## Licensed to the Apache Software Foundation (ASF) under one or more# contributor license agreements. See the NOTICE file distributed with# this work for additional information regarding copyright ownership.# The ASF licenses this file to You under the Apache License, Version 2.0# (the "License"); you may not use this file except in compliance with# the License. You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.#importpicklefromtypingimportAny,Union,List,Tuple,Callable,Dict,Optionalimportnumpyasnpimportpandasaspdfrompysparkimportkeyword_onlyfrompyspark.sqlimportDataFramefrompyspark.ml.param.sharedimport(HasInputCol,HasInputCols,HasOutputCol,HasFeatureSizes,HasHandleInvalid,Param,Params,TypeConverters,)frompyspark.ml.connect.baseimportEstimator,Model,Transformerfrompyspark.ml.connect.io_utilsimportParamsReadWrite,CoreModelReadWritefrompyspark.ml.connect.summarizerimportsummarize_dataframe
[docs]classMaxAbsScaler(Estimator,HasInputCol,HasOutputCol,ParamsReadWrite):""" Rescale each feature individually to range [-1, 1] by dividing through the largest maximum absolute value in each feature. It does not shift/center the data, and thus does not destroy any sparsity. .. versionadded:: 3.5.0 Examples -------- >>> from pyspark.ml.connect.feature import MaxAbsScaler >>> scaler = MaxAbsScaler(inputCol='features', outputCol='scaled_features') >>> dataset = spark.createDataFrame([ ... ([1.0, 2.0],), ... ([2.0, -1.0],), ... ([-3.0, -2.0],), ... ], schema=['features']) >>> scaler_model = scaler.fit(dataset) >>> transformed_dataset = scaler_model.transform(dataset) >>> transformed_dataset.show(truncate=False) +------------+--------------------------+ |features |scaled_features | +------------+--------------------------+ |[1.0, 2.0] |[0.3333333333333333, 1.0] | |[2.0, -1.0] |[0.6666666666666666, -0.5]| |[-3.0, -2.0]|[-1.0, -1.0] | +------------+--------------------------+ """_input_kwargs:Dict[str,Any]@keyword_onlydef__init__(self,*,inputCol:Optional[str]=None,outputCol:Optional[str]=None)->None:""" __init__(self, \\*, inputCol=None, outputCol=None) """super().__init__()kwargs=self._input_kwargsself._set(**kwargs)def_fit(self,dataset:Union["pd.DataFrame","DataFrame"])->"MaxAbsScalerModel":input_col=self.getInputCol()stat_res=summarize_dataframe(dataset,input_col,["min","max","count"])min_values=stat_res["min"]max_values=stat_res["max"]n_samples_seen=stat_res["count"]max_abs_values=np.maximum(np.abs(min_values),np.abs(max_values))model=MaxAbsScalerModel(max_abs_values,n_samples_seen)model._resetUid(self.uid)returnself._copyValues(model)
[docs]classMaxAbsScalerModel(Model,HasInputCol,HasOutputCol,ParamsReadWrite,CoreModelReadWrite):""" Model fitted by MaxAbsScaler. .. versionadded:: 3.5.0 """def__init__(self,max_abs_values:Optional["np.ndarray"]=None,n_samples_seen:Optional[int]=None)->None:super().__init__()self.max_abs_values=max_abs_valuesifmax_abs_valuesisnotNone:# if scale value is zero, replace it with 1.0 (for preventing division by zero)self.scale_values=np.where(max_abs_values==0.0,1.0,max_abs_values)self.n_samples_seen=n_samples_seendef_input_columns(self)->List[str]:return[self.getInputCol()]def_output_columns(self)->List[Tuple[str,str]]:return[(self.getOutputCol(),"array<double>")]def_get_transform_fn(self)->Callable[...,Any]:scale_values=self.scale_valuesdeftransform_fn(series:Any)->Any:defmap_value(x:"np.ndarray")->"np.ndarray":returnx/scale_valuesreturnseries.apply(map_value)returntransform_fndef_get_core_model_filename(self)->str:returnself.__class__.__name__+".sklearn.pkl"def_save_core_model(self,path:str)->None:fromsklearn.preprocessingimportMaxAbsScalerassk_MaxAbsScalersk_model=sk_MaxAbsScaler()sk_model.scale_=self.scale_valuessk_model.max_abs_=self.max_abs_valuessk_model.n_features_in_=len(self.max_abs_values)# type: ignore[arg-type]sk_model.n_samples_seen_=self.n_samples_seenwithopen(path,"wb")asfp:pickle.dump(sk_model,fp)def_load_core_model(self,path:str)->None:withopen(path,"rb")asfp:sk_model=pickle.load(fp)self.max_abs_values=sk_model.max_abs_self.scale_values=sk_model.scale_self.n_samples_seen=sk_model.n_samples_seen_
