.5 and new regex features.
• Sven de Marothy for BMP imageio support, CSS and TextLayout fixes. GtkImage

rewrite, 2D, awt, free swing and date/time fixes and implementing the Qt4 peers.
• Casey Marshall for crypto algorithm fixes, FileChannel lock, SystemLogger and

FileHandler rotate implementations, NIO FileChannel.map support, security and
policy updates.

• Bryce McKinlay for RMI work.
• Audrius Meskauskas for lots of Free Corba, RMI and HTML work plus testing and

documenting.
• Kalle Olavi Niemitalo for build fixes.
• Rainer Orth for build fixes.
• Andrew Overholt for File locking fixes.
• Ingo Proetel for Image, Logger and URLClassLoader updates.
• Olga Rodimina for MenuSelectionManager implementation.
• Jan Roehrich for BasicTreeUI and JTree fixes.
• Julian Scheid for documentation updates and gjdoc support.
• Christian Schlichtherle for zip fixes and cleanups.
• Robert Schuster for documentation updates and beans fixes, TreeNode enumerations

and ActionCommand and various fixes, XML and URL, AWT and Free Swing bug fixes.
• Keith Seitz for lots of JDWP work.
• Christian Thalinger for 64-bit cleanups, Configuration and VM interface fixes and

CACAO integration, fdlibm updates.
• Gael Thomas for VMClassLoader boot packages support suggestions.
• Andreas Tobler for Darwin and Solaris testing and fixing, Qt4 support for Darwin/OS

X, Graphics2D support, gtk+ updates.
• Dalibor Topic for better DEBUG support, build cleanups and Kaffe integration. Qt4

build infrastructure, SHA1PRNG and GdkPixbugDecoder updates.
• Tom Tromey for Eclipse integration, generics work, lots of bug fixes and gcj integration

including coordinating The Big Merge.
• Mark Wielaard for bug fixes, packaging and release management, Clipboard imple-

mentation, system call interrupts and network timeouts and GdkPixpufDecoder fixes.

In addition to the above, all of which also contributed time and energy in testing GCC,
we would like to thank the following for their contributions to testing:
• Michael Abd-El-Malek
• Thomas Arend
• Bonzo Armstrong
• Steven Ashe
• Chris Baldwin
• David Billinghurst

Contributors to GCC 805

• Jim Blandy
• Stephane Bortzmeyer
• Horst von Brand
• Frank Braun
• Rodney Brown
• Sidney Cadot
• Bradford Castalia
• Robert Clark
• Jonathan Corbet
• Ralph Doncaster
• Richard Emberson
• Levente Farkas
• Graham Fawcett
• Mark Fernyhough
• Robert A. French
• Jörgen Freyh
• Mark K. Gardner
• Charles-Antoine Gauthier
• Yung Shing Gene
• David Gilbert
• Simon Gornall
• Fred Gray
• John Griffin
• Patrik Hagglund
• Phil Hargett
• Amancio Hasty
• Takafumi Hayashi
• Bryan W. Headley
• Kevin B. Hendricks
• Joep Jansen
• Christian Joensson
• Michel Kern
• David Kidd
• Tobias Kuipers
• Anand Krishnaswamy
• A. O. V. Le Blanc
• llewelly
• Damon Love
• Brad Lucier

806 Using the GNU Compiler Collection (GCC)

• Matthias Klose
• Martin Knoblauch
• Rick Lutowski
• Jesse Macnish
• Stefan Morrell
• Anon A. Mous
• Matthias Mueller
• Pekka Nikander
• Rick Niles
• Jon Olson
• Magnus Persson
• Chris Pollard
• Richard Polton
• Derk Reefman
• David Rees
• Paul Reilly
• Tom Reilly
• Torsten Rueger
• Danny Sadinoff
• Marc Schifer
• Erik Schnetter
• Wayne K. Schroll
• David Schuler
• Vin Shelton
• Tim Souder
• Adam Sulmicki
• Bill Thorson
• George Talbot
• Pedro A. M. Vazquez
• Gregory Warnes
• Ian Watson
• David E. Young
• And many others

And finally we’d like to thank everyone who uses the compiler, provides feedback and
generally reminds us why we’re doing this work in the first place.

Option Index 807

Option Index

GCC’s command line options are indexed here without any initial ‘-’ or ‘--’. Where an
option has both positive and negative forms (such as ‘-foption’ and ‘-fno-option’), rele-
vant entries in the manual are indexed under the most appropriate form; it may sometimes
be useful to look up both forms.

#
. 28

(
(fvtv-debug) . 43

-
-fno-keep-inline-dllexport 106
-mcpu . 296
-mcpu= . 274
-mpointer-size=size . 320

8
8bit-idiv . 241

A
A . 164
all_load . 211
allowable_client . 213
ansi . 5, 31, 160, 482, 757
arch_errors_fatal . 211
aux-info . 34
avx256-split-unaligned-load 241
avx256-split-unaligned-store 241

B
B . 171
Bdynamic . 321
bind_at_load . 211
Bstatic . 321
bundle . 211
bundle_loader . 211

C
c . 27, 166
C . 165
client_name . 213
compatibility_version . 213
coverage . 86
current_version . 213

D
d . 88
D . 155
da . 92
dA . 92
dD . 92, 164
dead_strip . 213
dependency-file . 213
dH . 92
dI . 165
dM . 164
dN . 165
dp . 92
dP . 92
dU . 165
dumpmachine . 101
dumpspecs . 101
dumpversion . 101
dx . 92
dylib_file . 213
dylinker_install_name . 213
dynamic . 213
dynamiclib . 211

E
E . 28, 166
EB . 189, 258
EL . 189, 258
exported_symbols_list . 213

F
F . 209
fabi-version . 37
fada-spec-parent . 30
faggressive-loop-optimizations 109
falign-functions . 125
falign-jumps . 126
falign-labels . 126
falign-loops . 126
fallow-parameterless-variadic-functions . . 34
fassociative-math . 134
fasynchronous-unwind-tables 325
fauto-inc-dec . 109
fbounds-check . 323
fbranch-probabilities . 136
fbranch-target-load-optimize 138

808 Using the GNU Compiler Collection (GCC)

fbranch-target-load-optimize2 138
fbtr-bb-exclusive . 138
fcall-saved . 328
fcall-used . 328
fcaller-saves . 114
fcheck-data-deps . 119
fcheck-new . 38
fcilkplus . 35
fcombine-stack-adjustments 114
fcommon . 411
fcompare-debug . 82
fcompare-debug-second . 83
fcompare-elim . 131
fcond-mismatch . 36
fconserve-stack . 115
fconstant-string-class . 48
fconstexpr-depth . 38
fcprop-registers . 132
fcrossjumping . 109
fcse-follow-jumps . 108
fcse-skip-blocks . 108
fcx-fortran-rules . 136
fcx-limited-range . 135
fdata-sections . 137
fdbg-cnt . 87
fdbg-cnt-list . 87
fdce . 109
fdebug-cpp . 163
fdebug-prefix-map . 84
fdebug-types-section . 79
fdeclone-ctor-dtor . 110
fdeduce-init-list . 38
fdelayed-branch . 112
fdelete-dead-exceptions 325
fdelete-null-pointer-checks 110
fdevirtualize . 110
fdevirtualize-speculatively 110
fdiagnostics-color . 52
fdiagnostics-show-caret . 53
fdiagnostics-show-location 52
fdiagnostics-show-option 53
fdirectives-only . 162
fdisable- . 87
fdollars-in-identifiers 162, 747
fdse . 109
fdump-ada-spec . 30
fdump-class-hierarchy . 93
fdump-final-insns . 82
fdump-go-spec . 30
fdump-ipa . 93
fdump-noaddr . 92
fdump-passes . 93
fdump-rtl-alignments . 89
fdump-rtl-all . 92
fdump-rtl-asmcons . 89
fdump-rtl-auto_inc_dec . 89
fdump-rtl-barriers . 89
fdump-rtl-bbpart . 89

fdump-rtl-bbro . 89
fdump-rtl-btl2 . 89
fdump-rtl-bypass . 89
fdump-rtl-ce1 . 89
fdump-rtl-ce2 . 89
fdump-rtl-ce3 . 89
fdump-rtl-combine . 89
fdump-rtl-compgotos . 89
fdump-rtl-cprop_hardreg . 89
fdump-rtl-csa . 89
fdump-rtl-cse1 . 89
fdump-rtl-cse2 . 89
fdump-rtl-dbr . 89
fdump-rtl-dce . 89
fdump-rtl-dce1 . 90
fdump-rtl-dce2 . 90
fdump-rtl-dfinish . 92
fdump-rtl-dfinit . 92
fdump-rtl-eh . 90
fdump-rtl-eh_ranges . 90
fdump-rtl-expand . 90
fdump-rtl-fwprop1 . 90
fdump-rtl-fwprop2 . 90
fdump-rtl-gcse1 . 90
fdump-rtl-gcse2 . 90
fdump-rtl-init-regs . 90
fdump-rtl-initvals . 90
fdump-rtl-into_cfglayout 90
fdump-rtl-ira . 90
fdump-rtl-jump . 90
fdump-rtl-loop2 . 90
fdump-rtl-mach . 90
fdump-rtl-mode_sw . 90
fdump-rtl-outof_cfglayout 90
fdump-rtl-pass . 88
fdump-rtl-peephole2 . 91
fdump-rtl-postreload . 91
fdump-rtl-pro_and_epilogue 91
fdump-rtl-ree . 91
fdump-rtl-regclass . 92
fdump-rtl-rnreg . 90
fdump-rtl-sched1 . 91
fdump-rtl-sched2 . 91
fdump-rtl-seqabstr . 91
fdump-rtl-shorten . 91
fdump-rtl-sibling . 91
fdump-rtl-sms . 91
fdump-rtl-split1 . 91
fdump-rtl-split2 . 91
fdump-rtl-split3 . 91
fdump-rtl-split4 . 91
fdump-rtl-split5 . 91
fdump-rtl-stack . 91
fdump-rtl-subreg1 . 91
fdump-rtl-subreg2 . 91
fdump-rtl-subregs_of_mode_finish 92
fdump-rtl-subregs_of_mode_init 92
fdump-rtl-unshare . 91

Option Index 809

fdump-rtl-vartrack . 91
fdump-rtl-vregs . 92
fdump-rtl-web . 92
fdump-statistics . 93
fdump-translation-unit . 92
fdump-tree . 93
fdump-tree-alias . 95
fdump-tree-all . 96
fdump-tree-ccp . 95
fdump-tree-cfg . 95
fdump-tree-ch . 95
fdump-tree-copyprop . 95
fdump-tree-copyrename . 96
fdump-tree-dce . 96
fdump-tree-dom . 96
fdump-tree-dse . 96
fdump-tree-forwprop . 96
fdump-tree-fre . 95
fdump-tree-gimple . 95
fdump-tree-nrv . 96
fdump-tree-optimized . 95
fdump-tree-original . 95
fdump-tree-phiopt . 96
fdump-tree-pre . 95
fdump-tree-sink . 96
fdump-tree-slp . 96
fdump-tree-sra . 96
fdump-tree-ssa . 95
fdump-tree-store_copyprop 96
fdump-tree-storeccp . 95
fdump-tree-vect . 96
fdump-tree-vrp . 96
fdump-unnumbered . 92
fdump-unnumbered-links . 92
fdwarf2-cfi-asm . 84
fearly-inlining . 105
feliminate-dwarf2-dups . 83
feliminate-unused-debug-symbols 79
feliminate-unused-debug-types 101
femit-struct-debug-baseonly 83
femit-struct-debug-reduced 83
fenable- . 87
fexceptions . 324
fexcess-precision . 133
fexec-charset . 163
fexpensive-optimizations 110
fext-numeric-literals . 46
fextended-identifiers . 162
fextern-tls-init . 39
ffast-math . 133
ffat-lto-objects . 131
ffinite-math-only . 134
ffix-and-continue . 211
ffixed . 328
ffloat-store . 132, 752
ffor-scope . 39
fforward-propagate . 104
ffp-contract . 104

ffreestanding . 6, 35, 57, 380
ffriend-injection . 38
ffunction-sections . 137
fgcse . 108
fgcse-after-reload . 109
fgcse-las . 109
fgcse-lm . 108
fgcse-sm . 108
fgnu-runtime . 49
fgnu-tm . 35
fgnu89-inline . 33
fgraphite-identity . 119
fhosted . 35
fif-conversion . 109
fif-conversion2 . 110
filelist . 213
findirect-data . 211
findirect-inlining . 105
finhibit-size-directive 327
finline-functions . 105
finline-functions-called-once 105
finline-limit . 106
finline-small-functions 105
finput-charset . 164
finstrument-functions 329, 389
finstrument-functions-exclude-file-list

. 329
finstrument-functions-exclude-function-list

. 330
fipa-cp . 116
fipa-cp-clone . 116
fipa-profile . 116
fipa-pta . 115
fipa-pure-const . 115
fipa-reference . 115
fipa-sra . 106
fira-hoist-pressure . 111
fira-loop-pressure . 111
fira-verbose . 112
fivopts . 120
fkeep-inline-functions 106, 425
fkeep-static-consts . 106
flat_namespace . 213
flax-vector-conversions . 36
fleading-underscore . 331
flive-range-shrinkage . 111
floop-block . 118
floop-interchange . 117
floop-nest-optimize . 119
floop-parallelize-all . 119
floop-strip-mine . 118
flto . 127
flto-partition . 130
fmax-errors . 53
fmem-report . 85
fmem-report-wpa . 85
fmerge-all-constants . 107
fmerge-constants . 106