[docs]classStandardScaler(Estimator,HasInputCol,HasOutputCol,ParamsReadWrite):""" Standardizes features by removing the mean and scaling to unit variance using column summary statistics on the samples in the training set. .. versionadded:: 3.5.0 Examples -------- >>> from pyspark.ml.connect.feature import StandardScaler >>> scaler = StandardScaler(inputCol='features', outputCol='scaled_features') >>> dataset = spark.createDataFrame([ ... ([1.0, 2.0],), ... ([2.0, -1.0],), ... ([-3.0, -2.0],), ... ], schema=['features']) >>> scaler_model = scaler.fit(dataset) >>> transformed_dataset = scaler_model.transform(dataset) >>> transformed_dataset.show(truncate=False) +------------+------------------------------------------+ |features |scaled_features | +------------+------------------------------------------+ |[1.0, 2.0] |[0.3779644730092272, 1.1208970766356101] | |[2.0, -1.0] |[0.7559289460184544, -0.3202563076101743] | |[-3.0, -2.0]|[-1.1338934190276817, -0.8006407690254358]| +------------+------------------------------------------+ """_input_kwargs:Dict[str,Any]@keyword_onlydef__init__(self,inputCol:Optional[str]=None,outputCol:Optional[str]=None)->None:""" __init__(self, \\*, inputCol=None, outputCol=None) """super().__init__()kwargs=self._input_kwargsself._set(**kwargs)def_fit(self,dataset:Union[DataFrame,pd.DataFrame])->"StandardScalerModel":input_col=self.getInputCol()stat_result=summarize_dataframe(dataset,input_col,["mean","std","count"])mean_values=stat_result["mean"]std_values=stat_result["std"]n_samples_seen=stat_result["count"]model=StandardScalerModel(mean_values,std_values,n_samples_seen)model._resetUid(self.uid)returnself._copyValues(model)
[docs]classStandardScalerModel(Model,HasInputCol,HasOutputCol,ParamsReadWrite,CoreModelReadWrite):""" Model fitted by StandardScaler. .. versionadded:: 3.5.0 """def__init__(self,mean_values:Optional["np.ndarray"]=None,std_values:Optional["np.ndarray"]=None,n_samples_seen:Optional[int]=None,)->None:super().__init__()self.mean_values=mean_valuesself.std_values=std_valuesifstd_valuesisnotNone:# if scale value is zero, replace it with 1.0 (for preventing division by zero)self.scale_values=np.where(std_values==0.0,1.0,std_values)self.n_samples_seen=n_samples_seendef_input_columns(self)->List[str]:return[self.getInputCol()]def_output_columns(self)->List[Tuple[str,str]]:return[(self.getOutputCol(),"array<double>")]def_get_transform_fn(self)->Callable[...,Any]:mean_values=self.mean_valuesscale_values=self.scale_valuesdeftransform_fn(series:Any)->Any:defmap_value(x:"np.ndarray")->"np.ndarray":return(x-mean_values)/scale_valuesreturnseries.apply(map_value)returntransform_fndef_get_core_model_filename(self)->str:returnself.__class__.__name__+".sklearn.pkl"def_save_core_model(self,path:str)->None:fromsklearn.preprocessingimportStandardScalerassk_StandardScalersk_model=sk_StandardScaler(with_mean=True,with_std=True)sk_model.scale_=self.scale_valuessk_model.var_=self.std_values*self.std_values# type: ignore[operator]sk_model.mean_=self.mean_valuessk_model.n_features_in_=len(self.std_values)# type: ignore[arg-type]sk_model.n_samples_seen_=self.n_samples_seenwithopen(path,"wb")asfp:pickle.dump(sk_model,fp)def_load_core_model(self,path:str)->None:withopen(path,"rb")asfp:sk_model=pickle.load(fp)self.std_values=np.sqrt(sk_model.var_)self.scale_values=sk_model.scale_self.mean_values=sk_model.mean_self.n_samples_seen=sk_model.n_samples_seen_
[docs]classArrayAssembler(Transformer,HasInputCols,HasOutputCol,HasFeatureSizes,HasHandleInvalid,ParamsReadWrite,):""" A feature transformer that merges multiple input columns into an array type column. Parameters ---------- You need to set param `inputCols` for specifying input column names, and set param `featureSizes` for specifying corresponding input column feature size, for scalar type input column, corresponding feature size must be set to 1, otherwise, set corresponding feature size to feature array length. Output column is "array<double"> type and contains array of assembled features. All elements in input feature columns must be convertible to double type. You can set 'handler_invalid' param to specify how to handle invalid input value (None or NaN), if it is set to 'error', error is thrown for invalid input value, if it is set to 'keep', it returns relevant number of NaN in the output. .. versionadded:: 4.0.0 Examples -------- >>> from pyspark.ml.connect.feature import ArrayAssembler >>> import numpy as np >>> >>> spark_df = spark.createDataFrame( ... [ ... ([2.0, 3.5, 1.5], 3.0, True, 1), ... ([-3.0, np.nan, -2.5], 4.0, False, 2), ... ], ... schema=["f1", "f2", "f3", "f4"], ... ) >>> assembler = ArrayAssembler( ... inputCols=["f1", "f2", "f3", "f4"], ... outputCol="out", ... featureSizes=[3, 1, 1, 1], ... handleInvalid="keep", ... ) >>> assembler.transform(spark_df).select("out").show(truncate=False) """_input_kwargs:Dict[str,Any]# Override doc of handleInvalid param.handleInvalid:Param[str]=Param(Params._dummy(),"handleInvalid","how to handle invalid entries. Options are 'error' (throw an error), ""or 'keep' (return relevant number of NaN in the output). Default value ""is 'error'",typeConverter=TypeConverters.toString,)@keyword_onlydef__init__(self,*,inputCols:Optional[List[str]]=None,outputCol:Optional[str]=None,featureSizes:Optional[List[int]]=None,handleInvalid:Optional[str]="error",)->None:""" __init__( self, \\*, inputCols=None, outputCol=None, featureSizes=None, handleInvalid="error" ) """super().__init__()kwargs=self._input_kwargsself._set(**kwargs)self._setDefault(handleInvalid="error")def_input_columns(self)->List[str]:returnself.getInputCols()def_output_columns(self)->List[Tuple[str,str]]:return[(self.getOutputCol(),"array<double>")]def_get_transform_fn(self)->Callable[...,Any]:feature_size_list=self.getFeatureSizes()iffeature_size_listisNoneorlen(feature_size_list)!=len(self.getInputCols()):raiseValueError("'feature_size_list' param must be set with an array of integer, and""its length must be equal to number of input columns.")forfeature_sizeinfeature_size_list:iffeature_size<=0:raiseValueError("All input feature sizes must be an positive integer.")assembled_feature_size=sum(feature_size_list)handler_invalid=self.getHandleInvalid()ifhandler_invalidnotin["error","keep"]:raiseValueError("'handler_invalid' param must be set with 'error' or 'keep' value.")keep_invalid=handler_invalid=="keep"defassemble_features(*feature_list:Any)->Any:assembled_array=np.empty(assembled_feature_size,dtype=np.float64)pos=0forindex,featureinenumerate(feature_list):feature_size=feature_size_list[index]iffeatureisnotNone:ifnp.isscalar(feature)andfeature_size!=1:raiseValueError(f"The {index+1}th input feature is a scalar value, but provided "f"feature size is {feature_size}.")ifnotnp.isscalar(feature)andlen(feature)!=feature_size:raiseValueError(f"The {index+1}th input feature size does not match "f"with provided feature size {feature_size}.")ifkeep_invalid:iffeatureisNone:assembled_array[pos:pos+feature_size]=np.nanelse:assembled_array[pos:pos+feature_size]=featureelse:iffeatureisNoneornp.isnan(feature).any():raiseValueError(f"The input features contains invalid value: {str(feature)}")else:assembled_array[pos:pos+feature_size]=featurepos+=feature_sizereturnassembled_arraydeftransform_fn(*series_list:Any)->Any:returnpd.Series(assemble_features(*feature_list)forfeature_listinzip(*series_list))returntransform_fn