810 Using the GNU Compiler Collection (GCC)

fmerge-debug-strings . 84
fmessage-length . 52
fmodulo-sched . 107
fmodulo-sched-allow-regmoves 107
fmove-loop-invariants . 137
fms-extensions . 36, 40, 697
fnext-runtime . 49
fno-access-control . 38
fno-asm . 34
fno-branch-count-reg . 107
fno-builtin . 34, 57, 380, 482
fno-canonical-system-headers 162
fno-common . 326, 411
fno-compare-debug . 82
fno-debug-types-section . 79
fno-default-inline . 425
fno-defer-pop . 104
fno-diagnostics-show-caret 53
fno-diagnostics-show-option 53
fno-dwarf2-cfi-asm . 84
fno-elide-constructors . 39
fno-eliminate-unused-debug-types 101
fno-enforce-eh-specs . 39
fno-ext-numeric-literals 46
fno-extern-tls-init . 39
fno-for-scope . 39
fno-function-cse . 107
fno-gnu-keywords . 40
fno-gnu-unique . 325
fno-guess-branch-probability 123
fno-ident . 327
fno-implement-inlines 40, 704
fno-implicit-inline-templates 40
fno-implicit-templates 40, 706
fno-inline . 105
fno-ira-share-save-slots 111
fno-ira-share-spill-slots 111
fno-jump-tables . 328
fno-math-errno . 133
fno-merge-debug-strings . 84
fno-nil-receivers . 49
fno-nonansi-builtins . 40
fno-operator-names . 40
fno-optional-diags . 40
fno-peephole . 123
fno-peephole2 . 123
fno-pretty-templates . 41
fno-rtti . 41
fno-sched-interblock . 112
fno-sched-spec . 112
fno-set-stack-executable 243
fno-show-column . 164
fno-signed-bitfields . 37
fno-signed-zeros . 134
fno-stack-limit . 330
fno-threadsafe-statics . 41
fno-toplevel-reorder . 127
fno-trapping-math . 135

fno-unsigned-bitfields . 37
fno-use-cxa-get-exception-ptr 42
fno-var-tracking-assignments 100
fno-var-tracking-assignments-toggle 100
fno-weak . 43
fno-working-directory . 164
fno-writable-relocated-rdata 243
fno-zero-initialized-in-bss 107
fnon-call-exceptions . 325
fnothrow-opt . 40
fobjc-abi-version . 49
fobjc-call-cxx-cdtors . 49
fobjc-direct-dispatch . 49
fobjc-exceptions . 50
fobjc-gc . 50
fobjc-nilcheck . 50
fobjc-std . 50
fomit-frame-pointer . 104
fopenmp . 35
fopenmp-simd . 35
fopt-info . 96
foptimize-sibling-calls 105
force_cpusubtype_ALL . 211
force_flat_namespace . 213
fpack-struct . 329
fpartial-inlining . 123
fpcc-struct-return . 325, 749
fpch-deps . 159
fpch-preprocess . 159
fpeel-loops . 137
fpermissive . 40
fpic . 327
fPIC . 328
fpie . 328
fPIE . 328
fplan9-extensions . 697
fplugin . 30
fplugin-arg . 30
fpost-ipa-mem-report . 85
fpre-ipa-mem-report . 85
fpredictive-commoning . 123
fprefetch-loop-arrays . 123
fpreprocessed . 163
fprofile-arcs . 86, 486
fprofile-correction . 132
fprofile-dir . 132
fprofile-generate . 132
fprofile-reorder-functions 136
fprofile-report . 85
fprofile-use . 132
fprofile-values . 136
fpu . 296
frandom-seed . 98
freciprocal-math . 134
frecord-gcc-switches . 327
free . 110
freg-struct-return . 326
frename-registers . 137

Option Index 811

freorder-blocks . 124
freorder-blocks-and-partition 124
freorder-functions . 124
freplace-objc-classes . 50
frepo . 41, 705
frerun-cse-after-loop . 108
freschedule-modulo-scheduled-loops 114
frounding-math . 135
fsanitize=address . 81
fsanitize=integer-divide-by-zero 82
fsanitize=leak . 81
fsanitize=null . 82
fsanitize=return . 82
fsanitize=shift . 81
fsanitize=signed-integer-overflow 82
fsanitize=thread . 81
fsanitize=undefined . 81
fsanitize=unreachable . 82
fsanitize=vla-bound . 82
fsched-critical-path-heuristic 113
fsched-dep-count-heuristic 114
fsched-group-heuristic . 113
fsched-last-insn-heuristic 114
fsched-pressure . 112
fsched-rank-heuristic . 113
fsched-spec-insn-heuristic 113
fsched-spec-load . 112
fsched-spec-load-dangerous 112
fsched-stalled-insns . 113
fsched-stalled-insns-dep 113
fsched-verbose . 98
fsched2-use-superblocks 113
fschedule-insns . 112
fschedule-insns2 . 112
fsection-anchors . 138
fsel-sched-pipelining . 114
fsel-sched-pipelining-outer-loops 114
fselective-scheduling . 114
fselective-scheduling2 . 114
fshort-double . 326
fshort-enums 326, 344, 420, 756
fshort-wchar . 326
fshrink-wrap . 114
fsignaling-nans . 135
fsigned-bitfields . 37, 756
fsigned-char . 37, 340
fsimd-cost-model . 122
fsingle-precision-constant 135
fsplit-ivs-in-unroller . 123
fsplit-stack . 331, 389
fsplit-wide-types . 108
fstack-check . 330
fstack-limit-register . 330
fstack-limit-symbol . 330
fstack-protector . 138
fstack-protector-all . 138
fstack-protector-strong 138
fstack-usage . 85

fstack_reuse . 323
fstats . 41
fstrict-aliasing . 124
fstrict-enums . 41
fstrict-overflow . 125
fstrict-volatile-bitfields 333
fsync-libcalls . 333
fsyntax-only . 53
ftabstop . 163
ftemplate-backtrace-limit 41
ftemplate-depth . 41
ftest-coverage . 87
fthread-jumps . 107
ftime-report . 85
ftls-model . 331
ftracer . 122, 137
ftrack-macro-expansion . 163
ftrapv . 324
ftree-bit-ccp . 116
ftree-builtin-call-dce . 117
ftree-ccp . 116
ftree-ch . 117
ftree-coalesce-inlined-vars 121
ftree-coalesce-vars . 121
ftree-copy-prop . 115
ftree-copyrename . 121
ftree-dce . 117
ftree-dominator-opts . 117
ftree-dse . 117
ftree-forwprop . 115
ftree-fre . 115
ftree-loop-im . 120
ftree-loop-ivcanon . 120
ftree-loop-linear . 117
ftree-loop-optimize . 117
ftree-loop-vectorize . 122
ftree-parallelize-loops 121
ftree-partial-pre . 115
ftree-phiprop . 115
ftree-pre . 115
ftree-pta . 121
ftree-reassoc . 115
ftree-sink . 116
ftree-slp-vectorize . 122
ftree-slsr . 121
ftree-sra . 121
ftree-ter . 121
ftree-vectorize . 122
ftree-vrp . 122
funit-at-a-time . 126
funroll-all-loops . 122, 137
funroll-loops . 122, 137
funsafe-loop-optimizations 109
funsafe-math-optimizations 134
funsigned-bitfields 37, 343, 756
funsigned-char . 37, 340
funswitch-loops . 137
funwind-tables . 325

812 Using the GNU Compiler Collection (GCC)

fuse-cxa-atexit . 42
fuse-ld=bfd . 131
fuse-ld=gold . 131
fvar-tracking . 99
fvar-tracking-assignments 100
fvar-tracking-assignments-toggle 100
fvariable-expansion-in-unroller 123
fvect-cost-model . 122
fverbose-asm . 327
fvisibility . 331
fvisibility-inlines-hidden 42
fvisibility-ms-compat . 42
fvpt . 136
fvtable-verify . 43
fvtv-counts . 43
fweb . 127
fwhole-program . 127
fwide-exec-charset . 163
fworking-directory . 164
fwrapv . 324
fzero-link . 50

G
g . 78
G . 248, 264, 275, 293, 316
gcoff . 79
gdwarf-version . 80
gen-decls . 51
gfull . 210
ggdb . 79
ggnu-pubnames . 79
gno-record-gcc-switches . 80
gno-strict-dwarf . 80
gpubnames . 79
grecord-gcc-switches . 80
gsplit-dwarf . 78
gstabs . 79
gstabs+ . 79
gstrict-dwarf . 80
gtoggle . 81
gused . 210
gvms . 80
gxcoff . 79
gxcoff+ . 79

H
H . 166
headerpad_max_install_names 213
help . 28, 166
hoist-adjacent-loads . 115

I
I . 156, 170
I- . 161, 172
idirafter . 161

iframework . 210
imacros . 161
image_base . 213
imultilib . 162
include . 161
init . 213
install_name . 213
iplugindir= . 171
iprefix . 161
iquote . 162, 171
isysroot . 162
isystem . 162
iwithprefix . 162
iwithprefixbefore . 162

K
keep_private_externs . 213

L
l . 166
L . 171
lobjc . 167

M
m . 291
M . 158
m1 . 302
m10 . 279
m128bit-long-double . 232
m16 . 241
m16-bit . 208, 274
m1reg- . 184
m2 . 302
m210 . 255
m2a . 302
m2a-nofpu . 302
m2a-single . 302
m2a-single-only . 302
m3 . 302
m31 . 300
m32 . 241, 285, 314, 317
m32-bit . 208
m32bit-doubles . 296
m32r . 248
m32r2 . 248
m32rx . 248
m340 . 255
m3dnow . 236
m3e . 302
m4 . 303
m4-nofpu . 302
m4-single . 303
m4-single-only . 303
m40 . 279
m45 . 279

Option Index 813

m4a . 303
m4a-nofpu . 303
m4a-single . 303
m4a-single-only . 303
m4al . 303
m4byte-functions . 255
m5200 . 251
m5206e . 251
m528x . 251
m5307 . 252
m5407 . 252
m64 . 241, 285, 300, 314, 317
m64bit-doubles . 296
m68000 . 251
m68010 . 251
m68020 . 251
m68020-40 . 252
m68020-60 . 252
m68030 . 251
m68040 . 251
m68060 . 251
m68881 . 252
m8-bit . 208
m8byte-align . 320
m96bit-long-double . 232
mA6 . 184
mA7 . 184
mabi . 180, 190, 239, 291
mabi=32 . 260
mabi=64 . 260
mabi=eabi . 260
mabi=elfv1 . 291
mabi=elfv2 . 291
mabi=gnu . 271
mabi=ibmlongdouble . 291
mabi=ieeelongdouble . 291
mabi=mmixware . 271
mabi=n32 . 260
mabi=no-spe . 291
mabi=o64 . 260
mabi=spe . 291
mabicalls . 261
mabort-on-noreturn . 193
mabs=2008 . 262
mabs=legacy . 262
mabsdiff . 255
mabshi . 280
mac0 . 279
macc-4 . 219
macc-8 . 219
maccumulate-args . 198
maccumulate-outgoing-args 239, 307
maddress-mode=long . 242
maddress-mode=short . 242
maddress-space-conversion 316
mads . 292
maix-struct-return . 291
maix32 . 286

maix64 . 286
malign-300 . 222
malign-call . 187
malign-double . 231
malign-int . 253
malign-labels . 219
malign-loops . 249
malign-natural . 287
malign-power . 287
mall-opts . 255
malloc-cc . 218
maltivec . 283
maltivec=be . 283
maltivec=le . 284
mam33 . 272
mam33-2 . 272
mam34 . 272
mandroid . 221
mannotate-align . 186
mapcs . 190
mapcs-frame . 190
mapp-regs . 310, 320
mARC600 . 184
mARC601 . 184
mARC700 . 184
march . . 181, 191, 206, 207, 222, 225, 249, 258, 275,

300
marclinux . 186
marclinux_prof . 186
margonaut . 189
marm . 194
mas100-syntax . 297
masm-hex . 273
masm=dialect . 231
matomic-model=model . 304
matomic-updates . 316
mauto-modify-reg . 187
mauto-pic . 244
maverage . 255
mavoid-indexed-addresses 288
max-vect-align . 184
mb . 303
mbackchain . 299
mbarrel-shift-enabled . 247
mbarrel-shifter . 184
mbarrel_shifter . 189
mbase-addresses . 272
mbased= . 255
mbbit-peephole . 187
mbcopy . 279
mbcopy-builtin . 279
mbig . 289
mbig-endian 180, 189, 191, 206, 243, 255, 258,

274, 289, 317
mbig-endian-data . 297
mbig-switch . 320
mbigtable . 303
mbionic . 221

814 Using the GNU Compiler Collection (GCC)

mbit-align . 288
mbit-ops . 209
mbitfield . 253
mbitops . 255, 303
mblock-move-inline-limit 293
mbranch-cheap . 280
mbranch-cost . 182, 198, 270
mbranch-cost=num . 308
mbranch-cost=number . 249
mbranch-expensive . 280
mbranch-hints . 315
mbranch-likely . 270
mbranch-predict . 272
mbss-plt . 284
mbuild-constants . 215
mbwx . 215
mbypass-cache . 276
mc= . 256
mc68000 . 251
mc68020 . 251
mcache-block-size . 275
mcache-size . 316
mcache-volatile . 276
mcall-eabi . 290
mcall-freebsd . 291
mcall-linux . 291
mcall-netbsd . 291
mcall-prologues . 198
mcall-sysv . 290
mcall-sysv-eabi . 290
mcall-sysv-noeabi . 290
mcallee-super-interworking 194
mcaller-super-interworking 195
mcallgraph-data . 255
mcase-vector-pcrel . 187
mcbcond . 313
mcc-init . 208
mcfv4e . 252
mcheck-zero-division . 266
mcix . 215
mcld . 237
mclip . 256
mcmodel . 314
mcmodel=kernel . 242
mcmodel=large 181, 242, 283, 317
mcmodel=medium . 242, 283
mcmodel=small 181, 242, 283, 317
mcmodel=tiny . 180
mcmov . 274
mcmove . 182
mcmpb . 281
mcode-readable . 265
mcompact-casesi . 187
mcompat-align-parm . 296
mcond-exec . 220
mcond-move . 220
mconfig= . 256
mconsole . 242

mconst-align . 208
mconst16 . 321
mconstant-gp . 244
mcop . 256
mcop32 . 256
mcop64 . 256
mcorea . 206
mcoreb . 206
mcpu . . . 182, 184, 192, 207, 216, 221, 230, 250, 280,

282, 311, 317
mcpu= . 203, 247, 257
mcpu32 . 251
mcr16c . 209
mcr16cplus . 209
mcrc32 . 238
mcrypto . 285
mcsync-anomaly . 204
mctor-dtor . 275
mcustom-fpu-cfg . 278
mcustom-insn . 276
mcx16 . 237
MD . 159
mdalign . 303
mdata-align . 208
mdata-model . 209
mdc . 256
mdebug . 249, 300
mdebug-main=prefix . 320
mdec-asm . 280
mdirect-move . 285
mdisable-callt . 319
mdisable-fpregs . 223
mdisable-indexing . 223
mdiv . 252, 254, 256
mdiv=strategy . 306
mdivide-breaks . 266
mdivide-enabled . 247
mdivide-traps . 266
mdivsi3_libfunc=name . 307
mdll . 242
mdlmzb . 288
mdmx . 263
mdouble . 218
mdouble-float . 262, 287
mdpfp . 185
mdpfp-compact . 185
mdpfp-fast . 185
mdpfp_compact . 189
mdpfp_fast . 189
mdsp . 263
mdsp-packa . 185
mdsp_packa . 189
mdspr2 . 263
mdual-nops . 316
mdump-tune-features . 237
mdvbf . 185
mdwarf2-asm . 245
mdword . 218

Option Index 815

mdynamic-no-pic . 289
mea . 185
mEA . 189
mea32 . 315
mea64 . 315
meabi . 292
mearly-cbranchsi . 187
mearly-stop-bits . 245
meb . 256, 273, 275, 302
mel . 256, 273, 275, 302
melf . 208, 272
memb . 292
membedded-data . 265
memregs= . 247
mep . 318
mepilogue-cfi . 186
mepsilon . 271
merror-reloc . 315
mesa . 300
metrax100 . 207
metrax4 . 207
meva . 264
mex9 . 275
mexpand-adddi . 187
mexplicit-relocs . 215, 266
mexr . 222
mextern-sdata . 265
MF . 158
mfast-fp . 206
mfast-indirect-calls . 223
mfast-sw-div . 276
mfaster-structs . 311
mfdpic . 218
mfentry . 241
mfix . 215
mfix-24k . 267
mfix-and-continue . 211
mfix-at697f . 313
mfix-cortex-m3-ldrd . 195
mfix-r10000 . 268
mfix-r4000 . 267
mfix-r4400 . 268
mfix-rm7000 . 268
mfix-sb1 . 268
mfix-ut699 . 313
mfix-vr4120 . 268
mfix-vr4130 . 268
mfixed-cc . 218
mfixed-range 223, 245, 307, 315
mflat . 310
mflip-mips16 . 260
mfloat-abi . 190
mfloat-gprs . 285
mfloat-ieee . 215
mfloat-vax . 215
mfloat32 . 279
mfloat64 . 279
mflush-func . 269

mflush-func=name . 249
mflush-trap=number . 249
mfmaf . 313
mfmovd . 303
mforbid-fp-as-gp . 275
mforce-fp-as-gp . 275
mforce-no-pic . 322
mfp-exceptions . 270
mfp-mode . 183
mfp-reg . 213
mfp-rounding-mode . 214
mfp-trap-mode . 214
mfp16-format . 193
mfp32 . 262
mfp64 . 262
mfpmath . 133, 230
mfpr-32 . 218
mfpr-64 . 218
mfprnd . 281
mfpu . 192, 279, 287, 310
mfriz . 295
mfsca . 309
mfsrra . 309
mfull-regs . 274
mfull-toc . 286
mfused-madd 245, 267, 288, 301, 309, 321
mg . 320
MG . 158
mgas . 223
mgcc-abi . 319
mgen-cell-microcode . 284
mgeneral-regs-only . 180
mgettrcost=number . 308
mghs . 319
mglibc . 221
mgnu . 320
mgnu-as . 244
mgnu-ld . 224, 244
mgotplt . 208
mgp-direct . 275
mgp32 . 262
mgp64 . 262
mgpopt . 265, 275
mgpr-32 . 217
mgpr-64 . 218
mgprel-ro . 219
mh . 222
mhal . 279
mhalf-reg-file . 182
mhard-dfp . 281, 299
mhard-float 218, 252, 257, 262, 287, 299, 310,

319
mhard-quad-float . 310
mhardlit . 254
mhint-max-distance . 316
mhint-max-nops . 316
mhitachi . 303
mhotpatch . 301

816 Using the GNU Compiler Collection (GCC)

mhp-ld . 224
mhw-div . 276
mhw-mul . 276
mhw-mulx . 276
micplb . 206
mid-shared-library . 205
mieee . 213, 304
mieee-conformant . 215
mieee-fp . 231
mieee-with-inexact . 214
milp32 . 245
mimadd . 267
mimpure-text . 309
mincoming-stack-boundary 234
mindexed-addressing . 308
mindexed-loads . 188
minline-all-stringops . 240
minline-float-divide-max-throughput 244
minline-float-divide-min-latency 244
minline-ic_invalidate . 304
minline-int-divide-max-throughput 244
minline-int-divide-min-latency 244
minline-plt . 206, 219
minline-sqrt-max-throughput 245
minline-sqrt-min-latency 245
minline-stringops-dynamically 240
minsert-sched-nops . 290
mint-register . 298
mint16 . 279
mint32 . 209, 222, 279
mint8 . 198
minterlink-compressed . 260
minterlink-mips16 . 260
minvalid-symbols . 308
mio-volatile . 256
mips1 . 259
mips16 . 260
mips2 . 259
mips3 . 259
mips32 . 259
mips32r2 . 260
mips3d . 264
mips4 . 259
mips64 . 260
mips64r2 . 260
misel . 284
misize . 186, 304
misr-vector-size . 275
missue-rate=number . 249
mivc2 . 256
mjump-in-delay . 222
mkernel . 210
mknuthdiv . 271
ml . 256, 303
mlarge . 274
mlarge-data . 216
mlarge-data-threshold . 232
mlarge-mem . 315

mlarge-text . 216
mleadz . 256
mleaf-id-shared-library 205
mlibfuncs . 271
mlibrary-pic . 219
mlinked-fp . 219
mlinker-opt . 223
mlinux . 208
mlittle . 289
mlittle-endian 180, 189, 191, 206, 243, 255,

258, 274, 289, 317
mlittle-endian-data . 297
mliw . 273
mllsc . 263
mlocal-sdata . 264
mlock . 185
mlong-calls 183, 186, 193, 205, 219, 267, 317
mlong-double-128 . 232, 299
mlong-double-64 . 232, 299
mlong-double-80 . 232
mlong-jumps . 319
mlong-load-store . 223
mlong32 . 264
mlong64 . 264
mlongcall . 293
mlongcalls . 322
mloop . 319
mlow-64k . 204
mlp64 . 245
mlra . 188
mlra-priority-compact . 188
mlra-priority-noncompact 188
mlra-priority-none . 188
mm . 256
MM . 158
mmac . 209, 302
mmac-24 . 186
mmac-d16 . 186
mmac_24 . 190
mmac_d16 . 190
mmad . 267
mmalloc64 . 320
mmax . 215
mmax-constant-size . 297
mmax-stack-frame . 207
mmcount-ra-address . 271
mmcu . 196, 264
mmcu= . 273
MMD . 159
mmedia . 218
mmedium-calls . 186
mmemcpy . 257, 267
mmemcpy-strategy=strategy 240
mmemory-latency . 217
mmemory-model . 314
mmemset-strategy=strategy 240
mmfcrf . 281
mmfpgpr . 281

Option Index 817

mmicromips . 264
mminimal-toc . 286
mminmax . 256
mmixed-code . 188
mmmx . 236
mmodel=large . 248
mmodel=medium . 248
mmodel=small . 248
mmovbe . 238
mmt . 264
mmul . 281
mmul-bug-workaround . 207
mmul32x16 . 185
mmul64 . 185
mmuladd . 218
mmulhw . 288
mmult . 256
mmult-bug . 272
mmultcost . 189
mmulti-cond-exec . 220
mmulticore . 206
mmultiple . 287
mmvcle . 300
mmvme . 292
mn . 222
mnan=2008 . 262
mnan=legacy . 262
mneon-for-64bits . 196
mnested-cond-exec . 221
mnhwloop . 302
mno-16-bit . 275
mno-3dnow . 236
mno-4byte-functions . 255
mno-8byte-align . 320
mno-abicalls . 261
mno-abshi . 280
mno-ac0 . 279
mno-address-space-conversion 316
mno-align-double . 231
mno-align-int . 253
mno-align-loops . 249
mno-align-stringops . 240
mno-altivec . 283
mno-am33 . 272
mno-app-regs . 310, 320
mno-as100-syntax . 297
mno-atomic-updates . 316
mno-avoid-indexed-addresses 288
mno-backchain . 299
mno-base-addresses . 272
mno-bit-align . 288
mno-bitfield . 252
mno-branch-likely . 270
mno-branch-predict . 272
mno-brcc . 187
mno-bwx . 215
mno-bypass-cache . 276
mno-cache-volatile . 276

mno-callgraph-data . 255
mno-cbcond . 313
mno-check-zero-division 266
mno-cix . 215
mno-clearbss . 257
mno-cmov . 274
mno-cmpb . 281
mno-cond-exec . 187, 220
mno-cond-move . 220
mno-const-align . 208
mno-const16 . 321
mno-crt0 . 273
mno-crypto . 285
mno-csync-anomaly . 204
mno-custom-insn . 276
mno-data-align . 208
mno-debug . 300
mno-default . 237
mno-direct-move . 285
mno-disable-callt . 319
mno-div . 252, 254
mno-dlmzb . 288
mno-double . 218
mno-dpfp-lrsr . 185
mno-dsp . 263
mno-dspr2 . 263
mno-dwarf2-asm . 245
mno-dword . 218
mno-eabi . 292
mno-early-stop-bits . 245
mno-eflags . 220
mno-embedded-data . 265
mno-ep . 318
mno-epilogue-cfi . 186
mno-epsilon . 271
mno-eva . 264
mno-explicit-relocs 215, 266
mno-exr . 222
mno-extern-sdata . 265
mno-fancy-math-387 . 231
mno-fast-sw-div . 276
mno-faster-structs . 311
mno-fix . 215
mno-fix-24k . 267
mno-fix-r10000 . 268
mno-fix-r4000 . 267
mno-fix-r4400 . 268
mno-flat . 310
mno-float . 262
mno-float32 . 279
mno-float64 . 279
mno-flush-func . 249
mno-flush-trap . 249
mno-fmaf . 313
mno-fp-in-toc . 286
mno-fp-regs . 213
mno-fp-ret-in-387 . 231
mno-fprnd . 281

818 Using the GNU Compiler Collection (GCC)

mno-fpu . 310
mno-fsca . 309
mno-fsrra . 309
mno-fused-madd 245, 267, 288, 301, 309, 321
mno-gnu-as . 244
mno-gnu-ld . 244
mno-gotplt . 208
mno-gp-direct . 275
mno-gpopt . 265, 275
mno-hard-dfp . 281, 299
mno-hardlit . 254
mno-hw-div . 276
mno-hw-mul . 276
mno-hw-mulx . 276
mno-id-shared-library . 205
mno-ieee-fp . 231
mno-imadd . 267
mno-inline-float-divide 244
mno-inline-int-divide . 244
mno-inline-sqrt . 245
mno-int16 . 279
mno-int32 . 279
mno-interlink-compressed 260
mno-interlink-mips16 . 260
mno-interrupts . 198
mno-isel . 284
mno-knuthdiv . 271
mno-leaf-id-shared-library 205
mno-libfuncs . 271
mno-llsc . 263
mno-local-sdata . 264
mno-long-calls 193, 205, 224, 267, 317
mno-long-jumps . 319
mno-longcall . 293
mno-longcalls . 322
mno-low-64k . 205
mno-lsim . 217, 255
mno-mad . 267
mno-max . 215
mno-mcount-ra-address . 271
mno-mcu . 264
mno-mdmx . 263
mno-media . 218
mno-memcpy . 267
mno-mfcrf . 281
mno-mfpgpr . 281
mno-millicode . 188
mno-mips16 . 260
mno-mips3d . 264
mno-mmicromips . 264
mno-mmx . 236
mno-mpy . 185
mno-mt . 264
mno-mul-bug-workaround . 207
mno-muladd . 218
mno-mulhw . 288
mno-mult-bug . 272
mno-multi-cond-exec . 221

mno-multiple . 287
mno-mvcle . 300
mno-nested-cond-exec . 221
mno-omit-leaf-frame-pointer 181
mno-optimize-membar . 221
mno-opts . 256
mno-pack . 220
mno-packed-stack . 299
mno-paired . 284
mno-paired-single . 263
mno-perf-ext . 274
mno-pic . 244
mno-pid . 298
mno-plt . 261
mno-popc . 313
mno-popcntb . 281
mno-popcntd . 281
mno-postinc . 184
mno-postmodify . 184
mno-power8-fusion . 285
mno-power8-vector . 285
mno-powerpc-gfxopt . 281
mno-powerpc-gpopt . 281
mno-powerpc64 . 281
mno-prolog-function . 318
mno-prologue-epilogue . 208
mno-prototype . 292
mno-push-args . 239
mno-quad-memory . 285
mno-quad-memory-atomic . 285
mno-red-zone . 242
mno-register-names . 244
mno-regnames . 293
mno-relax . 319
mno-relax-immediate . 254
mno-relocatable . 289
mno-relocatable-lib . 289
mno-round-nearest . 183
mno-rtd . 253
mno-scc . 220
mno-sched-ar-data-spec . 245
mno-sched-ar-in-data-spec 246
mno-sched-br-data-spec . 245
mno-sched-br-in-data-spec 246
mno-sched-control-spec . 246
mno-sched-count-spec-in-critical-path . . . 246
mno-sched-in-control-spec 246
mno-sched-prefer-non-control-spec-insns

. 246
mno-sched-prefer-non-data-spec-insns 246
mno-sched-prolog . 190
mno-sdata . 187, 244, 293
mno-sep-data . 205
mno-serialize-volatile . 322
mno-short . 252
mno-side-effects . 208
mno-sim . 297
mno-single-exit . 272

Option Index 819

mno-slow-bytes . 255
mno-small-exec . 300
mno-smartmips . 263
mno-soft-cmpsf . 182
mno-soft-float . 213
mno-space-regs . 223
mno-spe . 284
mno-specld-anomaly . 204
mno-split-addresses . 266
mno-sse . 236
mno-stack-align . 208
mno-stack-bias . 314
mno-strict-align . 253, 289
mno-string . 288
mno-sum-in-toc . 286
mno-sym32 . 264
mno-target-align . 322
mno-text-section-literals 322
mno-tls-markers . 294
mno-toc . 289
mno-toplevel-symbols . 272
mno-tpf-trace . 301
mno-unaligned-access . 195
mno-unaligned-doubles . 311
mno-uninit-const-in-rodata 265
mno-update . 288
mno-v3push . 274
mno-v8plus . 313
mno-vect-double . 184
mno-virt . 264
mno-vis . 313
mno-vis2 . 313
mno-vis3 . 313
mno-vliw-branch . 220
mno-volatile-asm-stop . 244
mno-volatile-cache . 187
mno-vrsave . 284
mno-vsx . 284
mno-warn-multiple-fast-interrupts 298
mno-wide-bitfields . 255
mno-xgot . 254, 261
mno-xl-compat . 286
mno-zdcbranch . 308
mno-zero-extend . 271
mnobitfield . 252
mnoieee . 304
mnoliw . 273
mnomacsave . 304
mnop-fun-dllimport . 243
mnops . 182
mnorm . 185
mnosetlb . 273
mnosplit-lohi . 184
momit-leaf-frame-pointer 181, 204, 240
mone-byte-bool . 210
moptimize-membar . 221
MP . 158
mpa-risc-1-0 . 222

mpa-risc-1-1 . 222
mpa-risc-2-0 . 222
mpack . 219
mpacked-stack . 299
mpadstruct . 304
mpaired . 284
mpaired-single . 263
mpc32 . 233
mpc64 . 233
mpc80 . 233
mpcrel . 253
mpdebug . 207
mpe . 287
mpe-aligned-commons . 243
mperf-ext . 274
mpic-data-is-text-relative 194
mpic-register . 194
mpid . 298
mplt . 261
mpointers-to-nested-functions 295
mpoke-function-name . 194
mpopc . 313
mpopcntb . 281
mpopcntd . 281
mportable-runtime . 223
mpower8-fusion . 285
mpower8-vector . 285
mpowerpc-gfxopt . 281
mpowerpc-gpopt . 281
mpowerpc64 . 281
mprefer-avx128 . 237
mprefer-short-insn-regs 182
mprefergot . 305
mpreferred-stack-boundary 234
mpretend-cmove . 309
mprioritize-restricted-insns 290
mprolog-function . 318
mprologue-epilogue . 208
mprototype . 292
mpt-fixed . 308
mpush-args . 239
MQ . 159
mq-class . 188
mquad-memory . 285
mquad-memory-atomic . 285
mr10k-cache-barrier . 268
mRcq . 188
mRcw . 188
mrecip . 238, 294
mrecip-precision . 295
mrecip=opt . 238, 294
mreduced-regs . 274
mregister-names . 244
mregnames . 293
mregparm . 233
mrelax 199, 222, 273, 274, 275, 297, 303, 319
mrelax-immediate . 254
mrelax-pic-calls . 271

820 Using the GNU Compiler Collection (GCC)

mrelocatable . 289
mrelocatable-lib . 289
mrepeat . 256
mrestrict-it . 196
mreturn-pointer-on-d0 . 273
mrh850-abi . 319
mrtd . 232, 253, 375
mrtp . 321
mrtsc . 186
ms . 222, 256
ms2600 . 222
msafe-dma . 315
msafe-hints . 316
msahf . 238
msatur . 256
msave-acc-in-interrupts 298
msave-toc-indirect . 296
mscc . 220
msched-ar-data-spec . 245
msched-ar-in-data-spec . 246
msched-br-data-spec . 245
msched-br-in-data-spec . 246
msched-control-spec . 246
msched-costly-dep . 290
msched-count-spec-in-critical-path 246
msched-fp-mem-deps-zero-cost 247
msched-in-control-spec . 246
msched-max-memory-insns 247
msched-max-memory-insns-hard-limit 247
msched-prefer-non-control-spec-insns 246
msched-prefer-non-data-spec-insns 246
msched-spec-ldc . 246
msched-stop-bits-after-every-cycle 246
mschedule . 223
mscore5 . 302
mscore5u . 302
mscore7 . 302
mscore7d . 302
msda . 318
msdata . 244, 293
msdata=all . 207
msdata=data . 293
msdata=default . 207, 293
msdata=eabi . 292
msdata=none . 207, 248, 293
msdata=sdata . 248
msdata=sysv . 293
msdata=use . 248
msdram . 206, 256
msecure-plt . 284
msel-sched-dont-check-control-spec 247
msep-data . 205
mserialize-volatile . 322
msetlb . 273
mshared-library-id . 205
mshort . 252
msign-extend-enabled . 247

msim . . . 204, 207, 209, 247, 257, 274, 281, 292, 297,
321

msimd . 185
msimnovec . 257
msimple-fpu . 287
msingle-exit . 272
msingle-float . 262, 287
msingle-pic-base . 194, 289
msio . 224
msize-level . 188
mslow-bytes . 255
mslow-flash-data . 196
msmall . 274
msmall-data . 216
msmall-data-limit . 297
msmall-divides . 257
msmall-exec . 300
msmall-mem . 315
msmall-model . 217
msmall-text . 216
msmall16 . 183
msmallc . 279
msmartmips . 263
msoft-float 185, 213, 218, 223, 231, 252, 257,

262, 279, 287, 299, 310, 319
msoft-quad-float . 310
msp8 . 199
mspace . 305, 318
mspe . 284
mspecld-anomaly . 204
mspfp . 185
mspfp-compact . 185
mspfp-fast . 185
mspfp_compact . 190
mspfp_fast . 190
msplit-addresses . 266
msplit-vecmove-early . 184
msse . 236
msse2avx . 241
msseregparm . 233
mstack-align . 208
mstack-bias . 314
mstack-check-l1 . 205
mstack-guard . 301
mstack-increment . 255
mstack-offset . 183
mstack-protector-guard=guard 241
mstack-size . 301
mstackrealign . 234
mstdmain . 315
mstrict-align . 181, 253, 289
mstrict-X . 199
mstring . 288
mstringop-strategy=alg . 240
mstructure-size-boundary 193
msvr4-struct-return . 291
mswap . 185
mswape . 186

Option Index 821

msym32 . 264
msynci . 270
msys-crt0 . 279
msys-lib . 279
MT . 159
mtarget-align . 322
mtas . 305
mtda . 318
mtelephony . 186
mtext-section-literals . 322
mtf . 257
mthread . 243
mthreads . 239
mthumb . 194
mthumb-interwork . 190
mtiny-stack . 199
mtiny= . 257
mtls . 219
mTLS . 219
mtls-dialect . 195, 239
mtls-dialect=desc . 181
mtls-dialect=traditional 181
mtls-direct-seg-refs . 241
mtls-markers . 294
mtls-size . 245
mtoc . 289
mtomcat-stats . 221
mtoplevel-symbols . 272
mtp . 195
mtpcs-frame . 194
mtpcs-leaf-frame . 194
mtpf-trace . 301
mtrap-precision . 214
mtune . . 181, 188, 190, 191, 207, 217, 229, 245, 250,

259, 272, 283, 301, 312
mtune-ctrl=feature-list 237
mucb-mcount . 187
muclibc . 221
muls . 302
multcost . 190
multcost=number . 306
multi_module . 213
multilib-library-pic . 219
multiply-enabled . 247
multiply_defined . 213
multiply_defined_unused 213
munalign-prob-threshold 189
munaligned-access . 195
munaligned-doubles . 311
municode . 243
muninit-const-in-rodata 265
munix . 320
munix-asm . 280
munsafe-dma . 315
mupdate . 288
muser-enabled . 247
musermode . 306
mv3push . 274

mv850 . 318
mv850e . 318
mv850e1 . 318
mv850e2 . 318
mv850e2v3 . 318
mv850e2v4 . 318
mv850e3v5 . 318
mv850es . 318
mv8plus . 313
mveclibabi . 239, 295
mvect8-ret-in-mem . 233
mvirt . 264
mvis . 313
mvis2 . 313
mvis3 . 313
mvliw-branch . 220
mvms-return-codes . 320
mvolatile-asm-stop . 244
mvolatile-cache . 187
mvr4130-align . 270
mvrsave . 284
mvsx . 284
mvxworks . 292
mvzeroupper . 237
mwarn-cell-microcode . 284
mwarn-dynamicstack . 301
mwarn-framesize . 301
mwarn-multiple-fast-interrupts 298
mwarn-reloc . 315
mwide-bitfields . 255
mwin32 . 243
mwindows . 243
mword-relocations . 195
mwords-little-endian . 191
mx32 . 241
mxgot . 254, 261
mxilinx-fpu . 287
mxl-barrel-shift . 257
mxl-compat . 286
mxl-float-convert . 258
mxl-float-sqrt . 258
mxl-gp-opt . 257
mxl-multiply-high . 257
mxl-pattern-compare . 257
mxl-reorder . 258
mxl-soft-div . 257
mxl-soft-mul . 257
mxl-stack-check . 257
mxy . 186
myellowknife . 292
mzarch . 300
mzda . 318
mzdcbranch . 308
mzero-extend . 271

N
no-canonical-prefixes . 30

822 Using the GNU Compiler Collection (GCC)

no-integrated-cpp . 155
no-sysroot-suffix . 172
no_dead_strip_inits_and_terms 213
noall_load . 213
nocpp . 267
nodefaultlibs . 167
nofixprebinding . 213
nofpu . 296
nolibdld . 225
nomultidefs . 213
non-static . 321
noprebind . 213
noseglinkedit . 213
nostartfiles . 167
nostdinc . 161
nostdinc++ . 44, 161
nostdlib . 167

O
o . 28, 156
O . 102
O0 . 103
O1 . 102
O2 . 103
O3 . 103
Ofast . 103
Og . 104
Os . 103

P
p . 84
P . 165
pagezero_size . 213
param . 139
pass-exit-codes . 27
pedantic 5, 54, 157, 349, 469, 759
pedantic-errors 5, 55, 157, 759
pg . 85
pie . 168
pipe . 28
prebind . 213
prebind_all_twolevel_modules 213
print-file-name . 100
print-libgcc-file-name . 100
print-multi-directory . 100
print-multi-lib . 100
print-multi-os-directory 100
print-multiarch . 100
print-objc-runtime-info . 51
print-prog-name . 100
print-search-dirs . 100
print-sysroot . 101
print-sysroot-headers-suffix 101
private_bundle . 213
pthread . 294, 309
pthreads . 309

Q
Q . 85
Qn . 317
Qy . 316

R
rdynamic . 168
read_only_relocs . 213
remap . 165

S
s . 168
S . 27, 166
save-temps . 98
save-temps=obj . 99
sectalign . 213
sectcreate . 213
sectobjectsymbols . 213
sectorder . 213
seg_addr_table . 213
seg_addr_table_filename 213
seg1addr . 213
segaddr . 213
seglinkedit . 213
segprot . 213
segs_read_only_addr . 213
segs_read_write_addr . 213
shared . 168
shared-libgcc . 168
short-calls . 183
sim . 208
sim2 . 208
single_module . 213
specs . 171
static . 168, 213, 225
static-libasan . 169
static-libgcc . 168
static-liblsan . 169
static-libstdc++ . 169
static-libtsan . 169
static-libubsan . 169
std . 5, 32, 482, 757
std= . 160
sub_library . 213
sub_umbrella . 213
symbolic . 170
sysroot . 172

T
T . 170
target-help . 28, 166
threads . 225
time . 99
tno-android-cc . 221

Option Index 823

tno-android-ld . 222
traditional . 36, 747
traditional-cpp . 36, 165
trigraphs . 36, 165
twolevel_namespace . 213

U
u . 170
U . 156
umbrella . 213
undef . 156
undefined . 213
unexported_symbols_list 213

V
v . 28, 166
version . 30, 166

W
w . 53, 157
W . 56, 74, 75, 748
Wa . 166
Wabi . 44
Waddr-space-convert . 199
Waddress . 72
Waggregate-return . 72
Waggressive-loop-optimizations 73
Wall . 55, 156, 750
Warray-bounds . 66
Wassign-intercept . 51
Wattributes . 73
Wbad-function-cast . 70
Wbuiltin-macro-redefined 73
Wcast-align . 70
Wcast-qual . 70
Wchar-subscripts . 56
Wclobbered . 71
Wcomment . 56, 156
Wcomments . 156
Wconditionally-supported 71
Wconversion . 71
Wconversion-null . 71
Wctor-dtor-privacy . 45
Wdate-time . 71
Wdeclaration-after-statement 69
Wdelete-incomplete . 71
Wdelete-non-virtual-dtor 45
Wdeprecated . 75
Wdeprecated-declarations 75
Wdisabled-optimization . 77
Wdiv-by-zero . 67
Wdouble-promotion . 57
weak_reference_mismatches 213
Weffc++ . 47
Wempty-body . 71

Wendif-labels . 69, 157
Wenum-compare . 71
Werror . 53, 157
Werror= . 53
Wextra . 56, 74, 75
Wfatal-errors . 54
Wfloat-conversion . 72
Wfloat-equal . 67
Wformat . 57, 66, 379
Wformat-contains-nul . 57
Wformat-extra-args . 58
Wformat-nonliteral . 58, 380
Wformat-security . 58
Wformat-y2k . 58
Wformat-zero-length . 58
Wformat= . 57
Wformat=1 . 57
Wformat=2 . 58
Wframe-larger-than . 69
Wfree-nonheap-object . 69
whatsloaded . 213
whyload . 213
Wignored-qualifiers . 59
Wimplicit . 59
Wimplicit-function-declaration 59
Wimplicit-int . 59
Winherited-variadic-ctor 76
Winit-self . 58
Winline . 76, 425
Wint-to-pointer-cast . 76
Winvalid-offsetof . 76
Winvalid-pch . 76
Wjump-misses-init . 72
Wl . 170
Wlarger-than-len . 69
Wlarger-than=len . 69
Wliteral-suffix . 46
Wlogical-op . 72
Wlong-long . 77
Wmain . 59
Wmaybe-uninitialized . 63
Wmissing-braces . 59
Wmissing-declarations . 73
Wmissing-field-initializers 74
Wmissing-format-attribute 66
Wmissing-include-dirs . 59
Wmissing-parameter-type . 73
Wmissing-prototypes . 73
Wmultichar . 74
Wnarrowing . 46
Wnested-externs . 76
Wno-abi . 44
Wno-address . 72
Wno-aggregate-return . 72
Wno-aggressive-loop-optimizations 73
Wno-all . 55
Wno-array-bounds . 66
Wno-assign-intercept . 51

824 Using the GNU Compiler Collection (GCC)

Wno-attributes . 73
Wno-bad-function-cast . 70
Wno-builtin-macro-redefined 73
Wno-cast-align . 70
Wno-cast-qual . 70
Wno-char-subscripts . 56
Wno-clobbered . 71
Wno-comment . 56
Wno-conditionally-supported 71
Wno-conversion . 71
Wno-conversion-null . 71
Wno-coverage-mismatch . 56
Wno-ctor-dtor-privacy . 45
Wno-date-time . 71
Wno-declaration-after-statement 69
Wno-delete-incomplete . 71
Wno-delete-non-virtual-dtor 45
Wno-deprecated . 75
Wno-deprecated-declarations 75
Wno-disabled-optimization 77
Wno-div-by-zero . 67
Wno-double-promotion . 57
Wno-effc++ . 47
Wno-empty-body . 71
Wno-endif-labels . 69
Wno-enum-compare . 71
Wno-error . 53
Wno-error= . 53
Wno-extra . 56, 74, 75
Wno-fatal-errors . 54
Wno-float-conversion . 72
Wno-float-equal . 67
Wno-format . 57, 66
Wno-format-contains-nul . 57
Wno-format-extra-args . 58
Wno-format-nonliteral . 58
Wno-format-security . 58
Wno-format-y2k . 58
Wno-format-zero-length . 58
Wno-free-nonheap-object . 69
Wno-ignored-qualifiers . 59
Wno-implicit . 59
Wno-implicit-function-declaration 59
Wno-implicit-int . 59
Wno-inherited-variadic-ctor 76
Wno-init-self . 58
Wno-inline . 76
Wno-int-to-pointer-cast . 76
Wno-invalid-offsetof . 76
Wno-invalid-pch . 76
Wno-jump-misses-init . 72
Wno-literal-suffix . 46
Wno-logical-op . 72
Wno-long-long . 77
Wno-main . 59
Wno-maybe-uninitialized . 63
Wno-missing-braces . 59
Wno-missing-declarations 73

Wno-missing-field-initializers 74
Wno-missing-format-attribute 66
Wno-missing-include-dirs 59
Wno-missing-parameter-type 73
Wno-missing-prototypes . 73
Wno-multichar . 74
Wno-narrowing . 46
Wno-nested-externs . 76
Wno-noexcept . 46
Wno-non-template-friend . 47
Wno-non-virtual-dtor . 46
Wno-nonnull . 58
Wno-old-style-cast . 47
Wno-old-style-declaration 73
Wno-old-style-definition 73
Wno-overflow . 75
Wno-overlength-strings . 78
Wno-overloaded-virtual . 48
Wno-override-init . 75
Wno-packed . 75
Wno-packed-bitfield-compat 75
Wno-padded . 76
Wno-parentheses . 59
Wno-pedantic-ms-format . 69
Wno-pmf-conversions . 48, 707
Wno-pointer-arith . 70
Wno-pointer-sign . 77
Wno-pointer-to-int-cast . 76
Wno-pragmas . 64
Wno-protocol . 51
Wno-redundant-decls . 76
Wno-reorder . 46
Wno-return-local-addr . 61
Wno-return-type . 61
Wno-selector . 51
Wno-sequence-point . 60
Wno-shadow . 69
Wno-sign-compare . 72
Wno-sign-conversion . 72
Wno-sign-promo . 48
Wno-sizeof-pointer-memaccess 72
Wno-stack-protector . 78
Wno-strict-aliasing . 64
Wno-strict-null-sentinel 47
Wno-strict-overflow . 65
Wno-strict-prototypes . 73
Wno-strict-selector-match 51
Wno-suggest-attribute= . 66
Wno-suggest-attribute=const 66
Wno-suggest-attribute=format 66
Wno-suggest-attribute=noreturn 66
Wno-suggest-attribute=pure 66
Wno-switch . 61
Wno-switch-default . 61
Wno-switch-enum . 61
Wno-sync-nand . 62
Wno-system-headers . 67
Wno-traditional . 67

Option Index 825

Wno-traditional-conversion 68
Wno-trampolines . 67
Wno-trigraphs . 62
Wno-type-limits . 70
Wno-undeclared-selector . 51
Wno-undef . 69
Wno-uninitialized . 63
Wno-unknown-pragmas . 64
Wno-unsafe-loop-optimizations 69
Wno-unused . 63
Wno-unused-but-set-parameter 62
Wno-unused-but-set-variable 62
Wno-unused-function . 62
Wno-unused-label . 62
Wno-unused-parameter . 62
Wno-unused-result . 62
Wno-unused-value . 63
Wno-unused-variable . 62
Wno-useless-cast . 71
Wno-varargs . 77
Wno-variadic-macros . 77
Wno-vector-operation-performance 77
Wno-virtual-move-assign . 77
Wno-vla . 77
Wno-volatile-register-var 77
Wno-write-strings . 70
Wno-zero-as-null-pointer-constant 71
Wnoexcept . 46
Wnon-template-friend . 47
Wnon-virtual-dtor . 46
Wnonnull . 58
Wnormalized= . 74
Wold-style-cast . 47
Wold-style-declaration . 73
Wold-style-definition . 73
Wopenm-simd . 75
Woverflow . 75
Woverlength-strings . 78
Woverloaded-virtual . 48
Woverride-init . 75
Wp . 155
Wpacked . 75
Wpacked-bitfield-compat . 75
Wpadded . 76
Wparentheses . 59
Wpedantic . 54
Wpedantic-ms-format . 69
Wpmf-conversions . 48
Wpointer-arith . 70, 368
Wpointer-sign . 77
Wpointer-to-int-cast . 76
Wpragmas . 64
Wprotocol . 51
wrapper . 30
Wredundant-decls . 76
Wreorder . 46
Wreturn-local-addr . 61
Wreturn-type . 61

Wselector . 51
Wsequence-point . 60
Wshadow . 69
Wsign-compare . 72
Wsign-conversion . 72
Wsign-promo . 48
Wsizeof-pointer-memaccess 72
Wstack-protector . 78
Wstack-usage . 69
Wstrict-aliasing . 64
Wstrict-aliasing=n . 64
Wstrict-null-sentinel . 47
Wstrict-overflow . 65
Wstrict-prototypes . 73
Wstrict-selector-match . 51
Wsuggest-attribute= . 66
Wsuggest-attribute=const 66
Wsuggest-attribute=format 66
Wsuggest-attribute=noreturn 66
Wsuggest-attribute=pure . 66
Wswitch . 61
Wswitch-default . 61
Wswitch-enum . 61
Wsync-nand . 62
Wsystem-headers . 67, 157
Wtraditional . 67, 157
Wtraditional-conversion . 68
Wtrampolines . 67
Wtrigraphs . 62, 156
Wtype-limits . 70
Wundeclared-selector . 51
Wundef . 69, 157
Wuninitialized . 63
Wunknown-pragmas . 64
Wunsafe-loop-optimizations 69
Wunsuffixed-float-constants 78
Wunused . 63
Wunused-but-set-parameter 62
Wunused-but-set-variable 62
Wunused-function . 62
Wunused-label . 62
Wunused-local-typedefs . 62
Wunused-macros . 157
Wunused-parameter . 62
Wunused-result . 62
Wunused-value . 63
Wunused-variable . 62
Wuseless-cast . 71
Wvarargs . 77
Wvariadic-macros . 77
Wvector-operation-performance 77
Wvirtual-move-assign . 77
Wvla . 77
Wvolatile-register-var . 77
Wwrite-strings . 70
Wzero-as-null-pointer-constant 71

826 Using the GNU Compiler Collection (GCC)

X
x . 27, 160
Xassembler . 166
Xbind-lazy . 321
Xbind-now . 321
Xlinker . 170

Xpreprocessor . 155

Y
Ym . 317
YP . 317

Keyword Index 827

Keyword Index

!
‘!’ in constraint . 437

#
‘#’ in constraint . 438
#pragma . 690
#pragma implementation . 704
#pragma implementation, implied 704
#pragma interface . 703
#pragma, reason for not using 405

$
$. 409

%
‘%’ in constraint . 438
%include . 173
%include_noerr . 173
%rename . 173

&
‘&’ in constraint . 437

’
’ . 748

*
‘*’ in constraint . 438
*__builtin_assume_aligned 487

+
‘+’ in constraint . 437

-
‘-lgcc’, use with ‘-nodefaultlibs’ 167
‘-lgcc’, use with ‘-nostdlib’ 167
‘-march’ feature modifiers . 182
‘-mcpu’ feature modifiers . 182
‘-nodefaultlibs’ and unresolved references . . . 167
‘-nostdlib’ and unresolved references 167

.

.sdata/.sdata2 references (PowerPC) 293

/
// . 409

<
‘<’ in constraint . 435

=
‘=’ in constraint . 437

>
‘>’ in constraint . 435

?
‘?’ in constraint . 437
?: extensions . 358
?: side effect . 358

‘_’ in variables in macros . 356
__atomic_add_fetch . 478
__atomic_always_lock_free 479
__atomic_and_fetch . 478
__atomic_clear . 479
__atomic_compare_exchange 478
__atomic_compare_exchange_n 477
__atomic_exchange . 477
__atomic_exchange_n . 477
__atomic_fetch_add . 478
__atomic_fetch_and . 478
__atomic_fetch_nand . 478
__atomic_fetch_or . 478
__atomic_fetch_sub . 478
__atomic_fetch_xor . 478
__atomic_is_lock_free . 479
__atomic_load . 477
__atomic_load_n . 477
__atomic_nand_fetch . 478
__atomic_or_fetch . 478
__atomic_signal_fence . 479
__atomic_store . 477
__atomic_store_n . 477
__atomic_sub_fetch . 478
__atomic_test_and_set . 479
__atomic_thread_fence . 479
__atomic_xor_fetch . 478
__builtin___clear_cache 488
__builtin___fprintf_chk 480
__builtin___memcpy_chk . 480
__builtin___memmove_chk 480

828 Using the GNU Compiler Collection (GCC)

__builtin___mempcpy_chk 480
__builtin___memset_chk . 480
__builtin___printf_chk . 480
__builtin___snprintf_chk 480
__builtin___sprintf_chk 480
__builtin___stpcpy_chk . 480
__builtin___strcat_chk . 480
__builtin___strcpy_chk . 480
__builtin___strncat_chk 480
__builtin___strncpy_chk 480
__builtin___vfprintf_chk 480
__builtin___vprintf_chk 480
__builtin___vsnprintf_chk 480
__builtin___vsprintf_chk 480
__builtin_apply . 355
__builtin_apply_args . 354
__builtin_arc_aligned . 495
__builtin_arc_brk . 495
__builtin_arc_core_read 495
__builtin_arc_core_write 495
__builtin_arc_divaw . 495
__builtin_arc_flag . 495
__builtin_arc_lr . 495
__builtin_arc_mul64 . 496
__builtin_arc_mulu64 . 496
__builtin_arc_nop . 496
__builtin_arc_norm . 496
__builtin_arc_normw . 496
__builtin_arc_rtie . 496
__builtin_arc_sleep . 496
__builtin_arc_sr . 496
__builtin_arc_swap . 496
__builtin_arc_swi . 496
__builtin_arc_sync . 497
__builtin_arc_trap_s . 497
__builtin_arc_unimp_s . 497
__builtin_bswap16 . 491
__builtin_bswap32 . 491
__builtin_bswap64 . 491
__builtin_choose_expr . 484
__builtin_clrsb . 490
__builtin_clrsbl . 491
__builtin_clrsbll . 491
__builtin_clz . 490
__builtin_clzl . 490
__builtin_clzll . 491
__builtin_complex . 485
__builtin_constant_p . 485
__builtin_cpu_init . 601
__builtin_cpu_is . 602
__builtin_cpu_supports . 603
__builtin_ctz . 490
__builtin_ctzl . 491
__builtin_ctzll . 491
__builtin_expect . 486
__builtin_extract_return_addr 470
__builtin_ffs . 490
__builtin_ffsl . 490

__builtin_ffsll . 491
__builtin_FILE . 488
__builtin_fpclassify 482, 489
__builtin_frame_address 471
__builtin_frob_return_address 471
__builtin_FUNCTION . 487
__builtin_huge_val . 488
__builtin_huge_valf . 488
__builtin_huge_vall . 489
__builtin_huge_valq . 601
__builtin_inf . 489
__builtin_infd128 . 489
__builtin_infd32 . 489
__builtin_infd64 . 489
__builtin_inff . 489
__builtin_infl . 489
__builtin_infq . 601
__builtin_isfinite . 482
__builtin_isgreater . 482
__builtin_isgreaterequal 482
__builtin_isinf_sign 482, 489
__builtin_isless . 482
__builtin_islessequal . 482
__builtin_islessgreater 482
__builtin_isnormal . 482
__builtin_isunordered . 482
__builtin_LINE . 487
__builtin_nan . 489
__builtin_nand128 . 490
__builtin_nand32 . 489
__builtin_nand64 . 490
__builtin_nanf . 490
__builtin_nanl . 490
__builtin_nans . 490
__builtin_nansf . 490
__builtin_nansl . 490
__builtin_nds32_isb . 635
__builtin_nds32_isync . 635
__builtin_nds32_mfsr . 635
__builtin_nds32_mfusr . 635
__builtin_nds32_mtsr . 635
__builtin_nds32_mtusr . 635
__builtin_nds32_setgie_dis 635
__builtin_nds32_setgie_en 635
__builtin_non_tx_store . 684
__builtin_object_size . 480
__builtin_offsetof . 473
__builtin_parity . 490
__builtin_parityl . 491
__builtin_parityll . 491
__builtin_popcount . 490
__builtin_popcountl . 491
__builtin_popcountll . 491
__builtin_powi . 482, 491
__builtin_powif . 482, 491
__builtin_powil . 482, 491
__builtin_prefetch . 488
__builtin_return . 355

Keyword Index 829

__builtin_return_address 470
__builtin_rx_brk . 681
__builtin_rx_clrpsw . 681
__builtin_rx_int . 681
__builtin_rx_machi . 681
__builtin_rx_maclo . 681
__builtin_rx_mulhi . 681
__builtin_rx_mullo . 681
__builtin_rx_mvfachi . 681
__builtin_rx_mvfacmi . 681
__builtin_rx_mvfc . 682
__builtin_rx_mvtachi . 682
__builtin_rx_mvtaclo . 682
__builtin_rx_mvtc . 682
__builtin_rx_mvtipl . 682
__builtin_rx_racw . 682
__builtin_rx_revw . 682
__builtin_rx_rmpa . 682
__builtin_rx_round . 682
__builtin_rx_sat . 682
__builtin_rx_setpsw . 682
__builtin_rx_wait . 682
__builtin_set_thread_pointer 684
__builtin_tabort . 684
__builtin_tbegin . 683
__builtin_tbegin_nofloat 683
__builtin_tbegin_retry . 684
__builtin_tbegin_retry_nofloat 684
__builtin_tbeginc . 684
__builtin_tend . 684
__builtin_thread_pointer 685
__builtin_trap . 486
__builtin_tx_assist . 684
__builtin_tx_nesting_depth 684
__builtin_types_compatible_p 484
__builtin_unreachable . 486
__builtin_va_arg_pack . 355
__builtin_va_arg_pack_len 355
__complex__ keyword . 358
__declspec(dllexport) . 377
__declspec(dllimport) . 377
__ea SPU Named Address Spaces 364
__extension__ . 469
__far M32C Named Address Spaces 364
__far RL78 Named Address Spaces 364
__flash AVR Named Address Spaces 363
__flash1 AVR Named Address Spaces 363
__flash2 AVR Named Address Spaces 363
__flash3 AVR Named Address Spaces 363
__flash4 AVR Named Address Spaces 363
__flash5 AVR Named Address Spaces 363
__float128 data type . 359
__float80 data type . 359
__fp16 data type . 359
__func__ identifier . 469
__FUNCTION__ identifier . 469
__imag__ keyword . 359
__int128 data types . 358

__memx AVR Named Address Spaces 363
__PRETTY_FUNCTION__ identifier 469
__real__ keyword . 359
__STDC_HOSTED__ . 5
__sync_add_and_fetch . 475
__sync_and_and_fetch . 475
__sync_bool_compare_and_swap 475
__sync_fetch_and_add . 474
__sync_fetch_and_and . 474
__sync_fetch_and_nand . 474
__sync_fetch_and_or . 474
__sync_fetch_and_sub . 474
__sync_fetch_and_xor . 474
__sync_lock_release . 475
__sync_lock_test_and_set 475
__sync_nand_and_fetch . 475
__sync_or_and_fetch . 475
__sync_sub_and_fetch . 475
__sync_synchronize . 475
__sync_val_compare_and_swap 475
__sync_xor_and_fetch . 475
__thread . 697
_Accum data type . 361
_Complex keyword . 358
_Decimal128 data type . 360
_Decimal32 data type . 360
_Decimal64 data type . 360
_exit . 482
_Exit . 482
_Fract data type . 361
_HTM_FIRST_USER_ABORT_CODE 683
_Sat data type . 361
_xabort . 623
_xbegin . 623
_xend . 623
_xtest . 623

0
‘0’ in constraint . 436

A
AArch64 Options . 180
ABI . 731
abi_tag attribute . 707
abort . 482
abs . 482
accessing volatiles . 426, 701
acos . 482
acosf . 482
acosh . 482
acoshf . 482
acoshl . 482
acosl . 482
Ada . 3
additional floating types . 359
address constraints . 436

830 Using the GNU Compiler Collection (GCC)

address of a label . 351
address_operand . 436
alias attribute . 373
aligned attribute 373, 410, 418
alignment . 424
alloc_align attribute . 373
alloc_size attribute . 373
alloca . 482
alloca vs variable-length arrays 366
Allow nesting in an interrupt handler on the

Blackfin processor. 389
Altera Nios II options . 275
alternate keywords . 468
always_inline function attribute 374
AMD x86-64 Options . 225
AMD1 . 5
ANSI C . 5
ANSI C standard . 5
ANSI C89 . 5
ANSI support . 31
ANSI X3.159-1989 . 5
apostrophes . 748
application binary interface 731
ARC options . 184
ARM [Annotated C++ Reference Manual] 713
ARM options . 190
arrays of length zero . 364
arrays of variable length . 366
arrays, non-lvalue . 368
artificial function attribute 375
asin . 482
asinf . 482
asinh . 482
asinhf . 482
asinhl . 482
asinl . 482
asm constraints . 434
asm expressions . 427
assembler instructions . 427
assembler names for identifiers 465
assembly code, invalid . 761
assume_aligned attribute . 374
atan . 482
atan2 . 482
atan2f . 482
atan2l . 482
atanf . 482
atanh . 482
atanhf . 482
atanhl . 482
atanl . 482
attribute of types . 418
attribute of variables . 409
attribute syntax . 405
autoincrement/decrement addressing 434
automatic inline for C++ member fns 425
AVR Options . 196

B
Backwards Compatibility . 713
base class members . 753
bcmp . 482
below100 attribute . 418
binary compatibility . 731
Binary constants using the ‘0b’ prefix 700
Blackfin Options . 203
bound pointer to member function 706
bug criteria . 761
bugs . 761
bugs, known . 745
built-in functions . 34, 482
bzero . 482

C
C compilation options . 9
C intermediate output, nonexistent 3
C language extensions . 349
C language, traditional . 36
C standard . 5
C standards . 5
c++ . 31
C++ . 3
C++ comments . 409
C++ compilation options . 9
C++ interface and implementation headers 703
C++ language extensions . 701
C++ member fns, automatically inline 425
C++ misunderstandings . 752
C++ options, command-line . 37
C++ pragmas, effect on inlining 704
C++ source file suffixes . 31
C++ static data, declaring and defining 752
C_INCLUDE_PATH . 335
C11 . 5
C1X . 5
C6X Options . 206
C89 . 5
C90 . 5
C94 . 5
C95 . 5
C99 . 5
C9X . 5
cabs . 482
cabsf . 482
cabsl . 482
cacos . 482
cacosf . 482
cacosh . 482
cacoshf . 482
cacoshl . 482
cacosl . 482
callee_pop_aggregate_return attribute 388
calling functions through the function vector on

H8/300, M16C, M32C and SH2A processors
. 381

Keyword Index 831

calloc . 482
caret GCC_COLORS capability 53
carg . 482
cargf . 482
cargl . 482
case labels in initializers . 370
case ranges . 371
casin . 482
casinf . 482
casinh . 482
casinhf . 482
casinhl . 482
casinl . 482
cast to a union . 371
catan . 482
catanf . 482
catanh . 482
catanhf . 482
catanhl . 482
catanl . 482
cbrt . 482
cbrtf . 482
cbrtl . 482
ccos . 482
ccosf . 482
ccosh . 482
ccoshf . 482
ccoshl . 482
ccosl . 482
ceil . 482
ceilf . 482
ceill . 482
cexp . 482
cexpf . 482
cexpl . 482
character set, execution . 163
character set, input . 164
character set, input normalization 74
character set, wide execution 163
cimag . 482
cimagf . 482
cimagl . 482
cleanup attribute . 411
clog . 482
clogf . 482
clogl . 482
COBOL . 3
code generation conventions 323
code, mixed with declarations 372
cold function attribute . 393
cold label attribute . 393
command options . 9
comments, C++ style . 409
common attribute . 411
comparison of signed and unsigned values, warning

. 72
compiler bugs, reporting . 761
compiler compared to C++ preprocessor 3

compiler options, C++ . 37
compiler options, Objective-C and Objective-C++

. 48
compiler version, specifying 180
COMPILER_PATH . 335
complex conjugation . 359
complex numbers . 358
compound literals . 369
computed gotos . 351
conditional expressions, extensions 358
conflicting types . 751
conj . 482
conjf . 482
conjl . 482
const applied to function . 372
const function attribute . 375
constants in constraints . 435
constraint modifier characters 437
constraint, matching . 436
constraints, asm . 434
constraints, machine specific 438
constructing calls . 354
constructor expressions . 369
constructor function attribute 376
contributors . 791
copysign . 482
copysignf . 482
copysignl . 482
core dump . 761
cos . 482
cosf . 482
cosh . 482
coshf . 482
coshl . 482
cosl . 482
CPATH . 335
CPLUS_INCLUDE_PATH . 335
cpow . 482
cpowf . 482
cpowl . 482
cproj . 482
cprojf . 482
cprojl . 482
CR16 Options . 209
creal . 482
crealf . 482
creall . 482
CRIS Options . 207
critical attribute . 383
cross compiling . 180
csin . 482
csinf . 482
csinh . 482
csinhf . 482
csinhl . 482
csinl . 482
csqrt . 482
csqrtf . 482

832 Using the GNU Compiler Collection (GCC)

csqrtl . 482
ctan . 482
ctanf . 482
ctanh . 482
ctanhf . 482
ctanhl . 482
ctanl . 482

D
Darwin options . 209
dcgettext . 482
dd integer suffix . 360
DD integer suffix . 360
deallocating variable length arrays 366
debugging information options 78
decimal floating types . 360
declaration scope . 748
declarations inside expressions 349
declarations, mixed with code 372
declaring attributes of functions 372
declaring static data in C++ 752
defining static data in C++ . 752
dependencies for make as output 336
dependencies, make . 158
DEPENDENCIES_OUTPUT . 336
dependent name lookup . 753
deprecated attribute . 411
deprecated attribute. 376
designated initializers . 370
designator lists . 371
designators . 370
destructor function attribute 376
df integer suffix . 360
DF integer suffix . 360
dgettext . 482
diagnostic messages . 52
dialect options . 31
digits in constraint . 436
directory options . 170
disinterrupt attribute . 377
dl integer suffix . 360
DL integer suffix . 360
dollar signs in identifier names 409
double-word arithmetic . 358
downward funargs . 352
drem . 482
dremf . 482
dreml . 482

E
‘E’ in constraint . 435
earlyclobber operand . 437
eight-bit data on the H8/300, H8/300H, and H8S

. 378
EIND . 199
empty structures . 366

Enable Cilk Plus . 35
environment variables . 333
erf . 482
erfc . 482
erfcf . 482
erfcl . 482
erff . 482
erfl . 482
error function attribute . 375
error GCC_COLORS capability 53
error messages . 759
escaped newlines . 368
exception handler functions 378
exception handler functions on the Blackfin

processor . 378
exclamation point . 437
exit . 482
exp . 482
exp10 . 482
exp10f . 482
exp10l . 482
exp2 . 482
exp2f . 482
exp2l . 482
expf . 482
expl . 482
explicit register variables . 466
expm1 . 482
expm1f . 482
expm1l . 482
expressions containing statements 349
expressions, constructor . 369
extended asm . 427
extensible constraints . 436
extensions, ?: . 358
extensions, C language . 349
extensions, C++ language . 701
external declaration scope . 748
externally_visible attribute. 378

F
‘F’ in constraint . 435
fabs . 482
fabsf . 482
fabsl . 482
fatal signal . 761
fdim . 482
fdimf . 482
fdiml . 482
FDL, GNU Free Documentation License 783
ffs . 482
file name suffix . 25
file names . 166
fixed-point types . 361
flatten function attribute . 375
flexible array members . 364
float as function value type 749

Keyword Index 833

floating point precision . 752
floating-point precision . 132
floor . 482
floorf . 482
floorl . 482
fma . 482
fmaf . 482
fmal . 482
fmax . 482
fmaxf . 482
fmaxl . 482
fmin . 482
fminf . 482
fminl . 482
fmod . 482
fmodf . 482
fmodl . 482
force_align_arg_pointer attribute 394
format function attribute . 379
format_arg function attribute 380
Fortran . 3
forwarder_section attribute 384
forwarding calls . 354
fprintf . 482
fprintf_unlocked . 482
fputs . 482
fputs_unlocked . 482
FR30 Options . 217
freestanding environment . 5
freestanding implementation . 5
frexp . 482
frexpf . 482
frexpl . 482
FRV Options . 217
fscanf . 482
fscanf, and constant strings 747
function addressability on the M32R/D 388
function attributes . 372
function pointers, arithmetic 368
function prototype declarations 408
function versions . 708
function without a prologue/epilogue code 389
function, size of pointer to . 368
functions called via pointer on the RS/6000 and

PowerPC . 386
functions in arbitrary sections 372
functions that are dynamically resolved 372
functions that are passed arguments in registers on

the 386 . 372, 393
functions that behave like malloc 372
functions that do not handle memory bank

switching on 68HC11/68HC12 389
functions that do not pop the argument stack on

the 386 . 372
functions that do pop the argument stack on the

386 . 375
functions that handle memory bank switching

. 379

functions that have different compilation options
on the 386 . 372

functions that have different optimization options
. 372

functions that have no side effects 372
functions that never return 372
functions that pop the argument stack on the 386

. 372, 379, 396
functions that return more than once 372
functions with non-null pointer arguments 372
functions with printf, scanf, strftime or

strfmon style arguments 372

G
‘g’ in constraint . 436
‘G’ in constraint . 435
g++ . 31
G++ . 3
gamma . 482
gamma_r . 482
gammaf . 482
gammaf_r . 482
gammal . 482
gammal_r . 482
GCC . 3
GCC command options . 9
GCC_COLORS environment variable 52
GCC_COMPARE_DEBUG . 334
GCC_EXEC_PREFIX . 334
gcc_struct . 423
gcc_struct attribute . 416
gcov . 86
gettext . 482
global offset table . 327
global register after longjmp 467
global register variables . 466
GNAT . 3
GNU C Compiler . 3
GNU Compiler Collection . 3
gnu_inline function attribute 374
Go . 3
goto with computed label . 351
gprof . 84
grouping options . 9

H
‘H’ in constraint . 435
half-precision floating point 359
hardware models and configurations, specifying

. 180
hex floats . 361
highlight, color, colour . 52
hk fixed-suffix . 361
HK fixed-suffix . 361
hosted environment . 5, 35
hosted implementation . 5

834 Using the GNU Compiler Collection (GCC)

hot function attribute . 392
hot label attribute . 392
hotpatch attribute . 389
HPPA Options . 222
hr fixed-suffix . 361
HR fixed-suffix . 361
hypot . 482
hypotf . 482
hypotl . 482

I
‘i’ in constraint . 435
‘I’ in constraint . 435
i386 and x86-64 Windows Options 242
i386 Options . 225
IA-64 Options . 243
IBM RS/6000 and PowerPC Options 281
identifier names, dollar signs in 409
identifiers, names in assembler code 465
ifunc attribute . 382
ilogb . 482
ilogbf . 482
ilogbl . 482
imaxabs . 482
implementation-defined behavior, C language

. 339
implementation-defined behavior, C++ language

. 347
implied #pragma implementation 704
incompatibilities of GCC . 747
increment operators . 761
index . 482
indirect calls on ARC . 386
indirect calls on ARM . 386
indirect calls on Epiphany . 386
indirect calls on MIPS . 387
init_priority attribute . 707
initializations in expressions 369
initializers with labeled elements 370
initializers, non-constant . 368
inline automatic for C++ member fns 425
inline functions . 424
inline functions, omission of 425
inlining and C++ pragmas . 704
installation trouble . 745
integrating function code . 424
Intel 386 Options . 225
interface and implementation headers, C++ 703
intermediate C version, nonexistent 3
interrupt handler functions 375, 379, 382
interrupt handler functions on the AVR processors

. 395
interrupt handler functions on the Blackfin, m68k,

H8/300 and SH processors 385
interrupt service routines on ARM 385
interrupt thread functions on fido 385
introduction . 1

invalid assembly code . 761
invalid input . 761
invoking g++ . 31
isalnum . 482
isalpha . 482
isascii . 482
isblank . 482
iscntrl . 482
isdigit . 482
isgraph . 482
islower . 482
ISO 9899 . 5
ISO C . 5
ISO C standard . 5
ISO C11 . 5
ISO C1X . 5
ISO C90 . 5
ISO C94 . 5
ISO C95 . 5
ISO C99 . 5
ISO C9X . 5
ISO support . 31
ISO/IEC 9899 . 5
isprint . 482
ispunct . 482
isspace . 482
isupper . 482
iswalnum . 482
iswalpha . 482
iswblank . 482
iswcntrl . 482
iswdigit . 482
iswgraph . 482
iswlower . 482
iswprint . 482
iswpunct . 482
iswspace . 482
iswupper . 482
iswxdigit . 482
isxdigit . 482

J
j0 . 482
j0f . 482
j0l . 482
j1 . 482
j1f . 482
j1l . 482
Java . 3
java_interface attribute . 708
jn . 482
jnf . 482
jnl . 482

K
k fixed-suffix . 361

Keyword Index 835

K fixed-suffix . 361
keep_interrupts_masked attribute 384
keywords, alternate . 468
known causes of trouble . 745

L
l1_data variable attribute . 415
l1_data_A variable attribute 415
l1_data_B variable attribute 415
l1_text function attribute . 385
l2 function attribute . 386
l2 variable attribute . 415
labeled elements in initializers 370
labels as values . 351
labs . 482
LANG . 333, 335
language dialect options . 31
LC_ALL . 333
LC_CTYPE . 333
LC_MESSAGES . 333
ldexp . 482
ldexpf . 482
ldexpl . 482
leaf function attribute . 386
length-zero arrays . 364
lgamma . 482
lgamma_r . 482
lgammaf . 482
lgammaf_r . 482
lgammal . 482
lgammal_r . 482
Libraries . 166
LIBRARY_PATH . 335
link options . 166
linker script . 170
lk fixed-suffix . 361
LK fixed-suffix . 361
LL integer suffix . 358
llabs . 482
llk fixed-suffix . 361
LLK fixed-suffix . 361
llr fixed-suffix . 361
LLR fixed-suffix . 361
llrint . 482
llrintf . 482
llrintl . 482
llround . 482
llroundf . 482
llroundl . 482
LM32 options . 247
load address instruction . 436
local labels . 350
local variables in macros . 356
local variables, specifying registers 468
locale . 333
locale definition . 335
locus GCC_COLORS capability 53

log . 482
log10 . 482
log10f . 482
log10l . 482
log1p . 482
log1pf . 482
log1pl . 482
log2 . 482
log2f . 482
log2l . 482
logb . 482
logbf . 482
logbl . 482
logf . 482
logl . 482
long long data types . 358
longjmp . 467
longjmp incompatibilities . 747
longjmp warnings . 64
lr fixed-suffix . 361
LR fixed-suffix . 361
lrint . 482
lrintf . 482
lrintl . 482
lround . 482
lroundf . 482
lroundl . 482

M
‘m’ in constraint . 434
M32C options . 247
M32R/D options . 248
M680x0 options . 249
machine dependent options 180
machine specific constraints 438
macro with variable arguments 367
macros containing asm . 430
macros, inline alternative . 424
macros, local labels . 350
macros, local variables in . 356
macros, statements in expressions 349
macros, types of arguments 356
make . 158
malloc . 482
malloc attribute . 387
matching constraint . 436
MCore options . 254
member fns, automatically inline 425
memchr . 482
memcmp . 482
memcpy . 482
memory references in constraints 434
mempcpy . 482
memset . 482
MeP options . 255
Mercury . 3
message formatting . 52

836 Using the GNU Compiler Collection (GCC)

messages, warning . 53
messages, warning and error 759
MicroBlaze Options . 257
micromips attribute . 387
middle-operands, omitted . 358
MIPS options . 258
mips16 attribute . 387
misunderstandings in C++ . 752
mixed declarations and code 372
mktemp, and constant strings 747
MMIX Options . 271
MN10300 options . 272
mode attribute . 411
modf . 482
modff . 482
modfl . 482
modifiers in constraints . 437
Moxie Options . 273
ms_abi attribute . 388
ms_hook_prologue attribute 388
ms_struct . 423
ms_struct attribute . 416
MSP430 Options . 273
multiple alternative constraints 437
multiprecision arithmetic . 358

N
‘n’ in constraint . 435
Named Address Spaces . 362
names used in assembler code 465
naming convention, implementation headers . . . 704
NDS32 Options . 274
nearbyint . 482
nearbyintf . 482
nearbyintl . 482
nested attribute . 385
nested functions . 352
nested_ready attribute . 385
newlines (escaped) . 368
nextafter . 482
nextafterf . 482
nextafterl . 482
nexttoward . 482
nexttowardf . 482
nexttowardl . 482
NFC . 74
NFKC . 74
Nios II options . 275
nmi attribute . 394
NMI handler functions on the Blackfin processor

. 389
no_instrument_function function attribute . . 389
no_sanitize_address function attribute 393
no_sanitize_undefined function attribute . . . 393
no_split_stack function attribute 389
noclone function attribute . 390
nocommon attribute . 411

nocompression attribute . 389
noinline function attribute 389
nomicromips attribute . 387
nomips16 attribute . 387
non-constant initializers . 368
non-static inline function . 425
nonnull function attribute . 390
noreturn function attribute 390
nosave_low_regs attribute 391
not_nested attribute . 385
note GCC_COLORS capability . 53
nothrow function attribute . 391

O
‘o’ in constraint . 434
OBJC_INCLUDE_PATH . 335
Objective-C . 3, 7
Objective-C and Objective-C++ options,

command-line . 48
Objective-C++ . 3, 7
offsettable address . 434
old-style function definitions 408
omitted middle-operands . 358
open coding . 424
OpenMP parallel . 35
OpenMP SIMD . 35
operand constraints, asm . 434
optimize function attribute 391
optimize options . 101
options to control diagnostics formatting 52
options to control warnings . 53
options, C++ . 37
options, code generation . 323
options, debugging . 78
options, dialect . 31
options, directory search . 170
options, GCC command . 9
options, grouping . 9
options, linking . 166
options, Objective-C and Objective-C++ 48
options, optimization . 101
options, order . 9
options, preprocessor . 155
order of evaluation, side effects 758
order of options . 9
OS_main AVR function attribute 391
OS_task AVR function attribute 391
other register constraints . 436
output file option . 28
overloaded virtual function, warning 48

P
‘p’ in constraint . 436
packed attribute . 411
parameter forward declaration 367
partial_save attribute . 385

Keyword Index 837

Pascal . 3
pcs function attribute . 392
PDP-11 Options . 279
PIC . 327
picoChip options . 280
pmf . 706
pointer arguments . 375
pointer to member function 706
portions of temporary objects, pointers to 754
pow . 482
pow10 . 482
pow10f . 482
pow10l . 482
PowerPC options . 281
powf . 482
powl . 482
pragma GCC ivdep . 696
pragma GCC optimize . 696
pragma GCC pop options . 696
pragma GCC push options 696
pragma GCC reset options 696
pragma GCC target . 695
pragma, address . 690
pragma, align . 692
pragma, call . 691
pragma, coprocessor available 691
pragma, coprocessor call saved 691
pragma, coprocessor subclass 691
pragma, custom io volatile . 690
pragma, diagnostic . 694
pragma, disinterrupt . 691
pragma, fini . 692
pragma, init . 692
pragma, long calls . 690
pragma, long calls off . 690
pragma, longcall . 691
pragma, mark . 692
pragma, memregs . 690
pragma, no long calls . 690
pragma, options align . 692
pragma, pop macro . 695
pragma, push macro . 695
pragma, reason for not using 405
pragma, redefine extname . 692
pragma, segment . 692
pragma, unused . 692
pragma, visibility . 695
pragma, weak . 693
pragmas . 690
pragmas in C++, effect on inlining 704
pragmas, interface and implementation 703
pragmas, warning of unknown 64
precompiled headers . 336
preprocessing numbers . 749
preprocessing tokens . 749
preprocessor options . 155
printf . 482
printf_unlocked . 482

prof . 84
progmem AVR variable attribute 414
promotion of formal parameters 408
pure function attribute . 392
push address instruction . 436
putchar . 482
puts . 482

Q
q floating point suffix . 359
Q floating point suffix . 359
qsort, and global register variables 467
question mark . 437
quote GCC_COLORS capability 53

R
r fixed-suffix . 361
R fixed-suffix . 361
‘r’ in constraint . 435
RAMPD . 201
RAMPX . 201
RAMPY . 201
RAMPZ . 201
ranges in case statements . 371
read-only strings . 747
reentrant attribute . 383
register variable after longjmp 467
registers . 427
registers for local variables . 468
registers in constraints . 435
registers, global allocation . 466
registers, global variables in 466
regparm attribute . 393
relocation truncated to fit (ColdFire) 254
relocation truncated to fit (MIPS) 261
remainder . 482
remainderf . 482
remainderl . 482
remquo . 482
remquof . 482
remquol . 482
renesas attribute . 394
reordering, warning . 46
reporting bugs . 761
resbank attribute . 394
reset handler functions . 394
rest argument (in macro) . 367
restricted pointers . 701
restricted references . 701
restricted this pointer . 701
returns_nonnull function attribute 390
returns_twice attribute . 394
rindex . 482
rint . 482
rintf . 482
rintl . 482

838 Using the GNU Compiler Collection (GCC)

RL78 Options . 281
round . 482
roundf . 482
roundl . 482
RS/6000 and PowerPC Options 281
RTTI . 703
run-time options . 323
RX Options . 296

S
‘s’ in constraint . 435
S/390 and zSeries Options . 298
save all registers on the Blackfin, H8/300,

H8/300H, and H8S . 394
save volatile registers on the MicroBlaze 395
save_all attribute . 385
scalb . 482
scalbf . 482
scalbl . 482
scalbln . 482
scalblnf . 482
scalbn . 482
scalbnf . 482
scanf, and constant strings 747
scanfnl . 482
scope of a variable length array 366
scope of declaration . 751
scope of external declarations 748
Score Options . 302
search path . 170
section function attribute . 395
section variable attribute . 412
sentinel function attribute 395
setjmp . 467
setjmp incompatibilities . 747
shared strings . 747
shared variable attribute . 412
side effect in ?: . 358
side effects, macro argument 349
side effects, order of evaluation 758
signbit . 482
signbitd128 . 482
signbitd32 . 482
signbitd64 . 482
signbitf . 482
signbitl . 482
signed and unsigned values, comparison warning

. 72
significand . 482
significandf . 482
significandl . 482
SIMD . 35
simple constraints . 434
sin . 482
sincos . 482
sincosf . 482
sincosl . 482

sinf . 482
sinh . 482
sinhf . 482
sinhl . 482
sinl . 482
sizeof . 356
smaller data references 248, 275
smaller data references (PowerPC) 293
snprintf . 482
Solaris 2 options . 309
sp_switch attribute . 396
SPARC options . 310
Spec Files . 172
specified registers . 466
specifying compiler version and target machine

. 180
specifying hardware config . 180
specifying machine version . 180
specifying registers for local variables 468
speed of compilation . 336
sprintf . 482
SPU options . 315
sqrt . 482
sqrtf . 482
sqrtl . 482
sscanf . 482
sscanf, and constant strings 747
sseregparm attribute . 394
statements inside expressions 349
static data in C++, declaring and defining 752
stpcpy . 482
stpncpy . 482
strcasecmp . 482
strcat . 482
strchr . 482
strcmp . 482
strcpy . 482
strcspn . 482
strdup . 482
strfmon . 482
strftime . 482
string constants . 747
strlen . 482
strncasecmp . 482
strncat . 482
strncmp . 482
strncpy . 482
strndup . 482
strpbrk . 482
strrchr . 482
strspn . 482
strstr . 482
struct . 697
struct __htm_tdb . 683
structures . 749
structures, constructor expression 369
submodel options . 180
subscripting . 368

Keyword Index 839

subscripting and function values 368
suffixes for C++ source . 31
SUNPRO_DEPENDENCIES . 336
suppressing warnings . 53
surprises in C++ . 752
syntax checking . 53
syscall_linkage attribute 396
system headers, warnings from 67
sysv_abi attribute . 388

T
tan . 482
tanf . 482
tanh . 482
tanhf . 482
tanhl . 482
tanl . 482
target function attribute . 396
target machine, specifying . 180
target options . 180
target("abm") attribute . 396
target("aes") attribute . 396
target("align-stringops") attribute 398
target("altivec") attribute 398
target("arch=ARCH") attribute 398
target("avoid-indexed-addresses") attribute

. 401
target("cld") attribute . 397
target("cmpb") attribute . 399
target("cpu=CPU") attribute 401
target("custom-fpu-cfg=name") attribute . . . 401
target("custom-insn=N") attribute 401
target("default") attribute 397
target("dlmzb") attribute 399
target("fancy-math-387") attribute 398
target("fma4") attribute . 397
target("fpmath=FPMATH") attribute 398
target("fprnd") attribute 399
target("friz") attribute . 401
target("fused-madd") attribute 398
target("hard-dfp") attribute 399
target("ieee-fp") attribute 398
target("inline-all-stringops") attribute . . 398
target("inline-stringops-dynamically")

attribute . 398
target("isel") attribute . 399
target("longcall") attribute 401
target("lwp") attribute . 397
target("mfcrf") attribute 399
target("mfpgpr") attribute 399
target("mmx") attribute . 397
target("mulhw") attribute 399
target("multiple") attribute 399
target("no-custom-insn") attribute 401
target("paired") attribute 401
target("pclmul") attribute 397
target("popcnt") attribute 397

target("popcntb") attribute 400
target("popcntd") attribute 400
target("powerpc-gfxopt") attribute 400
target("powerpc-gpopt") attribute 400
target("recip") attribute 398
target("recip-precision") attribute 400
target("sse") attribute . 397
target("sse2") attribute . 397
target("sse3") attribute . 397
target("sse4") attribute . 397
target("sse4.1") attribute 397
target("sse4.2") attribute 397
target("sse4a") attribute 397
target("ssse3") attribute 397
target("string") attribute 400
target("tune=TUNE") attribute 398, 401
target("update") attribute 400
target("vsx") attribute . 400
target("xop") attribute . 397
TC1 . 5
TC2 . 5
TC3 . 5
Technical Corrigenda . 5
Technical Corrigendum 1 . 5
Technical Corrigendum 2 . 5
Technical Corrigendum 3 . 5
template instantiation . 704
temporaries, lifetime of . 754
tgamma . 482
tgammaf . 482
tgammal . 482
Thread-Local Storage . 697
thunks . 352
TILE-Gx options . 317
TILEPro options . 317
tiny data section on the H8/300H and H8S . . . 402
TLS . 697
tls_model attribute . 413
TMPDIR . 334
toascii . 482
tolower . 482
toupper . 482
towlower . 482
towupper . 482
traditional C language . 36
trap_exit attribute . 402
trapa_handler attribute . 402
trunc . 482
truncf . 482
truncl . 482
two-stage name lookup . 753
type alignment . 424
type attributes . 418
type_info . 703
typedef names as function parameters 748
typeof . 356

840 Using the GNU Compiler Collection (GCC)

U
uhk fixed-suffix . 361
UHK fixed-suffix . 361
uhr fixed-suffix . 361
UHR fixed-suffix . 361
uk fixed-suffix . 361
UK fixed-suffix . 361
ulk fixed-suffix . 361
ULK fixed-suffix . 361
ULL integer suffix . 358
ullk fixed-suffix . 361
ULLK fixed-suffix . 361
ullr fixed-suffix . 361
ULLR fixed-suffix . 361
ulr fixed-suffix . 361
ULR fixed-suffix . 361
undefined behavior . 761
undefined function value . 761
underscores in variables in macros 356
union . 697
union, casting to a . 371
unions . 749
unknown pragmas, warning . 64
unresolved references and ‘-nodefaultlibs’ . . . 167
unresolved references and ‘-nostdlib’ 167
unused attribute. 402
ur fixed-suffix . 361
UR fixed-suffix . 361
use_debug_exception_return attribute 384
use_shadow_register_set attribute 384
used attribute. 402
User stack pointer in interrupts on the Blackfin

. 385

V
‘V’ in constraint . 435
V850 Options . 317
vague linkage . 702
value after longjmp . 467
variable addressability on the IA-64 388
variable addressability on the M32R/D 415
variable alignment . 424
variable attributes . 409
variable number of arguments 367
variable-length array in a structure 366
variable-length array scope 366
variable-length arrays . 366
variables in specified registers 466
variables, local, in macros . 356
variadic macros . 367
VAX options . 320
version_id attribute . 402
vfprintf . 482
vfscanf . 482
visibility attribute . 402
VLAs . 366
vliw attribute . 404

void pointers, arithmetic . 368
void, size of pointer to . 368
volatile access . 426, 701
volatile applied to function 372
volatile read . 426, 701
volatile write . 426, 701
vprintf . 482
vscanf . 482
vsnprintf . 482
vsprintf . 482
vsscanf . 482
vtable . 702
VxWorks Options . 321

W
w floating point suffix . 359
W floating point suffix . 359
wakeup attribute . 383
warm attribute . 394
warn_unused attribute . 708
warn_unused_result attribute 404
warning for comparison of signed and unsigned

values . 72
warning for overloaded virtual function 48
warning for reordering of member initializers . . . 46
warning for unknown pragmas 64
warning function attribute . 375
warning GCC_COLORS capability 53
warning messages . 53
warnings from system headers 67
warnings vs errors . 759
weak attribute . 404
weakref attribute . 404
whitespace . 748

X
‘X’ in constraint . 436
X3.159-1989 . 5
x86-64 options . 321
x86-64 Options . 225
Xstormy16 Options . 321
Xtensa Options . 321

Y
y0 . 482
y0f . 482
y0l . 482
y1 . 482
y1f . 482
y1l . 482
yn . 482
ynf . 482
ynl . 482

Keyword Index 841

Z
zero-length arrays . 364
zero-size structures . 366

zSeries options . 323

	Introduction
	Programming Languages Supported by GCC
	Language Standards Supported by GCC
	C language
	C++ language
	Objective-C and Objective-C++ languages
	Go language
	References for other languages

	GCC Command Options
	Option Summary
	Options Controlling the Kind of Output
	Compiling C++ Programs
	Options Controlling C Dialect
	Options Controlling C++ Dialect
	Options Controlling Objective-C and Objective-C++ Dialects
	Options to Control Diagnostic Messages Formatting
	Options to Request or Suppress Warnings
	Options for Debugging Your Program or GCC
	Options That Control Optimization
	Options Controlling the Preprocessor
	Passing Options to the Assembler
	Options for Linking
	Options for Directory Search
	Specifying subprocesses and the switches to pass to them
	Specifying Target Machine and Compiler Version
	Hardware Models and Configurations
	AArch64 Options
	-march and -mcpu feature modifiers

	Adapteva Epiphany Options
	ARC Options
	ARM Options
	AVR Options
	EIND and Devices with more than 128 Ki Bytes of Flash
	Handling of the RAMPD, RAMPX, RAMPY and RAMPZ Special Function Registers
	AVR Built-in Macros

	Blackfin Options
	C6X Options
	CRIS Options
	CR16 Options
	Darwin Options
	DEC Alpha Options
	FR30 Options
	FRV Options
	GNU/Linux Options
	H8/300 Options
	HPPA Options
	Intel 386 and AMD x86-64 Options
	i386 and x86-64 Windows Options
	IA-64 Options
	LM32 Options
	M32C Options
	M32R/D Options
	M680x0 Options
	MCore Options
	MeP Options
	MicroBlaze Options
	MIPS Options
	MMIX Options
	MN10300 Options
	Moxie Options
	MSP430 Options
	NDS32 Options
	Nios II Options
	PDP-11 Options
	picoChip Options
	PowerPC Options
	RL78 Options
	IBM RS/6000 and PowerPC Options
	RX Options
	S/390 and zSeries Options
	Score Options
	SH Options
	Solaris 2 Options
	SPARC Options
	SPU Options
	Options for System V
	TILE-Gx Options
	TILEPro Options
	V850 Options
	VAX Options
	VMS Options
	VxWorks Options
	x86-64 Options
	Xstormy16 Options
	Xtensa Options
	zSeries Options

	Options for Code Generation Conventions
	Environment Variables Affecting GCC
	Using Precompiled Headers

	C Implementation-defined behavior
	Translation
	Environment
	Identifiers
	Characters
	Integers
	Floating point
	Arrays and pointers
	Hints
	Structures, unions, enumerations, and bit-fields
	Qualifiers
	Declarators
	Statements
	Preprocessing directives
	Library functions
	Architecture
	Locale-specific behavior

	C++ Implementation-defined behavior
	Conditionally-supported behavior
	Exception handling

	Extensions to the C Language Family
	Statements and Declarations in Expressions
	Locally Declared Labels
	Labels as Values
	Nested Functions
	Constructing Function Calls
	Referring to a Type with typeof
	Conditionals with Omitted Operands
	128-bit integers
	Double-Word Integers
	Complex Numbers
	Additional Floating Types
	Half-Precision Floating Point
	Decimal Floating Types
	Hex Floats
	Fixed-Point Types
	Named Address Spaces
	AVR Named Address Spaces
	M32C Named Address Spaces
	RL78 Named Address Spaces
	SPU Named Address Spaces

	Arrays of Length Zero
	Structures With No Members
	Arrays of Variable Length
	Macros with a Variable Number of Arguments.
	Slightly Looser Rules for Escaped Newlines
	Non-Lvalue Arrays May Have Subscripts
	Arithmetic on void- and Function-Pointers
	Non-Constant Initializers
	Compound Literals
	Designated Initializers
	Case Ranges
	Cast to a Union Type
	Mixed Declarations and Code
	Declaring Attributes of Functions
	Attribute Syntax
	Prototypes and Old-Style Function Definitions
	C++ Style Comments
	Dollar Signs in Identifier Names
	The Character ESC in Constants
	Specifying Attributes of Variables
	AVR Variable Attributes
	Blackfin Variable Attributes
	M32R/D Variable Attributes
	MeP Variable Attributes
	i386 Variable Attributes
	PowerPC Variable Attributes
	SPU Variable Attributes
	Xstormy16 Variable Attributes

	Specifying Attributes of Types
	ARM Type Attributes
	MeP Type Attributes
	i386 Type Attributes
	PowerPC Type Attributes
	SPU Type Attributes

	Inquiring on Alignment of Types or Variables
	An Inline Function is As Fast As a Macro
	When is a Volatile Object Accessed?
	Assembler Instructions with C Expression Operands
	Size of an asm
	i386 floating-point asm operands

	Constraints for asm Operands
	Simple Constraints
	Multiple Alternative Constraints
	Constraint Modifier Characters
	Constraints for Particular Machines

	Controlling Names Used in Assembler Code
	Variables in Specified Registers
	Defining Global Register Variables
	Specifying Registers for Local Variables

	Alternate Keywords
	Incomplete enum Types
	Function Names as Strings
	Getting the Return or Frame Address of a Function
	Using Vector Instructions through Built-in Functions
	Offsetof
	Legacy __sync Built-in Functions for Atomic Memory Access
	Built-in functions for memory model aware atomic operations
	x86 specific memory model extensions for transactional memory
	Object Size Checking Built-in Functions
	Cilk Plus C/C++ language extension Built-in Functions.
	Other Built-in Functions Provided by GCC
	Built-in Functions Specific to Particular Target Machines
	Alpha Built-in Functions
	Altera Nios II Built-in Functions
	ARC Built-in Functions
	ARC SIMD Built-in Functions
	ARM iWMMXt Built-in Functions
	ARM NEON Intrinsics
	Addition
	Multiplication
	Multiply-accumulate
	Multiply-subtract
	Fused-multiply-accumulate
	Fused-multiply-subtract
	Round to integral (to nearest, ties to even)
	Round to integral (to nearest, ties away from zero)
	Round to integral (towards +Inf)
	Round to integral (towards -Inf)
	Round to integral (towards 0)
	Subtraction
	Comparison (equal-to)
	Comparison (greater-than-or-equal-to)
	Comparison (less-than-or-equal-to)
	Comparison (greater-than)
	Comparison (less-than)
	Comparison (absolute greater-than-or-equal-to)
	Comparison (absolute less-than-or-equal-to)
	Comparison (absolute greater-than)
	Comparison (absolute less-than)
	Test bits
	Absolute difference
	Absolute difference and accumulate
	Maximum
	Minimum
	Pairwise add
	Pairwise add, single_opcode widen and accumulate
	Folding maximum
	Folding minimum
	Reciprocal step
	Vector shift left
	Vector shift left by constant
	Vector shift right by constant
	Vector shift right by constant and accumulate
	Vector shift right and insert
	Vector shift left and insert
	Absolute value
	Negation
	Bitwise not
	Count leading sign bits
	Count leading zeros
	Count number of set bits
	Reciprocal estimate
	Reciprocal square-root estimate
	Get lanes from a vector
	Set lanes in a vector
	Create vector from literal bit pattern
	Set all lanes to the same value
	Combining vectors
	Splitting vectors
	Conversions
	Move, single_opcode narrowing
	Move, single_opcode long
	Table lookup
	Extended table lookup
	Multiply, lane
	Long multiply, lane
	Saturating doubling long multiply, lane
	Saturating doubling multiply high, lane
	Multiply-accumulate, lane
	Multiply-subtract, lane
	Vector multiply by scalar
	Vector long multiply by scalar
	Vector saturating doubling long multiply by scalar
	Vector saturating doubling multiply high by scalar
	Vector multiply-accumulate by scalar
	Vector multiply-subtract by scalar
	Vector extract
	Reverse elements
	Bit selection
	Transpose elements
	Zip elements
	Unzip elements
	Element/structure loads, VLD1 variants
	Element/structure stores, VST1 variants
	Element/structure loads, VLD2 variants
	Element/structure stores, VST2 variants
	Element/structure loads, VLD3 variants
	Element/structure stores, VST3 variants
	Element/structure loads, VLD4 variants
	Element/structure stores, VST4 variants
	Logical operations (AND)
	Logical operations (OR)
	Logical operations (exclusive OR)
	Logical operations (AND-NOT)
	Logical operations (OR-NOT)
	Reinterpret casts

	ARM ACLE Intrinsics
	CRC32 intrinsics

	AVR Built-in Functions
	Blackfin Built-in Functions
	FR-V Built-in Functions
	Argument Types
	Directly-mapped Integer Functions
	Directly-mapped Media Functions
	Raw read/write Functions
	Other Built-in Functions

	X86 Built-in Functions
	X86 transaction memory intrinsics
	MIPS DSP Built-in Functions
	MIPS Paired-Single Support
	MIPS Loongson Built-in Functions
	Paired-Single Arithmetic
	Paired-Single Built-in Functions
	MIPS-3D Built-in Functions

	Other MIPS Built-in Functions
	MSP430 Built-in Functions
	NDS32 Built-in Functions
	picoChip Built-in Functions
	PowerPC Built-in Functions
	PowerPC AltiVec Built-in Functions
	PowerPC Hardware Transactional Memory Built-in Functions
	PowerPC HTM Low Level Built-in Functions
	PowerPC HTM High Level Inline Functions

	RX Built-in Functions
	S/390 System z Built-in Functions
	SH Built-in Functions
	SPARC VIS Built-in Functions
	SPU Built-in Functions
	TI C6X Built-in Functions
	TILE-Gx Built-in Functions
	TILEPro Built-in Functions

	Format Checks Specific to Particular Target Machines
	Solaris Format Checks
	Darwin Format Checks

	Pragmas Accepted by GCC
	ARM Pragmas
	M32C Pragmas
	MeP Pragmas
	RS/6000 and PowerPC Pragmas
	Darwin Pragmas
	Solaris Pragmas
	Symbol-Renaming Pragmas
	Structure-Packing Pragmas
	Weak Pragmas
	Diagnostic Pragmas
	Visibility Pragmas
	Push/Pop Macro Pragmas
	Function Specific Option Pragmas
	Loop-Specific Pragmas

	Unnamed struct/union fields within structs/unions
	Thread-Local Storage
	ISO/IEC 9899:1999 Edits for Thread-Local Storage
	ISO/IEC 14882:1998 Edits for Thread-Local Storage

	Binary constants using the 0b prefix

	Extensions to the C++ Language
	When is a Volatile C++ Object Accessed?
	Restricting Pointer Aliasing
	Vague Linkage
	#pragma interface and implementation
	Where's the Template?
	Extracting the function pointer from a bound pointer to member function
	C++-Specific Variable, Function, and Type Attributes
	Function Multiversioning
	Namespace Association
	Type Traits
	Java Exceptions
	Deprecated Features
	Backwards Compatibility

	GNU Objective-C features
	GNU Objective-C runtime API
	Modern GNU Objective-C runtime API
	Traditional GNU Objective-C runtime API

	+load: Executing code before main
	What you can and what you cannot do in +load

	Type encoding
	Legacy type encoding
	@encode
	Method signatures

	Garbage Collection
	Constant string objects
	compatibility_alias
	Exceptions
	Synchronization
	Fast enumeration
	Using fast enumeration
	c99-like fast enumeration syntax
	Fast enumeration details
	Fast enumeration protocol

	Messaging with the GNU Objective-C runtime
	Dynamically registering methods
	Forwarding hook

	Binary Compatibility
	gcov---a Test Coverage Program
	Introduction to gcov
	Invoking gcov
	Using gcov with GCC Optimization
	Brief description of gcov data files
	Data file relocation to support cross-profiling

	Known Causes of Trouble with GCC
	Actual Bugs We Haven't Fixed Yet
	Interoperation
	Incompatibilities of GCC
	Fixed Header Files
	Standard Libraries
	Disappointments and Misunderstandings
	Common Misunderstandings with GNU C++
	Declare and Define Static Members
	Name lookup, templates, and accessing members of base classes
	Temporaries May Vanish Before You Expect
	Implicit Copy-Assignment for Virtual Bases

	Certain Changes We Don't Want to Make
	Warning Messages and Error Messages

	Reporting Bugs
	Have You Found a Bug?
	How and where to Report Bugs

	How To Get Help with GCC
	Contributing to GCC Development
	Funding Free Software
	The GNU Project and GNU/Linux
	GNU General Public License
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Contributors to GCC
	Option Index
	Keyword Index

